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ALMOST LOWER SEMICONTINUOUS MULTIFUNCTIONS AND
THE SOUSLIN-GRAPH THEOREM
M. WILHELM

Abstract: Almost continuous mappings and almost lower
semicontinuous multifunctions are investigated. A Souslin-
graph theorem for multihomomorphisms with values in an ana-
lytic gspace is proved.
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1. Introduction. The term "almost continuity" is used
here in the sense of Bradford and Goffman [4]. We show that
each slmost continuous mapping having the Baire property and
taking values in a regular space is continuous (Theorem 4).
It follows that each almost continuous mapping having a Sous-
lin graph and taking values in an analytic space is continu-
ous (Theorem 6).

We define and investigate "almost lower semicontinuity*
of multifunctions. Under category type assumptions certain
multifunctions possess automatically this property (Theorems
1,2,3).

Let F:G—> H be a multihomomorphism with F-l(H) =G. If
G 1s of second category and H 1s separable or Lindelaf, then
F is lower semicontinucus iff it is lower-Baire (Theorem 5).

If G is inductively generated by second category groups and
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H is analytic, then F is lower semicontinuous provided it has
a Souslin graph (Theorem 7). This version of the Souslin-graph
theorem is based on ideas due to Frolfk [T] and [6].

2. A t_lowe, micon 1t . Almost
continuous mappings were considered first, as it seems, by
Blumberg [3] and Block and Cargal [2], under unlike names. The
term "almost continuity" was used by Bradford and Goffman [4].

Let X and Y be topological spaces and f a mapping of X to
Y (£:X—> Y). Given x €X, f is said to be almost continuous at
x if for each open set V in Y containing £(x), xe Int D(f-l(‘l)).
Here D(E), where Ec X, denotes (as in [10]) the set of all
points x” of X that are of second category in X relative to B
(i.e. UNE is of second category in X for each open Usx’).
This definition of almost continuity is equivalent to those
given in the above-mentioned papers, and can be extended, in
a natural way, to multifunctions. By a multifunction F of X to
Y (F:X —> Y) we mean a function which to every point xe X as~-

signs a subset F(x) of Y (not necessarily closed or nonempty).

Definjtion. A multifunction F:X—> Y is almost lower se-

micontinuous at x if for every open set V in Y

x e F 1(V) implies xe Int D(FL(V)).

Here the inverse image FLom denotes, as always, the set of
all x’ satisfying F(x ' )n V+0.

The set of all points x of X such that F is almost lower semi-
continuous at x will be denoted by LQ(F); in case LB(F) = X,
F will be called almost lower semicontinuous. Thus, F is al-

most lower semicontinuous if and only if for every open gset V
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in Y
Flovye 1t D(Flev)).

Let L(F) stand for the set of all points xe X such that F is
lower semicontinuous at x, i.e. xe Int F"1(V) for all open

VcY intersecting F(x). Notice that

LE(F)nF"l(Y) c Int D(F YY) c Int D(X)
and

L(FXn F (1) A Int DIXIC L (F),

while obviously X\F-l(Y)CL(F)ﬁLE(F). In particular, if X is
a Baire space (i.e. X = D(X)), then L(F)CLa(F). If F is al-
most lower semicontinuous, then F~1(Y) 1s a Baire space (in
itself).

The usefulness of the property of almost lower semiconti-
nuity stems from the fact that it is automatically satisfied
under some category-type assumptions, while, on the other hand,
it is a convenient starting point to the Souslin-graph, closed
graph, open mapping and Blumberg theorems.

The following theorem extends some observations from [3],
[2] and [4].

Theorem 1. Let F be a multifunction of X to Y. If the
space Y is second-countable, then

(1) The set La(F) is residual in X;

(11) the restriction FIL (F) :La(F)'-—*Y is almost lower
semicontinuous. More generally, for each residual set AC La(F),

Fl& is almost lower semicontinuous.

Proof. (1) Let {V ] be a base for Y. & point xcX is
not in L (F) if and >nly if there is n such that xe€ F.l(vn)
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and x ¢ Int D(FX(V_)). Thus

L (F) = X\”gjl,[l?‘-l(\/n)/\]:nt per v ).

