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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,2 (1982) 

FUZZ1NESS AND FUZZY EQUALITY 
Ales PULTR 

Abstract: Fuzzy sets with fuzzy equality can be repre­
sented as couples of (crisp) subsets of generalized metric 
spaces. The representation can be constructed so that the o-
perations with fuzzy sets appear as natural operations with 
the respective couples. Moreover, fuzzy-power sets of fuzzy 
sets are obtained by means of an analogon of the Hausdorff 
superspace construction. 

Key words: Fuzzy sets, fuzzy equality, generalized met­
ric spaces. 

Classification: 03E72 

In the intuitive examples of fuzzy sets one often has mo­

re structure than just the degrees in which the elements be­

long. Typically, one encounters also various degrees of like­

ness of the elements with each other. Thus, e.g., in the "aet" 

of all green objects in a given room we observe varying simi­

larity of the coloring. In the "set" of very large natural 

numbers one has the obvious distance, in the "set" of patients 

diagnosed for a given illness one sees varying similarity of 

symptoms, etc. This is mostly connected with the fuzziness 

structure in the following way: if an element x is a member 

of X in some degree and another y is close ( s i m i l a r ) to x in 

a high degree then y is a member in not much smaller degree 

than x (if, say, x ia "very typically green" and the shade of 
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y is very close to that of x, we will not much hesitate to 

classify y as green, too; if x is a very large natural number 

and y is close to x, we should take x for rather large; etc.). 

The resulting fuzzy-equivalence (fuzzy-equality, toleran­

ce) has been in that or other form considered before (see, 
e«&*» L73,[81), but it does not seem very popular. The reason 

for this may be in the natural wish to avoid unnecessary com­

plexity. The aim of this paper is to show that the fuzzy-equi­

valence point of view can, in fact, make the calculating simp­

ler • Roughly speaking, we show that fuzzy sets endowed with 

fuzzy-equivalences can be adequately represented by means of 

the fuzzy-equivalence alone* In the representation the fuzzy 

sets appear as couples (x',Xw) of crisp subsets of univerea 

with a kind of distance (resulting from the fuzzy-equalities) 

and one operates with them crisply (e.g., if fuzzy seta X^ are 

represented as (x£fxf)» the union of the X^ in the usual sense 

gets represented as (Ux^UX*) f the product as (^X^JlfX^))* 

Even the fuzzy power set of a fuzzy set is naturally expressed 

by means of a generalization of the metric in the Hauadorff 

hyperspace. 

To avoid misunderstanding, let us make a few remarks on 

the distance functions issueing from fuzzy equivalences we will 

work with. Dealing with fuzzy notions it is natural to consider 

the value 0 in x€ QX as expressing poor belonging (if any), or, 

in x « y, a poor similarity of x and y, while the value 1 ex­

presses in xejX the (at least almost) full belonging, or in 

x as. y the (at least almost) coincidence of the relevant fea­

tures. Consequently, in the "metric: spaces we shall deal with 
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it is handier to use, instead of the distance functions (with 

values diminishing when coming nearer), the nearness functi­

ons with values the higher the nearer one comes. The reader 

will certainly see that this is a technical preference only, 

and that the notion of L-nearness below has nothing to do with 

the well known continuity structure sometimes called nearness 

spaces (£53). 

The spaces with L-nearness are discus3ed in §§ 1 and 2. 

In <§ 3 we recall the uaual operations with fuzzy sets and ex­

tend them in the obvious way to fuzzy sets with fuzzy-equali­

ties. In § 4 the notion of L-nebula (which is the couple of 

subsets of a universe with an L-nearness mentioned above) is 

introduced. The main results are contained in § 5 where we show 

that fuzzy sets (with or without fuzzy equality) can be repre­

sented as nebulae (and vice versa) with reasonable behavior un­

der operations. 

