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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CARCflNAE 

23,1 (1982) 

INVERSE LIMITS OF SMOOTH CONTINÜA 
Wlodzimierz J. CHARATONIK 

Abstract: It is proved that (l) smoothness of conti-
nua in the sense of Mafikowiak is preserved under the inver
se limit operation for sequences* with bonding mappings be
ing monotone relatively to* points which form a thread; and 
(2; the property of Kelley is preserved under the inverse 
limit operation for sequences of continua with confluent 
bonding mappings. 
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Classification: Primary 54F15 
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The aim of this note is to prove that smoothness of 

continua in the sense introduced by MaSkowiak ([5],p. 81) 

is preserved by the inverse limit operation if the bonding 

mappings are monotone relative to points which form a thread. 

This is an answer to Problem 2 asked in til. It is also pro

ved that the property of Kelley (see [7], p. 291; cf. E6J, p. 

538) is preserved under the inverse limit operation with 

confluent bonding mappings. 

All spaces considered in this paper are assumed to be 

metric continua. The following notation will be used. The hy

pers pace of subcontinua of a continuum X (with Hausdorff met-
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ric) is denottd by C(X), and we put CT̂ CX) for C(C(X)). Given 

a continuous mapping f:X—-> Y, we denote by f** :C(X)—> C(Y) 

the induced mapping defined by f* (K) = f(K), and analogously 

f**:Cr(X)—>C (Y). Further, we use the lower and upper limits 

and the limit of a sequence An of subsets of a continuum X 

(in symbols Li A , Ls A and Lim An respectively) in the sen

se of £2], § 29, p. 335-340. Similarly, the notion of upper 

(lower) semi-continuity of a set-valued mapping will be used 

in the sense of 12], § 18, p. 173 (cf. £33, § 43, II, Theorems 

1 and 2, p. 61 and 62). The symbol 4x ,f J^Li denotes the in

verse sequence of continua Xr with continuous bonding mappings 

f i : X i * l — ^ x i . w e d e n o t e by X s lim-fX^f1! the inverse limit 

space, and by #r : X — > X the projection from X into the i-th 

factor space X . Given two inverse sequences ix ,f l^-i and 

-fY,S I^LJI and a mapping fh 1^^ between the two sequences, 

we denote the limit mapping by lim h1: lim f X1,f ̂ — > \±m {Y1,, 

g1} (cf. £23, p. 2B-30). 

Finally recall that a continuous mapping f:X—> Y is said 

to be (see 143, p. 720): 

- confluent, if for every subcontinuum Q of Y each component 

of the inverse image f (Q) is mapped by f onto Q, 

- monotone relative to a point peX, if for each subcontinuum 

Q of Y such that fCp)e Q the inverse image f" (Q) is connect

ed. 

We say that a continuum X is smooth at the point peX if 

for each convergent sequence ix^ of points of X and for each 

subcontinuum K <e#r.3L.ftueh that p,xeK, where x = lim xn> there 

exists a sequence -?Kn} of subcontinua of X such that ptxne Kn 

for each n = 1,2,... and Lim KR =- K (see £5l, p. 81). 
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I. The mapping F. Fix a point p of a continuum X and 

consider a mapping F[X,p]:X—> Cr(X) which assigns to a point 

xeX the family of all subcontinua K of X containing both p 

and xf i.e. , 

F[X,pD(x) sr-fKe C(X) :p,xe K\. 

Note that, for each xeX % this is a compact and arcwise 

connected subset of C(X), whence this is really an element 

of C CX). In this section the considered continuum X and the 

point p are assumed to be fixed, so we will write F instead 

of FtX,pi]. 

Proposition 1. The mapping F is upper semi-continuous. 

Indeed, let xRc X and x n—->x. We have to prove that 

Ls F(x }C F ( X ) . Let a continuum K be in Ls F(x ). Then there 

exist a subsequence ^n.\ of natural numbers and a sequence 

of points of F(xn ) that converges to K. Each of these points 

is a continuum in X containing p and x_ , whence K contains 
nk 

p and x, i.e., KeFCx). 

Proposition 2. The mapping F is continuous if and only 

if the continuum X is smooth at the point p. 

