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COMMENTATIOMES MATHEMATICAE UNIVERSITATIS CAROLINAE 
23,2 (1982) 

ON THE EQUATION x' = f (t, x) IN BANACH SPACES 
Józef BANA.*, Andrzej HAJNOSZ and Stan i stow WEDRYCHOWICZ 

Abatract: In this, paper, we deal with the existence theo­
rem for the equation x « f(t,x), where the values of a functi­
on f(t,x) lie in an arbitrary Banach space. In order to obtain 
the existence of solution of this equation we as3ume that the 
function f(t,x) ia uniformly continuous and satisfies some com­
parison condition involving the notion of a measure of noncom-
pactness which is defined in an axiomatic way. 

Kev words: Ordinary differential equation in Banach spa­
ce, measure of noncompactnes3, fixed point theorem of Darbo 
type. 

Claasification: 47H09, 34G20 

-•• Introduction. The purpose of this paper i3 to prove 

some existence theorems for an ordinary differential equation 

in Banach space. We assume that the rifrht hand side of that e-

quation satisfied a comparison condition of Lipschitz type 

translated in terms of a so-called measure of noncompactnes9» 

The notion of a measure of noncompactness which we will use, 

was defined in an axiomatic way in the work £33 (cf. also 12]). 

Thia axiomatics ia not 90 general as that of Sadovskii il2l but 

it 9eems to be very convenient in a lot of applications becau­

se it admits many natural realizations C31. 

It is worth to mention that the notion of a measure of 

noncompactnes9 was very intensively examined in the last years 
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and it was used in many branches of nonlinear functional ana­

lysis ([3J,[5],[7],[11J,C12]). The application of measures of 

noncompactness in the theory of ordinary differential equati­

ons in Banach spaces, was at first initiated by Ambrosetti 111. 

After Ambrosetti s paper, there have appeared many papers in­

volving differential equations together with measuree of non-

compactness (181,£4],[14],Cl2],[7]). In almost all of the men­

tioned papers there has been used the measure of noncompactness 

defined by Kuratowski C93« Notice that Kuratowski's measure is 

very convenient but in several Banach spacee we do not know any 

convenient necessary and sufficient criteria of compactness and 

therefore the application of Kuratowski's measure is very dif­

ficult and even impossible. With regard to this we use measures 

defined in an axiomatic way, which allows us to omit the menti­

oned difficulties. 

2- Basic notations and definitions. Let E be an arbitrary 

Banach space with the norm II • II and the zero element S> and let 

K(x,r) denote the closed ball centered at x and with radius r* 

Denote by 3& E the family of all bounded and nonempty subsets 

of E and by 2tE its subfamily which contains relatively comp­

act sets. For X,YcE the closure, convex closure and linear 

combination of these sets will be denoted by X, Conv X, oCX • 

+ ft>Yf respectively. 

Definition C31. A function ^: ^-g — X 0>• 00 ) will be 

called a measure of noncompactnes3 if it satisfies the follow­

ing conditions: 

1° the family 9~lX e f̂ĉ ,: ^ x ) = 03 is nonempty and 

* < = * » . 
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2° XcT-fr-^U)*. <ulX)' 

3° (*&) -T^CCon* X) = ^ ^ 
4° (.t(Al»(l-a)tl-Vtt) + (l-A)(a(I), for .*£ 

6 < 0,1> , 

5° if X n e «t I f Xn * *n,
 x

n + l
c Xn> n = 1>2'-*" and lf 

lim (a-(Xnl = 0 then X^ =- £\j
 x
n + **• 

The family {P defined in 1° is said to be the kernel of 

the measure (^ and it is denoted by ker (** . It may be shown 

that the family (ker<a)c = tX6ker^:X = ¥3 forms a closed 

subspace of the space W | = Tx e flft-giX =• XJ with respect to 

the topology generated by Hausdorff metric £3.1. 

In the sequel, we will use the following modified version 

of the fixed point theorem of Darbo type (£2.1 f T3l 9 cf. also 

-63). 

Theorem 1. Let C € $iE, Conv C = C and let T:C—> C be a 

continuous transformation such that TX & 2& B for any X e 3# E. 