Each set of the form E\ Int D(E) is of first category because
D(E) \ Int D(E) is closed co-dense and E \ D(E) is of first ca-
tegory by the Banach category theorem (cf. [10]). Hence La(F)

is residual.

(11) Let AC L_(F) be residual in X. Put E = F -(V,).
Then

AnD(E) = AnDCANE)C DA(&r\E)
and

xe AaInt D(E)c Int (AnD(E))c Int,D,(ANE) for xeAnE,

which shows almost lower semicontinuity of FlA.

By a graph of a multifunction F:X—>Y we mean the set

Gr F = {(x,y):yeFlx)tc XY,
In the following the letters G, H stand for topological groups.
We say that F:G- >H is a multihomomorphism if Gr F is a sub-
group of G=H. For multihomomorphisms we have the following

simple criterion of almost lower semicontinuity.

Lepmg 1. A multihomomorphism F:G—>H is almost lower
semicontinuous if (and only if) for each neighbourhood V of

ey the inverse image F-l(V) is of second category in G.

Proof. Let V be a symmetric neighbourhood of ey and put
E=F1(V) and U = Int D(E). Since ENU is a first category
set in G (by the Banach category theorem; see the previous
proof) and E is of second category (by the hypothesis), the
set U is non-empty. This implies that e;eInt D(F-l(vz)) be-

cause
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ege U2c Int ((D6F ()2 e Int DIF"1(V)I2) = nt DIF L (VD]

Thus ege L (F). If now xe F1(V), where V is open in H, then
eq€ F_I(Vy—l), where ye F(x) nV; hence eye Int D[F—l(\?y-l)],
and so x ¢ Int DILF 1 (Vy™)]x) = Int DLF"HVI; xe L (F).

Now we need a generalization of a lemma of Pettis [13]
for multihomomorphisms. First a definition ([13]7). A subset
E of H is &€-bounded in H if for every neighbourhood V of eq
there exists a sequence {y }c E such that E C”l©’] YV o Vype
Each geparable or Lindelof (in particular, & -compact) subspa-
ce E of H is S-bounded in H. If H is metrizable, the three
notions (6 -boundedness, separability and Lindelof property

of EcH) coincide.

Lemmg 2. Let F:G-—>H be a multihomomorphism such that
F(G) is G-bounded in H. If F L(H) is a second category set in
G, then so is L) for any neighbourhood V of ey.

Proof. Given open V>ey, choose{y,}c F(G) so that #£(G)c
o - -1 ©
Can=/4 ¥,Vv Vy,. Choose x e F l(yn). Then F ~(H) =m§/,, x.B v

UEx , where E = F-l(V). Hence E is of second category in G.

Lemma 3 ([13)). If H is &-bounded, then each set Ec H
is &-bounded in H,
©0
Proof. Let H 31»,\:}1 YoV wVyy, where V is a neighbourhood
of ey and {yn} c H. Choose hieﬂnyn\l’ whenever possible (neNl)

and h2e B Vy, whenever possible (ne N,). Then

Ly=iy, -1, 2
E cm':jnﬂ .an Y g”zvyn © .-n,kejf\H th V:r)z \eJN lw hn’
Since V=>ey was arbitrary, E is &'-bounded.

If now H is & -~bounded, then F(G) is & =-bounded in H
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(Lemma 3) and the lemmas Nos. Z and 1 may be applied, provid-
ed F1(H) 1s of second category. Thus we get

Theorem 2. Let F be a multihomomorphism of G to H, whe-
re H is & 6-bounded group (e.g. separable or Lindelof). If
FX(H) 1s of second category in G, then F is almost lower se-

micontinuous.

For linear multifunctions the assumption of & -bounded-
ness of the range space may be omitted and the proof reduced.
Let S and T be topological vector spaces; F:S—> T is a line-
ar multifunction if Gr F is a linear subspace of Sx<T.

Theorem 3. Each linear multifunction F:$—> T such that
FH(T) 18 of second category in S is almost lower semicontinu-
ous.