§ 1. L-nearneas and L-spaces with L a residuated lattice 

1.1. A residuated lattice L - L ( V , A ,0,1,.,h) is a com­

plete lattice endowed, moreover, with two further binary ope­

rations . , h such that 

(i) LC.,1) is a commutative monoid, 

(ii) . is non-decreasing in both variables, 

(iii) h is non-increasing in the first variable and non-

decreasing in the second one, 

(iv) for all a,b,c a.b^c iff a-&-h(b,c). 

1.2. The following identitites are immediate consequen­

ces of the definition (with a particular role played by the 

condition (iv)): 

- 251 -



(1) a.sup b^ = supta.b^), 

(2} h(a, inf b±) » inf h(a,bi), 

(3) hCsup a.pb) = inf h(ai>b), 

(4) h(a.b,c) « h(a,h(b,c)) . D 

1*3. Remarks: (1) Residuated lattices were, first, intro­

duced in tll : they appear in the literature also under the na­

me of tensored lattices, or LC^,-lattices (E3]). Viewing comp­

lete lattices as complete small thin categories, we see that 

the residuated ones coincide with the closed ones among them. 

(2) In fact, h always exists and is uniquely determined 

if we have an L(v ,A ,0.1,.) satisfying (i) and 1.2(1). It is, 

however, more comfortable to work with h as explicitly given. 

(3) Examples of residuated lattices: 

(3.1) Complete Boolean algebras: put .=*A and h(a,b) = 

» aVb. 

(3.2) More generally, Heyting algebras are exactly the 

residuated lattices with . » A • 

(3.3) (Lukasiewicz lattice): L is the unit interval with 

minimum and maximum, a.b =- (a+b-1) v 0 , h(b,c) =- ( 1 - D + C ) A 1 

(cf. C61). 

(3.4) L ( V , A ) as in (3*3), a.b the usual multiplication, 

h(b,c) « b~ .c for b>c, 1 otherwise. 

(4) It is easy to see that • is idempotent iff • « A (i.e., 

in the case of Heyting algebras). Otherwise there is always an a 

with a.a< a. 

1,4. Here are a few of further basic properties of the 

operations in residuated lattices. The proofs are easy and are 

left to the reader as an exercise* 
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( l ) a . b ^ a A b , 

(Zl a£b<=-> h(a,b) » l f 

(3) h ( a , b ) . h ( b , c ) ^ h ( a , c ) , 

(4) h ( l , a ) = a, 

(5) h(a fb) » h(a fbvwa). D 

1 .5 . Let L be a residuated l a t t i c e . An L-naarneaa on a 

aet P i s a mapping 

> > : P x P - > L 

such that 

( i ) V(x fx) « l f 

( i i> *>(xfy) m >>(y fx) f 

( i i i ) >>(x fy). 7>(ytz)^t>(xtz). 

The ay8tem (P f i>) w i l l be referred to aa an L-anace. We use 

the term aubaoace of (F f v>) In the obvious way, namely for the 

(Qf V ' ) with Qc P and >>'=- %>IQ*Q. 

--•6- Remark: One e a s i l y sees that the usual awtric spa­

ces are, in p r i n c i p l e , obtained when taking for L the Ztaxa-

s iewicz l a t t i c e (see 1 . 3 . ( 3 . 3 ) ) . 

1 .7 . fitflegvatiQR flftd cpnveryUon: The formula v 0 ( « f b ) » 

* h ( a , b ) A h ( b f a ) g ives and L-nearness on L i t s e l f . Referring 

to L as a space we w i l l always have i n mind CLf 3>0) . 

Note that V 0 ( a , l ) » a. 

§ 2 . legrnegg Of PQJBtg 804 3 eta- flflttfldorff fUPSrgPflS9 

2 . 1 . For a subset AcP we put 

>>(xf A) « sup { i> (x f y) I y € A K 

2 . 2 . Lemma: v ( x , A ) £ y ( x f B ) . i n f \ v>(yf A) I y € Bl . 

Proof: .For each y we have (recall 1.2.(1)) 
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* > ( x , A ^ a u p ( >>(x fy). ^>(y,z)) = )>(x,y).aupjt >>(y,z) = 
zeA x,e A 

* y ( x , y ) . i>(y,A). 