If there exists a constant k€<0,l) such that 

(j,(TX) £k (cdx), 

then T has at least one fixed point which belongs to ker (A -

Moreover, the set FixT -* [xeC:Tx = x.l belongs to ker (uu * 

Further, for any measure ice defined in the space E, we 

will denote 

E^=- ixe B'Axie ker(U,3 • 

Obviously E^, is a closed and convex subset of the space E» In 

the case when ̂  is a sublinear measure, i.e. if it satisfies, 

in addition^ the following two conditions 

ĉc(X + Y)£ ft(X> + /tx(Y), 
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f - U x ) « U l ^ u ( X ) , A e R, 

then E^, forms a closed l inear subspace of E. 

Next, by C«0,T>,E) or short ly by C we w i l l denote the spa­

ce of a l l continuous functions acting from the interval <0,T> 

into E, with the usual maximum norm* 

For an arb i trary X € 3 # c and B > 0 we put: 

0>(X,e) = sup-{sup [Bx ( t ) - x ( s ) H E : t f s € < 0 , T > , | t - s U & . l j , 

&>AX) » lim <a(x,e), 

X(t) = [ x ( t ) : x € X . J , 

M(X) « sup C ,u B (X ( t ) ) : t6<0 ,T>3 . 

F ina l ly , l e t us define 

fC*(X) = <^o(Xl + M(X). 

This function i s the measure of noncompactness in C with the 

kernel (PQ cons is t ing of a l l e qui continuous s e t s X such that 

X ( t ) e k e r ( t ^ for any t €<0,T> C33. 

Notice that the function M(X) i s the measure of noncompactness 

on the family W ^ q of e qui continuous s e t s . 

3 . ^Qffle,prpperUgg Pf ffl<gfi3V-reg Pf npnepp^a fitness* Let (A 

be an arb i trary measure of noncompactnes9 in the space E. For 

X e.'TtL- l e t us denote 

II Xll s sup CHxH : x e X 3 • 

Now we prove a few lemmas describing some properties of 

a measure (& • These lemmas generalize some results given in 

C3l,t2l. 

Lemma 1. If AXll^-l, then 

<a(X + Y) £ (U(Y) • II X I! (U,(K(Y,D), 

where 
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K(Y,l) » U , K ( y f l ) . y€Y 

For the proof se^ C 2.1. 

Lemm̂  2, Let kx£ € ker (^ . Then 

^ ( x 0 * tX)^ t (tt(xo • X) 

for t € ^ 0 , l > . 

Proof. Using the axiomatics of a measure we have 

(a(xQ • tX) » (^(txQ • (l-t)x0 + tX) = ^((l-t)x0 • t(xQ «• X))* 

*(l-t) (* «x0t) • t (U,(x0 + X) = t ̂ (x Q * X), 

which proves our lemma* 

Lemma j . Let t i » t p , . . . , t n be given nonnegative reals such 

that . S . t44^1 and le t i x \ e ker AA, . Then 

<*(-o - i f f W - i l ( *i <"(\> - Xi>' 
Proof. If .ZL t^ a 0, then the inequality i s obvious. Let 

- S * t^> 0. Denoting A^ « t.-/.JE. t^, with respect to Lemma 2 

and our definit ion and using the fact that ^.S^ ^ ^ = 1, we have 

^ ( x o +&4 t±X±) = ^ ( x o + ( i 5 f V ( J l l X l * *2X2 *••• 
IV /itv 

••• • A n V ) " ( ^ V < a ( x o + * ? * . * i*i> " 
* V »1fV 

= Ci-Si t4) <*<;S,, ^ ( x , , * ^ ) ) ^ 
TV TV m/ 

= ( i ^ *!>•?< * i ^ ( * 0
 + Xi> ^ - f * i ^ ( x o * X i } ' 

and the proof i s complete. 

Lemma 4 L 3J• Each measure of noncompactness i s locally 

Lipschitzian (hence continuous) with respect to the Hausdorff 

metric. 

Now, le t us fix a measure of noncompactness in the space 
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E and l e t í x Q } £ ker (u. . For X £ $ £ c we denote 

X X(a)ds * [ f x ( a ) d s : x € X 3 . 