Proof. Let V be a neighbourhood of Op. Since T =ﬂ;§% nv,
Fim =ﬂ$;a nF1(V), Hence F~1(V) is of second category in S
and we apply Lemma 1.

That is all about "automatic" almost lower semicontinui-
ty. Now we will consider the question, when almost lower se-
micontimiity (resp. almost continuity) implies lower semicon-
tinuity (resp. continuity). For mappings we have a quite sa-

tisfactory answer:

Theorem 4. Let X be a Baire space, and let Y be a regu-
ler space (even not necessarily To). A mapping £:X—> Y is
continuous if (and only if) it is almost continuous and has

the Baire property.

Proof. Let xe £ X(V), where V is open in Y. Choose open
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set Wc.Y with £(x)e W and WcV. Since £ is almost continuous
at x, xcU = Int p(£~1(w)). Let ueU; we will show that f(ule
¢ V. Let Z be an open neighbourhood of f(u). Since f is al-
most continuous at u, ue Int D(£ 1(2Z)). Hence Un£ 1(Z) 1s &
second category set in X. Since f has the Baire property, the-
re exists an open set Gc X such that GAf£ 1(Z) is of first
category in X. Now UnG is of second category in X. It fol=-
lows that £ 2(W) G is of second category in X. Hence £ 1wn
n£71(2) 1s of second category in X, which yields Wn Z+ 0.
Thus we have proved that f(u)e W.

The theorem cannot be extended to multifunctions, with-

out additional assumptions.

Example 1. Each of the following multifunctions is al-
most lower semicontimuous and lower-Baire (i.e. F (V) has
the Baire property whenever ¥cY is open), but not lower semi~-
continuous.

(a) F(x) =41% for x€ INQ and F(x) =@ for xe InQ
(I =10,1], Q - the rationals); F:I—> I is single-valued.

(b F(x) =Y for xeINQ and F(x) = {1} for xe InQ,

where Y is the discrete space 10,1}; Fln = 1.

(¢) (cf.[5]). Let I = Pju P,, where P; are dense and
co-dense G - -sets in I, and let g be the natural mapping of
the space Y = Pl@ P2 onto I; g is continuous and almost open
(i.e. g(U)c Int D(g(U)) for each open UcC Y). Define F = g-l.

An analogue of Theorem 4 for multihomomorphisms holds
true. To see this, let F:G—> H be an almost lower semiconti-

nuous lower-Baire multihomomorphism, and consider the induced

mapping £:X--> Y, where X = F'L(H) and Y = H/Fleg) (Y need not
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be a To-space of a group). The assumptions of Theorem 4 are
satisfied (Y is regular by [9; 5.19, 5.20]}). Hence £ is con~-
tinuous. Since the quotient mapping ¢ :H —>Y is open (cf.
{9; 5.17)), this implies lower semicontinuity of F:X —>H.

X is a second category subgroup of G having the Baire proper-
ty; by the Banach-Kuratowski-Pettis theorem (cf. [1l; Theorem
1], [10; 13.XI) and [13; Theorem 1]), X is open in G. Hence
F:G —> H is lower semicontinuous. Thus, in view of Theorem 2,

we get

Theorem 5. Let F be a multihomomorphism of G to H such
that F L(H) is of second category in G. (i) F is lower semi-
continuous if (ynd only if) it is almost lower semicontinuous
and lower-Baire. (ii) Suppose the group H is & -bounded (e.g.
separable or Lindelof). Then F is lower semicontinuous if (and

only if) it is lower-Baire.

For linear F, (ii) holds with no assumption on the range

vector space (by Theorem 3).

3. Souslin-graph theorem. A T3-space'Y is said to be an

analytic space (or a K-Souslin space) if there exists a Polish
space X and a compact-valued upper semicontinuous multifunc-
tion & of X onto Y (Frolfik [ 6]; for some equivalent defini-
tions see [6] and [8]). Each analytic space is a Lindelof
space, hence paracompact and normal (cf. [ 6] and [81).