Put d = inf «( >> (y, A) | y c B } . We obtain V(x,A) 2r 7>(x,y).d for 

any y £ B and hence f i n a l l y 

>Kx,A)2*aup ( V ( x , y ) . d ) * (8up *>(x,y)).d » >>(x,B).d . O 

2«3. Lemmg: j M x ^ A j ^ « aup ÍKXJA^) . 

Proof; Obviously y(x,AJ *£ J>(X,UAÍ) and hence 

aup PCXJAJ^)^ v(xfU&i) * On the other nand, if ye^JA^, we 

háve, for aome j, *>(x,y)^ >>(X,AJ)Á sup V(xfA^) so that al~ 

80 •>> (x^A^^sup i>(x9k^)» D 

2.4. For A,Bc(P, i>) put 

#(A,B) = infA tf(x,B).infL y(y,A). 
* € A /t̂ € B 

2.5» Propoaition: >> ia an L-nearneaa on the set of a l l 

subaeta of (P, i> ) . 

Proof; Obvioualy ^(AjA) - 1 and &lktB) = í^CB^). 

Now, we háve (by 1 . 1 . ( i i ) and 2.2) 
v ( A , B ) . V(B,C) « i n f A » ( x , B ) . i n f V(y ,A) . inf j>(z,C). 

* € A ty*. B xe B 

. i n f v (u ,B) = inf . p ( x , B ) . i n f ^ ( z , C ) . i n f >>(u,B).inf *>(y,A)^ 
-aeC *<£ A Í J S B -aeC /^€0 

£ in f (:>> ( x , B ) . i n f ^(z,C) ) . i n f C i> (u .B) . in f P(y ,A)) * 
X € A Z 6 B i t ^ C ^ < S & ' 

^ i n f v ( x , C ) . i n f >>(u,A) « ^ ( A . O . O 
xe. A xt€C 

2 . 6 . The se t of a l l subseta of (P,j>) endowed with the 

nearnesa V w i l l be called the Hauadorff auperaoace of (P, 1) i 

and denoted by 

exp ( P , i > ) . 

One aeea that this is an obvious generalization of the well— 

known aynonymous conatruction for metric apace8 ([43), 
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2.7. Remark: (P, i> ) is naturally embedded into exp(P,^>) 

by representing x e P aa 4xK Indeed, we háve v (-íxí,{y?) = 

= »(x,y). 

2 . 8 . fíemarkg: Define a >> - c losu re of a s e t A as 

Í M x i *Mx,A) a li, 

and call A closed if A = A* 

Using 2.2 one proves eaaily that 

i> (x,A) = 7>(x,A) 

and in consequence X s A. 

The T> -closure is easily shown to be additive iff (a,b<sL & 

& a v b « 1) =£> (a=l oř b=l)* 
The definition in 1*5 can be modified by replacing (i) by 

stronger 
(i*) >>(x,y) s l i f ř x a y 

to obtain a notion closer to metrie spaces (as it is, it cor-
responds rather to the pseudometric ones). All what is said in 
this article can be easily modified for this stronger structu-
re, the basic change being in replacing "subsets" in the defi­
nition in 2.6 by "closed subsets". 

§ 3. Fuzz.v sets and fuzz.v eoualit.v 

3.1. Let us recall the basic definition of fuzzy sets and 
operations with them (cf., e.g., tl0l,L2l). L is a residuated 
lattice. 

An L-fuzz.v set is a mapping 
X:lxl-> L 

where Ixl is a set (the carrier of X). We write (with obviou.3 
interpretation) 
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x c#X for X(x)2 a. 

The union, intersection, product and tensor product of fuzzy 

sets are given by the formulas 

VWjXjl ' i V b ' V * ( - i V 3 X i ) ( x ) * SUP * x i ( x ) ' i 8 U c h t h a t 

x e l x ^ i , 

'</*VXi' •• /€a , x i ' • V2.3 x i ) ( x ) * i n f * x i ( x ) • i€ J}, 

' i ^ X i ' *4,fJX±{ • { ^ x i ) ( ( x i ) J ) * i n *^ x i ( x i> ' i € j l i 

lXg>Y| « | x l x l Y l , (X®Y)(x,y) =- X(x).Y(y) . 