We prove some general izat ion of Goebel and Rzymowakl - Lemmata]• 

Lemma 5. If Xe^ít^ then for any t c ^ m i n -f 1, Tj> the 

fol lowing inequal i ty holds: 

&£££• Notice f i r s t that in view of Lemma 4 the function 

t —> (/L Cx • X(t)) ia continuous,alao integrable . Further, l e t 

U8 také an arbltrary e € ( 0 , l ) « In virtue of equicontlnuity we 

can chooae pointa O « * 0 — f i — t i ^ ř ^ - * * * ~ f n Á * n ~ * fl0 d e n ~ 
s e l y i n < 0 , t > that for a l l x € X 

Thus we get 

x 0 • f X(s)da c tf x(s)da - ^ x( f ±) ( t j - t ^ ) : x g X 3 • 

* t x o + V&i * ( f i H t i - t j L - i J s x c X j - A • B. 

Hence i n view of Lemma 1 we obtain 

(*<A • B)á* (U.(B) •KA I j * ( K ( B t l ) ) 4 6 (U(K(B,D) • 

•(^o •í255f x (?i , ( ti-W : x € X^ 
Further, applying Lemma 3 we háve 

<*<*o * /0*x(«>d8> * <*<*0 **§» X( f l,<ti-*i-l)) * 
• g(U.(K(B,l)) étX^ (ti*ti-i> ("-̂ o + x< f i ^ •*(M-<K(B,1)). 
Finally, densifying the partition of the interval <O,t> and 
taking into account that the number e is arbltrary, we obtain 
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(u,(xQ • fQ X(a)ds) ±f (ct(x0 • X(s ) )ds , 

which completes the proof. 

4* Existence of aolutiona of ordinarv d i f f e r e n t i a l eauat i -

ona* Let us conaider the ordinary d i f f e r e n t i a l equation 

(1) x' • f(t,x) 

with the initial condition 

(2) x(O) » xQ. 

We shall aasume that f is defined on <0,T>x K(xQ,r), uniformly 

continuous and bounded, ||f(tfx)8^ A, Moreover, we will assume 

that for all X e 3Jfcc the following inequality holds: 

(3) £c(x0 • f(t,X))^p(t) (U-CX), for almost all te<0,T>, 

where ^ is a given measure of noncompactness in the space B 

such that -íxl e ker (U, and p(t) is a Lebesgue integrable func-

tion on <0,T>. 

Notice that if we denote g(t,x) = x • f(t,x) then for any 

x e E ^ in view of C3) we obtain 

fxXg(t,x)) » (tc(xQ + f(t,x)>ářp(t) <u,(íx}) a O 

for almost all t€<0,T>, so that in virtut of continulty of f 
we havt that g: < 0 , T > x E ^ - * E ^ . Particulary, x Q • f(Otx0) c 
e E ^ and in view of Lemma 2 we can easily deduct that the tan­
gent segment CxQ • tf(0,x0>:t c<0,1>3 is a subset of E ^ • 

Now we prove the following theorem. 

The ořem 2. Under the above assumptions, if AT^r, T ^ l , 
then the equation (l) has at least one solution satisfying the 
condition (2). Moreover, all solutions of the problém (l)-(2) 
are such that x(t)eE^tf for all t€<0,TX 
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Proof. Let XQc C = C«0,T>,E) be the set of all functi­

ons x such that x(O) = x and l|x(t) - x(s)tE-ts A| t-sl # Notice 

that X is closed, bounded, convex and equicontinuous. Furt­

hermore, the transformation 

A 
(Fx)(t) = xQ + J f(s,x(s))ds 

maps continuously X in to i t s e l f . Thus t^ur problem i s equiva­

l en t to the ex i s tence of a f ixed po int of F. 

Fix a number 36 > 1 and fo r any X€ /33t®q l e t us put 

<Se ( x> = SUP t ( t t ( x ( t ) ) exp(- ae f p ( s )ds ) : t € <0 ,T>3 . 

One can show that (^^(^ satisfies the axioms of measure of 

noncompactness on the f a m i l y ffliJ** 

Then, in view of Lemma 5 we have 

t t 
<a((FX)(t)) = ̂ ( x 0 + fQ f(s,X(s))ds) * JQ f^(xQ + 

+ f ( s , X ( s ) ) d s £ fo p(s) (Ct(X(s))ds £ / S e ( x ) / p ( s ) 

exp( 9t f pit )d^)ds 6 expire f p (s )ds) i t ^ U ) * 

After d iv id ing bo th s ides by exp( ae Tp ( s )d s ) and tak ing sup-

remum on the l e f t hand we get 

Thus, applying Theorem 1, we complete the proof. 