Proof. Assume F is continuous. Let a point xe Xf a con

tinuum KeFCx) and a sequence of points x n6 X convergent to 

x be given. By continuity of F we have Lim FCxR) = F(x), so 

there exist points KR of F(xn) tending to K. Since the conti

nue K contain both p and x , we are done by the definition 

of smoothness. 

Assume X is smooth at p. By Proposition 1 we have only 

to show that F is lower semi-continuous, i.e., that 
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F(x)c Li F(xR) for any sequence xn—•> x. Let KeF(x). By 

smoothness of X at p there is a sequence of continue 1C, 

with p,x € K , converging to K. Thus K n
€-^ x

n)>
 a n d *ne c o n" 

elusion follows by the definition of the lower limit. 

Proposition 3. Let a continuous surjection f:X—> X 

and points p e X and qe Y with q » f(p) be given. If F-̂  » 

* F[X,p"J and F^ -* FlY,q.], then the diagram 

f 

r.«- x 
F
2| I 'i 

commutes if and only if f is monotone relative to p. 

Proof. Assume that the diagram commutes, i.e., that 

f^*i(F1(x)) = F2(fCx)) for each xe X, which means that 

(1) {f*(K):Ke C(X) and p,xe- Kf=* i L c CCY),:q,f (x) c h'i for 

each xe X. 

Let Q c Y be a continuum containing the point q. Suppo

se that f" (Q) is not connected, and pick up a point x in an

other component of f~ (Q) than that to which the point p be

longs. Then Q is in the right member of (1), while it is not 

in the left one. 

Conversely, assume that f is monotone relative to p. We 

have to show that (1) holds. Take an arbitrary x in X and no* 

te that the left member of (1) is obviously a subset of the 

right. To prove the inverse inclusion take a continuum L in 

the right member of (1), i.e., such that q,f(x)e L. Since f 

is monotone relative to p we conclude that K » f~ (L) is a 
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continuum, so L .* f*(K) belongs to the left member of (1). 

Corollary. Let a continuum X be smooth at a poir/. peX, 

and let a mapping f:X—^ Y from X onto a continuum • be mo

notone relative to p. Then Y is smooth at f(p). 

Proof. By Proposition 2 we ought to show that the map

ping F ^ Y — ? CTCY) defined as in Proposition 3 is continuous. 

Take a sequence of points y € Y which converges to a point 

yeY. We have to show that FpCyn> tend to F2(y). Choose xn e 

e f " Cyn) and x e f" tyl such that x n — ^ x (take a proper sub

sequence if necessary). Now F 2(y) =* FpCf (x )) -* f**(F^(xn)) 

by Proposition 3, and similarly we have Fp(y) = F2CfCx)) -* 

s f̂ C'F-j (x)). Since F, is continuous by Proposition 2 and 

f**" is continuous by its definition, we conclude that 

f*'*(F1Cxn)) converge to f^F^Cx)), i.e., F->(y ) converge to 

F2(y); thus the proof is finished. 

II. Smoothness of inverse limits. Now we are ready to 

prove the following 

Theorem 1. Let -fx ,f i . j ^ be an inverse sequence such 

that for each i = 1,2,... (a) the continuum X is smooth at 

a point p ; (b) f (p ) -* p ; (c) f is monotone relative 

to p1*1. Then the inverse limit continuum X = lim{X^,f j is 

smooth at the thread p « ip ^---L» 

Proof. Put F1 = FLX ,p j for i - 1,2,... and consider 

the mapping {F iT-^ between the inverse sequences; -fx tf I ial 

and*C2(Xi),f1*,']?L1. 
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ғ1 ғcr -;- ""** x -*—' . .. 

i K 1 
c ^ C x 1 ^ . c/cx2}*? «.* c£ Cx) 