3 .2. ("Mappinga up to degree a" and fuzzy exponentitation.) 

I f X, Y are L-fuzzy sets , we write 

f:a X—* Y i f f : l x l -* lYl and (x €bX =$> f(x) € a b Y)# 

Ve write X ? T ("the weak inclusion"), i f IXlc lYl , and fur­

ther, 

X caY i f X % T and (x €bX *+ x €fibY). 

(Cf. i23,19-1). 

Re mar If: Obviously, X caY i f f j:ftX—*T for the inclusion 

•apping j : IXic lYl . On the other hand, i f we define V , the 

graph o^ a mapping <p , by 

IT I m 4(X, <p(x))l Xe lXl l , T (X,J>(X)) -*X<x), 

we have V CflX xY iff g>:aX~-»Y. 

3.3. The everyday-life examples of fuzzy sets often have, 

in addition, a structure of "imperfect equality" *a which we 

•ay reasonably assume to satisfy the implication 

(1) x *a y * y *b z x « a b z . 

Moreover, it is usually (intuitively) such that if an element 

z is almost equal to y and y is in X in some degree, then x is 

In X in not much worse degree. This second matter will be for-

- 256 -



ma Used in 3.5 below. So far note that i f we define 

v ( x f y ) £ a i f f x » a y , 

we obtain an L-nearness (the condition (1) represents the 

1 . 5 . ( i i i ) ) . 

This leads to the fol lowing d e f i n i t i o n : 

An L-fuzzy se t with L-eouallty (br ie f ly , an L-fe s e t ) 

(Xf i> ) cons is t s of an L-fuzzy se t X: I Xl—> L and an L-space 

( l x l f v) . 

3 . 4 . We write 

(Xf*) £ (Xf&u) 

if (IXl.V) is a subs pace of (lYlf(uO. The basic operations 

with L-fe sets are defined as follows: 

If (Xlf V±) £ (X, V ) f we put 

n(xlf K>±) = (^xlfv|l 9x1D. 

For a general system ((Xlf »i))l€j put 

XfX l f i>±) -* ( X Xlf(u.) where f^((x1)J>(y1)J) = 

* inf " pi^ 1 >y 1). 

Finally put 

(Xlf vx) ® (x2, V2) » (X1€> X2, i>) where »((xlfx2)f (ylfy2)) =* 

» ^1(x1,y1) . »2(x2>y2). 

Remark: Obviously, the usual L-fuzzy sets can be viewed 

as Ir-fe sets with trivial (diacrete) equalities. Then, the ope­

rations coincide with those from 3.1. 

3.5. An L-fe set (X, V) is said to be saturated if 

( * ) x caX & y *bx **> y €abX. 

This is an obvious formalization of the second property from 
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3 . 3 . Handier, al though perhaps l e s s l u c i d , i s t he fo l lowing e -

vident re fo rmula t ion of ( * . ) : 

( * * ) VxVj >>Cx,y).XCy)-£X(x). 

3 .6 . P ropo s i t i on : (X,>>) i s s a tu ra t ed i f f X viewed as a 

mapping between L-spaces s a t i s f i e s the i n e q u a l i t y 

V0Cx(x),XCy))> *>(x,y). 

Proof: By 1 . 1 . Civ), C*.*) i s , f u r t he r , equivalent with 

Vx Vy >>Cx,y)-*-hCxCy),XCx)). D 

3.7* For an L-fuzzy se t put 

K(X) = «{(x,a) I x c l X t , a£X(x)}. 

3 . 8 . Let (X, i>) be an L-fe s e t . Define 

exp(X, >>) = (X>(co), 

where 

J Y I = 4 z l Z s a t u r a t e d , | Z l c l X l 3 , 

Z eQY i f f Z cQX, 

and 

e ( Z x , Z 2 ) « y(KCZ1),K(Z2)) where ->> i s defined on 

I x I x L by >>((x 1 > x 2 ) , (y 1 ,y 2 l ) ) - ^ ( x . , ^ ) . ^>0Cx2>y2). 