Remark. I t i s worth to mention tha t i n the case x =• ©f 

i O j e k e r ^ u / , the comparison condi t ion (3) has the form 

(4) ( u - ( f ( t , X ) ) ^ p ( t ) r*^(X) 

(cf. L2j). Moreover, if ̂ tt is e sublinear measure, then the 

condition (3) is equivalent tc the condition (4). Indeed, we 

have 
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(UixQ ± f ( t ,X) )<£ (4,Hx0V + j^<f(t,X)) = ^ ( f ( t , X ) ) . 

On the other hand, 

<w<(f(t,X)) = ( ^ ( x 0 + f ( t ,X) +i-x0l)4 (tM(xQ + f ( t , X ) ) • 

+ (C^(-T-xoi) » <«,(x0 • f ( t , X ) ) , 

so th=.t 

<a(f(t ,X)) = (tc(x0 «• f ( t , X ) ) . 

Now we give a few examples. 

Example 1. Let us consider the infinite system of diffe­

rential equations 

(5) x n = an(t)xn • ^ n
( x

ni3- n + 1,-..), n = 1,2,..., 

with the initial conditions 

(6) xn(0) = x^, n = 1,2,... . 

We will assume that there exists lim x|? = a. Moreover, we as-

sume that: 

(i) an:<0,T>—>R are continuous functions such that the 

sequence an(*) converges uniformly on the interval <0,T> to the 

function which vanishes identically, 

(ii) there exists a sequence of real nonnegative numbers 

an such that ^lirn^ an =- 0 and l ^ n i
x n + l '

x n + 2 ' -
j U a n f o r 

n = 1,2,... and for all x = ( x 1 , x 2 . . . . ) 6 1°°, 

(iii) the function f = (f-^fg,...) transforms the space 

l00 into Itself and is continuous. 

Under the above hypotheses the initial value problem (5)-

-(6) has at least one solution x(t) such that x(t)€ l°° for any 

t*<0,T> and lim xnCt) = a uniformly with respect to te<C,T>, 

where T£l. 

For the oroof let us toke into secoun* the me3_,~r*" of non-
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compactness in the space lm defined as fo l lows: 

(C (̂X) = lim supLsuptJx^ - a IJ 

(cf . £ 3 ] ) . The kernel ker (U/ of t h i s measure i s the family of 

a l l bounded subsets of the space 1** consist ing of sequences 

which converge to a with the same "rate". 

Now, for X € Iff ^eo we have 

(U(x0 • f ( t ,X) ) = m l i m s u p C s u ^ l x ; • a ^ t ) ^ • f ^ x ^ x ^ , . . . 

. . . ) - a l 3 * U m ^ s u p U u p ^ f l a ^ t ) ! < xnW » f n ^ n > x n + 1 , . . . ) + 

• x n - a l J J -£ lim supCsupLlpCtHx -aI • I a„(t) l lal • 
0 /fv —> CQ X &1\ " « 

•'-"n^'-n+l—*}| + , x o " • ' - : i . 

where p ( t ) a sup [I a n ( t ) l :n = 1 , 2 , . . . ] , t e < 0 , T > . Hence we ob­

ta in 

<a,(xo + f ( t , X ) ) £ p ( t ) («.(X), 

which proves our asser t ion . 

Example 2 . Now, l e t us take the i n f i n i t e system of d i f ­

f erent ia l equations of the form 

<7) x n « Pn<t)xn • f n ( x l f x 2 , . . . ) , t e < 0 , T > 

with the initial condition 

(8) xR(0) - an, n = 1,2,..., 

where an is a sequence of nonnegative reals converging to zero* 

We assume thst the functions f^^00"""^ R are such that there 

is a sequence b n converging to zero and If (x)l sV bR for x^l
00-, 

and besides, the function f » (fltf2>...) iV°° —>. I00 is uniform­

ly .continuous. Further, let us assume that p : <0,T>—>R are 

continuous functions and such that I pn<t)I -= p(t), t€<0,T>, whe­

re pKo,T>—>R is some continuous function. 
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In what fo l lows , l e t us consider the measure of noncom-

pactness on the space 1°° defined by the formula 

(tt(X) a ^ l im [sup,£sup Clxk l :k2rnJ3J . 