Since for each i = 1,2,... the diagram 

f1 

X 1 ^ 1 x1*1 

** j | F1*1 

c ^ x 1 ) ^ cfcx1*1) 

commutes by Proposition 3, and since all mappings F are con

tinuous by Proposition 2, hence the limit mapping F^= ^im F 

is continuous. Note that the inverse limit C^ CX) =* 

« UrnA C2(Xi),fi^^i is homeomorphic to C?(X). Indeed, by 16.1, 

Theorem (1.169), p. 1?1, Cco(X) a lim -{ CCX
1) ff

X*i is homeo

morphic to C(X> under a homeomorphism h:C^(X)—^ C(X) defin

ed by h(A) » lim 4 Ai,fiU1^1?, where A =- ̂ A 1 ^ ^ C^(X) (see 

L63,l5J, p* 172). Using the same result once more we see that 

C^CX), = l i m i C 2 ^ 1 ) ^ 1 ^ is homeomorphic to C(C^CX)) under 

a homeomorphism g-C^CX)—>C(CC^(X)) defined by 

(2) g(B) . l i m ^ f 3 * ) B 1* 1], 

where B * iB J?.e C^(X). The composite of g and h7* is the 

required homeomorphism from C^ (X) to CTCX). 

Now let us consider the following diagram in which F =* 

38 F X,p 

X 

clo(x)—>cicJx))—-X^X), 
g h* 
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and note that its commutativity implies continuity of F, which 

is equivalent by Proposition 2 to the conclusion of the theo

rem. To prove that the above diagram commutes, take a point 

« ir*° 
x s-ix *i=:iex» W e ought to show that 

(3) h*(gCF°°(x))) » Fix). 

Applying the definition of F°° and (2) we have: 

(4) g(F°°(x)) « g(-5FiCxi)i^L1) * Urn i F^x 1 ) ^ i F1*1 &H, 

whence h*(g(F°°(x))) * h*(lim -JFi(xi) ̂ I F 1 * 1 ^ 1 4 ) } ) ' Take an 

element K in h^(g(F^(x))). Thus there exists a thread 4 K 1 * ^ 

such that 

(5) {K1}^ ^F^xH^lF^U^hl 

with K » h W K 1 ^ ) , i.e., K = ^ m ^ K 1 ^ 1 ^ 1 * 1 } . Note that 

(5) implies that p , x e K for each i = 1,2,..., whence p, 

x€K, i.e., KeF(x). So one inclusion in (3) is proved. 

To show the other one, take LeF(x). Thus, p,xeL. Put

ting L = JT (L) we have p , x .s L for each i = 1,2,..., 

whence L e F (x ), and therefore the thread \l> JJ^-J is in the 

right member of (5), so it is in g(Fcx?(x)) by (4). Thus we 

conclude that L = lim ihl,filLi^1^ is in the left member of 

(3). Hence (3) is shown and so the proof is complete. 

III. The property of Kellev. Let d denote a metric on 

a continuum X. The continuum X is said to have the property 

of Kelley (173, II, p. 291 and 292; cf. £6"}, (16.10), p. 538) 

provided that given any £ r 0 there exists cf y 0 such that 

if a,beX, d(a,b)«-cT and aeAeC(X), then there exists 
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BeC(X) such that beB and H(A,B). <: e , where H denotes the 

Hausdorff metric in C(X). 

Define a mapping «,LX3:X—*C2(X) by octX3(x) = iK e 

£ C(X):xeKl (see H73, p. 292; cf. C6], p. 551). The follow

ing two statements are known (17.1, Theorem 2.2, p. 292 and 

Theorem 4.2, p. 296). 

A. The mapping cc£X3 is continuous if and only if X 

has the property of Kelley. 

B. The diagram 

r 
y < X 

ooEY] | | c 6 [ X 3 

(^(Y)^ (^CX) 

commutes if and only if f is confluent. 

Using the same methods as in the proof of the previous 

theorem, we will prove 

Theorem 2. Let 4x ,f i a _-• be an inverse sequence such 

that for each i =1,2,... (a) the continuum X has the pro

perty of Kelley, and (b) the mapping f :X* - v X is con

fluent. Then the inverse limit continuum X = lim -iX ,f } has 

the property of Kelley. 

In fact, to prove the theorem it is enough to replace in 

the proof of Theorem 1 the mapping .FtX**-^1.] by cClX*') for 

i = 1,2,,., and to delete the points p and p from the consi

derations. Then the role of Propositions 2 and 3 ia performed 

by the statements A and B respectively. 
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