3 .9 . P ropo s i t ion : exp (X ,» ) (Z ) = in f hCzCx) ,XCx)). 
<X € Z 

Proof: We hav<? CexpX)Cz)2Ta i f f C Vx(ZCx)z b *-> XCx) > ab) 

i f f VxCXCx)£a.zCx)) i f f VxChCZ(x) ,XCx))2: a i f f 

i f f inf hCzCx),X(x))> a. P 

3.1C. Remarks: CD Realize tha t the d e f i n i t i o n of the L-

nearness <a, i n the power L-fe se t i n 3.8 i s qui te na tura l* Con­

s i d e r the "d i s t ance" of L-fe subse ts with co inciding c a r r i e r s . 

(2) There a r i s e s a na tu ra l quest ion as to whether the 
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L-fe sets obtained from the saturated ones by operations are 

again saturated. I t is not hard to prove the affirmative d i ­

rec t ly . We do not do i t here, however, since i t wil l follow 

free from the sequel. 

§ 4. L-nebulae 

4.1. An L-nebula is a system N — ((P, >>);K,R) where 

(P,->>) is an L-space and K, R are subsets of P. The set K will 

be referred to as the kernel and the set R as the rqnge of the 

nebula. 

4.2. Since the notion of an L-nebula and a representati­

on of L-fuzzy sets and L-fe sets as nebulae is the main item 

of this article, let us discuss here briefly the intuitive 

background. The space (P,>>) is a universe in which we consi­

der the elements we are interested in. Its size is not all that 

important. It could be replaced by a (P'f "&') of which (P, » ) 

is a subspace, or by a subspace of (P, P ) large enough to con­

tain R, and the situation described by the nebula would be vir­

tually the same. The range corresponds to the carrier of a fuz­

zy set. The kernel is a system of typical elements with the 

property we try to describe (elements which have the property 

undisputedly); it is not necessarily a subset of the range* 

Let us give a few examples: 

(a) The "set" of very large natural numbers: Take for 

the universe the set of naturals plus op , wi th the nearness, 

say, ->>Cm,n) « 1 - m" n~ • im-nl, >>(n,oo) » 1 - n" • For R ta­

ke the set of natural numbers, K - icol . 

(b) The "set" of all yellow objects in a given area: 

Choose a nearness function expressing tolerance in interchan-* 
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geab i l ity of colore. R ia the aet of objecta which can be ta­

ken for yellow conaidered tolerantly (although aomeone could 

take aome of them for, aay, ochre, light brown, or greenlah). 

K ia a aet of undiaputedly yellow onea; may be thera ia none 

in the area conaidered - than chooaa a really yellow a ample 

elaewhere. 

(c) The "aet" of patienta? Buffering a particular diaa-

aae. there are border caaes with not very typical aymptoma, 

but s t i l l Included In R, while K containe only the typical 

onea, perhapa alae imaginary textbook examplea. 

4 .3 . T»a aadSlfit £ CPlf P±) of a ayatem ((P i f ^>x)^tej 

of L-apacee la defined aa C>? P i f p) with ^((x^j, (y^i j ) * 

* inf >> iCx i,y i). 

Further., we define the tenaor product (P, f ^ ) <S& (Pg, ^2) 

of two L-apacea aa (P-̂ x p^f p) with vtCx^jX^), (y l fy2J) * 

» V1(x1>y1). ^ ( x ^ p . 

Remarka: Thua, the producta (tenaor producta) of L-fe 

aets in 3.4 are carried by the producta (tenaor producta) of 

the carrying apacea. Alao obeerve that the K(Zi) In 3.8 are 

conaidered am elementa of exp( (I Xl , V ) © L). 

The product ia the categorial product In the naturally 

defined category of L-apacea (where the morphiema correapond 

to non-expanding mapplnga of metric apacea). Alao, the tenaor 

product la one in this category, having a natural right adjoint. 