One can check that <o,(X) i s the sublinear measure such that i t s 

kernel i s a c o l l e c t i o n of a l l bounded s e t s in the space 1°° con­

s i s t i n g of sequences converging to zero with the same rate 13J* 

Notice that i f we denote x » (a^ ,a 2 , » .« ) then -fx } e k e r ^ * 

Now we show that the problem (7 ) - (8 ) has at l eas t one s o ­

lu t ion in the space 1°° provided T^fsl and the above assumpti­

ons are s a t i s f i e d . 

Note at f i r s t that for X€ W^ we get 

^ ( f ( t , X ) ) ^ ^ l i m Csup^Csup CI p ^ t ) ! Ixk l • J t^(x19x29...)\: 

: k 2 n 3 J D & l i m t s u & t s u p [ p ( t ) l x v l • b ^ k ^ n l . ] ] » p ( t ) (tt (X). 

Hence, in view of Remark made after Theorem 2 we conclude that 

the problem (7 ) - (8 ) admits at l eas t one so lut ion x ( t ) * 

=- (x^(t) , X p ( t ) , . . . ) in the space 1°°, where the sequences x n ( t ) 

converge to zero on the interval <0,T> with the same r a t e . 

Example 3 . Now we pay our attent ion to the case which i s 

not covered by Theorem 2. Namely, assume that (tc i s an arbitra­

ry measure of noncompactness on the space E and x € E ^ . .furt­

her, l e t us suppose f :<0,T>xK(x 0 ,r )—> K(x ,r) i s a given 

function which i s uniformly continuous and such that 
judX) 

(9) (C*(x0 + f ( t f X))4 -S—y- for t € (0,T> , XcK(x 0 , r ) 

and 

(10) ^(xQ • f(t,X)) = o(e Vt
2) as t—> Of-, uniformly with 

respect to XcK(xQ,r). 
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Then we have the following theorem (cf. Cl5l)# 

Theorem 3. Let T^l. Then the equation (1) has at least 

one solution x such that the condition (2) is satisfied. Apart 

from that x(t)eE for all tc<0,T>. 

Proof. Similarly as in the proof of Theorem 2 we consi­

der the set X defined there and reduce our problem to the ex­

istence of fixed points of the transformation & defined on the 

set X with help of the formula 

(S'xMt) = xft • f f(s,x(s))ds. 
o J0 * 

Next, consider the sets X^+1 = Conv ^ X i t i = 0,1,2,... . All 

these sets are of the same type as X and Xi#f,c X*. Let us put 

un(t) «^(X n(t)) t te<0,T>. 

We have that O^u^-Jt) .^u^l t). Moreover, in view of the ine­

quality 

l.<6(x(t)) - ̂ (X(a))U a<y(X, It-sl) 

(cf. 131), all these functions are equicontinuous. Consequent­

ly, the sequence ^(t) converges uniformly to a function 

u~(t) * lim u„(t). Observe now that from (9) and Lemma 5 

follows 

V l ( t ) s <*(xo • S0 f<«.V»
))da) ̂ X V ( x o * 

(11) 
_f A-c(Xn(s)) st ^Aa) 

• f(s,X„(s)))ds -* / * ds - f -% ds . 

Fixing an a r b i t r a r y e, > 0 and using (10) we deduce tha t t h e ­

r e e x i s t s cf> 0 such tha t 

- I 
(!>(x0 • f ( t , X ) ) -£ ee t / t 2 , for te (0,cT> , X c K ( x 0 , r ) . 
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Hence we get 

u n ( t ) =- r ( x 0 + Jf f ( s , X n - 1 ( s ) ) d s ) £ J0 (^(x0 • 

•• f ( s , X n M l ( s ) ) ) d s -* e / i ( e s / s 2 ) d s = e e "* 

for t € ( 0 , ( f > , which imp l ies that % ( t ) = o(e ) as t - > 0+ 

and consequently 

(12) u^Ct) » o(e ) , as t - > O*. 

u (t) 
From the above facts we conclude that the functions t~> - a . 3 — 

are integrable. Hence and from (11) we obtain 

u^(t) ^ r - = ^ — ds. 
"0 s 

The above inequal i ty and (12) imply, via Roger s Lemma f l O ] , 

that u ^ t J a s O . Final ly observe that 

l imfmax £ u , ( t ) :t e<0 ,T>] l = 0 , 

00 

hence we deduce that the set X^s* O * ^ n *a nonemP*yt convex, 

closed and X e ker («, # Now we apply the c l a s s i c a l Schauder's 

f ixed point theorem, which completes the proof. 
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