By a Souslin set, in a given space, we mean the result of per-
forming the Souslin operation (A) (denoted also S) on a sys-
tem of closed sets in the space. Since the cecllection of all

sets having the Baire property is closed under the operation
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(4), each Souslin set has the Baire property (ecf. [10]).

L. Schwartz [15] proved that if S and T are locally con-
vex spaces, S - ultrabornological (i.e. inductive limit of
Banach spaces), T - continuous image of a Polish space, then
each borel graph linear map £:S—> T is continuous and each
continuous linear map g:T 3533 S is open.

Frolik [7) proved that if G is a vector space which is
inductively generated by second category vector spaces and
H is an analytic locally convex space, then

(1) each Souslin-graph homomorphism f:G—> H is conti-
nuous.

Martineau [11]) proved, among other results, that if G is
a second category analytic group and H is an analytiec group,
then each continuous homomorphism g:H EEBQ;G is open; Perez
Carreras [12]showed that the theorem remains true if G is not
necessarily analytic.

In this section we shall show that if G is inductively
generated by second category groups snd H is an analytic
group, then the statements (1) and (2) hold, where

(2) each Souslin-graph homomorphism g:H~9913-G is open.
The main tools are Theorem 5 and the following lemma due to
Rogers and Willmott [14] (a nice proof is given in Frolik
[7; Lemma 1]).

Lemma 4. Let F:X—>Y be a multifunction, where Y is
an analytic space. If Gr F is a Souslin set in X< Y, then F
fs upper-Souslin (i.e. F L(A) is Souslin whenever A is clo-
sed), and hence upper-Baire.

Combining the lemma with Theorem 4 we get
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Theorem 6. Let X be a Baire space, and let Y be an ana-
lytic space. A mapping £:X—>Y is continuous if (and only
if) it is almost continuous and its graph is a Souslin set
in X><Y,

Example 1 (c) shows that an almost lower semicontinuous
Souslin-graph multifunction F:X—> Y need not be lower semi-

continuous, even if X is compact, Y Polish and Gr F closed.

Lemmg 5. Each upper Baire multihomomorphism F:G—>H is

lower-Baire.

Proof. Let ¢ be the canonical mapping of H onto H/Ff(eg).
Let V be open in H. Since ¢ 1s open and continuous, the set

F() = FHmN F e THwrceg) N g (01)
has the Baire property in G.

If F is lower-Baire and F(e;) is compact, then ¢ is clo-
sed (cf. [9; 5.18]) and, consequently, F is upper-Baire. With-
out the compactness assumption, the converse to Lemma 5 is
not true.

Exgmple 2. Let Ho be a closed normal subgroup of Hy G =
= H/Ho, @ tH — G the canonical quotient mapping and f = gz'l:
:G —>H; F is even lower semicontinuous and has a closed graph.
Nevertheless F need not be upper-Baire (it is upper-Baire pro-
vided H is analytic; see Lemma 4). Take for instance H = RxRy
and H = {0 <R,, where R, denotes R (the reals) endowed with
the discrete topology. Choose a set A in R which has not the
Baire property and put K =< (x,x) € Hixc A%; K is closed and
Flx) = a.
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Now we are in a position to derive the Souslin-graph theo-

rem.

Theorem 7. Let F:G—>H be a multihomomorphism, where H
is an analytic group. Assume that

(1) FL(H) 1s of second category in G; or

(11) F'l(H) = G and the topology on G is inductively gene=-
rated by homomorphisms h_ :G_ —> G, where G, : o€ A} is a fa-
mily of second category groups.

If Gr F is a Souslin set in Gx< H, then F is lower semicontinu-

ous.

Proof. (1) Follows from Lemmas 4, 5 and Theorem 5 (ii).
(ii) Fix any e« € A. By Lemma 4, F is upper-Souslin; hen

ce Fo Qi is upper-Souslin, and so upper-Baire. Lemma 5 shows
that Foh_, is lower-Baire. By Theorem 5 (ii), Fo h is lower

semicontinuous. Since o~ was arbitrary, the assertion follows.

Clearly, Theorem 7 yields the statements mentioned in the

passage before Lemma 4.
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