4.4. We write K » ((P, i>);KfR), £ ((p' f V O J K ^ H ' ) » N' 

i f (Pf T>) ia a 8ubapace of (P' f P') and RCR'« If, moreover, 

alao KcK', we write NcM'# The former caae la referred to aa 

weak lncJ-tia^Qn, the latter one a imply aa lnclualon of nebulae. 
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The operations are defined •• follows: 

If N± = ((Plt V^jiq.Rj) c If = ((P,-»);K,R) (i« J), 

yNv± = ((p, ^ ) ; y K 1 , y a 1 ) . 

^ ^ - ( ( ^ P i . * i 9 p i ) ; 9 K i ' 9 H i ) -
For an arbitrary system ^ 1 ) l € j of nebula* put 

£ K± » ( J (Plf ^ J ; ^ , Xl^) . 
Further, put 

%«> Ifz = ( (P l f i>1) £> (P2 , ^ j K j X ^ ^ x l g ) . 

4.5. For N = ((P, >>);KfR) put 

exp N = (exp(p,y )x exp(Pf v)» expKx expRf expRx expR). 

Thus, the kernel of exp If consists of all the nebulae includ­

ed in N, the range consists of these weakly Included there. 

(Here, of course, the subnebulae are represented simply by 

their kernels and rangesf the universe being silently under­

stood as the original one.) 

§ 5. L-nebulae as L-fe sets an vice versa. An L-nebula 

can be viewed aa an L-fe-set in a very natural way (see 5*1)» 

In this section we will show that, on the other hand, any sa­

turated L-fe set can be represented by a nebula and, moreover, 

there is a representation such that the operations with the 

L-fe sets get represented as the corresponding operations 

with nebulae. Thus the (more complicated, since involving 

counting in L) L-fe set operations reduce, in principle, to o-

perating with couples of crisp sets (see 5.14 and 5.15 below). 

5.1. For a nebula N = ((P, >>);K,R) define an L-fe set 
A, 
?(N) by putting 

£(N) =(f(N), Vi R) where |^(N)l = R, ^(N)(x) =- v(x,K). 
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A 

We say that N realizes an L-fe set (X,V ) if (X, >>) = $ (N). 

5.2. Proposition: Each » (N) is saturated. 

Proof: We have j>(x,y) * P(y,K) £. v(x,K) by 2. Q 

5-3. Convention: In spaces P ® L we replace the points 

(x,l) by x. Thus, P is embedded into P 0 L as a subspace in­

stead of the Px-CH level. 

5.4. For a saturated L-fe set (xfi>) put 

Jf(X,») = ((IXI, ») <g> L;K(X),IXD 

(K(X) from 3.7). 

5*5. Lemma: In a saturated (X, %>) one has 

>>(x,y).h(a,X(y))^ h(a,X(x)). 

Proof: We have X(y). »(x,y) ̂ X(x), hence X(y)^ h( >> (x,y), 

X(x)). Hence further, by l.l.(iii), 1.2.(4) and the commutati-

vity of the multiplication, h(a,X(y))^ h( a,h( >> (x,y) ,X(x)) = 

= h( P(x,y).h(a,X(x)) and by 1.2.(4) again h(a,X(y)). >>(x,y).£ 

*h(a,X(x)). a 

5.6. Proposition: Let (X,v) be saturated. Then one has 

in (IXl *L, P ) = (iXl , P) ® L the equality 

v((x,a).K(X)) = h(a,X(x)). 

Proof: Consider a (y,b)eK(X). We have b^K(y) and hen­

ce, by 6.5, 

V ((x,a),(y,b)) = >> (x,y). P0(a,b)^ >>(x,y).h(a,b) £: 

=• V(x,y).h(a,X(y))* h(a,X(x)). 

Thus, >>((x,a) ,K(X)£ h(a,X(x)). On the other hand, (x,X(x)Aa) 

is in K(X) and we hive by 1.4.(5) 

V ((x,a),(x,X(x)Aa)) = i>Q( a,X(x) A a) =h(a,X(x)Aa) = 

= h(a,X(x)). D 
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5-7. Theorem: If (X,V) is saturated, then 

ĵV̂ (X,i>) = (X,^>). 

Thus, each saturated L-fe set is realized by an L-nebula. 

Proof: (Recall Convention 5.3.) By 5.6 and 1.4.(3), 

3"(x,K(X)) = h(lfX(x)) =X(x). Q 

5.8. Remark: From the proof of 5-6 one sees that X(x) = 

= J(x,K(X)) = 7(x,(x,X(x))). D 

5.9. The following is evident 

Proposition: (X,>>) c (Y,^t) =-=> Mxfi>) £ M"(xf^ ). 

N c M - 4 r ( N ) c ^ ( i ) , O 

5.10. Proposition: tf( Q U±f i>±)) = Qjf{X±f >>±). 

Proof: The coincidence of the universe is obvious. Furt­

her, we have 

(x,a) e H K(Xi) iff ViX.(x)>a iff aiinf X^x) =(AX.)(x) 

iff iff (x,a)e K( H (Xif T>±)). D 

5.11« Remark: One does not have, in general, 

Jf( U (Xit V±)) = UMX±f V±). In case of a linearly ordered 

L, however, this equality holds at least for finite J. 

5.12. Proposition: (1) £ ( U ^ N^ * y£(tf)^(Ni)# 

(2) % (Nx0 N2) = #(NX) ® ^(N 2). 

Proof: The coincidence of the carrying universa is evi­

dent. Further, we have by 2.3 

?'(UNi)(x) = P(x, U K i ) = sup -^(x,^) 

which yields (1). Finally, we have (use 1.2.(1)) 

T (N-̂  ® N2^(xl»x2^ ~ sup^>>l(xl,yl^# P2(x2,y2^ ' (y] , y^ F 

e K-x K2] - ^ (^fc a
( Vl(3Cl»ylK V2(x2>y2)} = 

*<£%% ( *l(xl'yl\^\*2(x2>y?}) = 
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« (sut> •»1(x1,y1)).(sup ^ . > ( x 2 , y 2 ) ) « ^(N-^ (xx). .^(N2) (x2) 

which yields (2). D 

5#13. Lemma : Let N^ » ((Pi , "^i'.^i-^i^
 be such that 

for each xeR± there is an x 6 K± such that *>>i(x,Ki) =-

= >>i(x,x). Then 

£ ( £ Ni> - X ^ (Ni}-
Proof: Again, the coincidence of the carriers is evident. 

Denote by v the nearness in X P .j. We have, for x = (xjr) e 

€ X Rif 

a -* £ ( X Ni)(x) = *>(x, X K±) -* sup4v((xi),(yi)) 1 (y^e 

e X Ki5 * sup -C^n^ » i ( x j L , y i ) ) I ( y i ) € X % ! , 

b -* ( X ^ (N i ) ) (x ) = inf *±(x±tK±) * 

= infj s u p - C » i ( x i , y i ) I y±eK±} 

and consequently a ^ b . 

On the o ther hand, consider x* * (x±). We have 

s u p - t ? i ( x i , y i ) I y-t eK.fi * v i ( x i > ^ i ^ 

and hence 

in f » i ( x i , x i ) d£a-^b =- inf^ ^ ( x ^ x ^ ) . D 

5.14. Theorem: For (X i f T>±) & ( X , » ) we have 

(i) ii/23Jrixlt *±) - ^ ( x , , ^ ) , 

(2) ^ V j l i x . y ) * " - ' *i» • ^( X,v)
( Xi. *V' 

Generally 

(3) ^ X ^ U , , »,)) . ^ ( X i f »,). 

(4) $ (JCUX% >>1) <g>^(x2, -P2)) = (xv »1) e (x2, ̂ >2). 

Proof: The expressions on the left hand side in (l) and 

(2) make sense by 5.9. 
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(i): r\ (xlf vx) = $jr {r\ (xif v1)) = f nx{x±t i>±)) 
by 5.7 and 5.10. 

( 2 ) : £ ( VX{X±, i>±)) = UXX{x±^ i>±) = U l(X i f S>1) 

by 5 .12 . (1) and 5 .7 . 

( 3 ) : ^ ( X j T ( X i f v ± ) ) * X ^ ( X i f i> i) = X ( X i f ~»±) by 

5 .8 , 5.13 and 5 .7 . 

(4): 9 {JT{X±, v-j) ® .V(X 2 , v2)) = ^-T(xlf i>±) ® 

® $JT{X2, >>2) = (Xlf V L) ® (X2, 7>2) by 5.12 and 5.7. 

5.15. Before formulating a statement on exponentiation 

analogous to the statements concerning the other operations, 
A 

let us realize that it cannot be of the form $ (exp ̂ v(Xf >>)) = 
A 

-s exp (X, p ) . The carrier of #(exp X{X9>))) is a set of L-ne-

bulae, that of exp (X,V) is a set of L-fe sets. Thus, one has 

to have a translation of fe~subsets to subnebulae. Such a trans­

lation really exists and, moreover, it is coherent with the con­

struction JT . We have 

Theorem: Define a mapping 

Jf^i I exp (X, >>) t -> R(exp ^ ( X , T > )) 

by putting ^ ( 1 , / ) == (K(Y),lYi) for (Y, V ' ) 2 (X,>>). Then 

(1) Jf(Y, y) = ((lY.,»'): ,V\(Y,>>)), 

(2) JT± preserves the L-nearness , and 

(3) % (exp Jf{Xfi>)) o JT1 = exp (X, v>). 

Proof: ( l ) i s obvious. 

( 2 ) : Let us denote the L-nearness in ( l x l , V ) g / L by S>1# 

Recall tha t the L-nearness in I exp (X,>>)1 (see 4.8) i s given 

by 
^ ( Y X , Y 2 ) = V 1 ( K ( Y 1 ) , K ( Y 2 ) ) . 
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Now, for the nearness (JL, in R(exp J/*(X,:P)) we also have (re ­

ca l l 4.5 J 

^' (J^CY -J, <A^CY2)) = V1(K(Y1),K(Y2))/S V 1 ( | Y 1 i , l Y 2 i ) « 

» >^1(K(Y1),K(Y2))f 

since obviously ^ ( K U - J ,K(Y2)) -6 ^ lY-J , |Y21 ) . 

(3): In the product of two spaces we have >>((u,v) ,UxV)-s 

» >>(u,U) whenever v€V. Thus, 

£(exp Jf (X, P ) ) ( X 1 ( Y , y ' ) ) a ^(KCY), exp K(X)). 

Take an McK(X). We have 

^ ^ ( Y ) ^ ) = inf-I V 1 ( (x f a) ,M) I ( x , a ) e K ( Y ) K i n f " f » 1 ( ( y f b ) f 

K(Y)) | ( y f b ) e M J ^ i n f 4V 1 ( (x fa) ,M) I (x fa)fiK(Y)J *£ 

4 i n f 4 ^ 1 ( ( x , a ) f K ( X ) ) \ ( x , a ) « K(Y)J. 

Thus, by 5.6 and 3 . 9 , 

5r
1(K(Y)9M)^inf 4h(a ,X(x) ) \ a-&Y(xH = inf \ h(Y(x) ,X(x)) \ x e 

6 \X\\ = exp(Xf V ) ( Y ) . 

On the other hand, we have by 6 .10, 6.6 and 3 .9 
<V1(K(Y),K(X)nK(Y)) = ^ ( K t t ) fK(XnY)) = 

= inf $ V 1 ( ( X f a ) , K ( X n Y ) ) I ( x , a ) € K(Y)? = 

» inf-\h(a,X(x).AY(x) 1 (x ,a ) eK(Y) j = 

- d n f h(Y(x),X(x)AY(x)) ~ inf h(Y(x),X(x)) « 

== exp (X,-»)VY). 

Thusfycexp.)r(xf>>)) (jrx(x)) = eXp ( X , » M Y ) . a 
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