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FUZZINESS AND FUZZY EQUALITY
Ales PULTR

tr : Fuzzy sets with fuzzy equality can be repre-
gented as couples of (crisp) subsets of generalized metric
spaces. The representation can be constructed so that the o-
perations with fuzzy sets appear as natural operations with
the respective couples. Moreover, fuzzy-power sets of fuzzy
sets sre obtained by means of an analogon of the Hausdorff
superspace construction.

Key wordg: Fuzzy sets, fuzzy equality, generalized met-
ric spaces.

Classification: O3ET72

In the intuitive examples of fuzzy sets one often has mo-
re structure than just the degrees in which the elements be-
long. Typically, one encounters also various degrees of like—
ness of the elements with each other. Thus, e.g., in the "set"
of all green objects in a given room we observe varying simi-
larity of the coloring. In the "set" of very large natural
numbers one has the obvious distance, in the "set" of patients
diagnosed for a given illness one sees varying similarity of
symptoms, etc. This is mostly connected with the fuzziness
structure in the following way: if an element x is @ member
of X in some degree and another y is close (similar) to x in
a high degree then y is a member in not much smaller degree
than x (if, say, x is "very typically green" and the shade of

-
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¥ is very close to that of x, we will not much hesitate to
classify y as green, too; if x is a very large natural number
and y is close to x, we should take x for rather large; etc.).

The resulting fuzzy-equivalence (fuzzy-equality, toleran-
ce) has been in that or other form considered before (see,
e.g., 171,[81), but it does not seem very popular. The reason
for this may be in the natural wish to avoid unnecessary com—
plexity. The aim of this paper is to show that the fuzzy-equi-
valence point of view can, in faet, make the calculating simp-
ler. Roughly speaking, we show that fuzzy sets endowed with
fuzzy-equivalences can be adequately represented by means of
the fuzzy-equivalence alone. In the representation the fuzzy
sets appear as couples (x’,x") of crisp subsets of universa
with a kind of distance (resulting from the fuzzy-equalities)
and one operates with them crisply (e.g., if fuzzy sets X1 are
represented as (Xi,XI), the union of the X; in the-ususl semse
gets represented as (Uxi,'ux;), the product as (XX{, Xx"g)).
Even the fuzzy power set of a fuzzy set is naturally expressed
by means of a generalization of the metric in the Hausdorff
hyperspace.

To avoid misunderstanding, let us meke a few remarks on
the distance functions issueing from fuzzy equivalences we will
work with. Dealing with fuzzy notions it is natural to consider
the value O in xeox as expressing poor belonging (if any), or,
in x =, ¥» & poor similarity of x and y, while the value 1 ex-
presses in xe ;X the (at least almost) full belonging, or in
X =y the (at least almost) coincidence of the relevant fea-

tures. Consequently, in the "metric: spaces we shall deal with
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it is handier to use, instead of the distance functions (with
values diminishing when coming nearer), the nearness functi-
ons with values the higher the nearer one comes. The reader
will certainly see that this 1s a technical preference only,
and that the notion of L-nearness below has nothing to do with
the well known continuity structure sometimes called nearness
spaces ([51).

The spaces with L-nearness are discussed in §§ 1 and 2.
In 84 3 we recall the usual operations with fuzzy sets and ex-
tend them in the obvious way to fuzzy sets with fuzzy-equali-
ties. In § 4 the notion of L-nebula (which is the couple of
subsets of a universe with an L-nearness mentioned above) is
introduced. The main results are contained in § 5 where we show
that fuzzy sets (with or without fuzzy equality) can be repre-
sented as nebulae (and vice versa) with reasonable behavior un-

der operations.

§ 1. L-pearness and L-gpaces with L g residuated lattice

l.1. A regiduated lgttice L = L(~,A,0,1,.,h) is a com-
plete lattice endowed, moreover, with two further binary ope-
rations . , h such that

(1) 1(.,1) is o commutative monoid,

(i1) . 1is non-decreasing in both variables,

(1ii) h is non-increasing in the first variable and non-
decreasing in the second one,

(iv) for all a,b,c a.b&c iff ash(b,c).

1.2, The following identitites are immediate consequen-
ces of the definition (with a particular role played by the

condition (iv)):
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(1) a.sup by = sup(a.by),

(2) n(a, inf b;) = inf h(a,b,),
(3) n(sup ay,b) = inf h(ay,b),
(4} n(a.b,c) = h(a,h(b,e)) . O

1.3. Remarks: (1) Residuated lattices were, first, intro-
duced in [1]: they appear in the literature also under the na-
me of tensored lattices, or LC,, -lattices ([3]). Viewing comp-
lete lattices as complete small thin categories, we see that
the residuated ones coincide with the closed ones among them.

(2) In fact, h always exists and is uniquely determined
if we have an L(v ,A ,0.1,.) satisfying (i) and 1.2(1), It is,
however, more comfortable to work with h as explicitly given.

(3) Examples of residuated lattices:

(3.1) Complete Boolean algebras: put .=A and h(a,b) =
= avb.

(3.2) More generally, Heyting algebras are exactly the
residuated lattices with .=A,

(3.3) (Lukesiewicz lattice): L is the unit interval with
minimum and meximum, a.b = (a*b-1) vO, hib,c) = (1-b+tc) Al
(cr. L61),

(3.4) L(v,A) as in (3.3), a.b the usual multiplication,
h(b,c) = b1, ¢ for b>e, 1 otherwise.

(4) It 49 easy to see that . is idempotent iff . =A (i.e.,
in the case of Heyting algebras). Otherwise there is always an a

with a.a< a.

l.4. Here are a few of further basic properties of the
operations in residuated lattices. The proofs are easy and are

left to the reader as an exercise.
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(1) a.bgaAbd,

(2) a<be> hia,b) =1,
(3) h(a,b).h(b,c)< h(a,c),
(4) n(1,a) = a,

(5) h(a,b) = h(a,bAa). O

1.5. Let L be a residuated lattice. An L-pearpess on a

set P is a mapping
VWPxP-—> L

such that

(1) »(x,x) =1,

(11) »(x,y) = »(y,x),

(111) »(x,y). »(y,2) < »(x,2).
The system (P,») will be referred to as an L-gpace. We use
the term gubspace of (P,») in the obvious way, namely for the
(Q, » ) with Qc P and »’ = »1Q Q.

l.6. Remark: One easily sees that the usual metric spa-
ces are, in principle, obtained when taking for L the Kaka-
siewicz lattice (see 1.3.(3.3)).

1.7. Qbservation and convention: The formula i (a,b) =
= h(a,b) Ah(b,a) gives and L-nearness on L itself. Referring
to L as a space we will always have in mind (L, vo).

Note that . (a,1) = a.

§2.N dor.

2.1, For a subset AcP we put

»(x,A) =sup{ »(x,y) | yeal.

2.2, Lepma: +(x,A) = p(x,B).ing {»(y,A) | yeBl.

Proof: For each y we have (recall 1.2.(1))
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v(x,A),thépA())(x,y). Wy,z)) = -v(x,y).:\épA »(y,z) =
= v(x,y). »(y,A).
Put d = inf { » (y,4) | yeB}. We obtain »(x,A) = »(x,y).d for
any y€B and hence finally
»(x,A)Z sup_ ( V(x,y).d) = (sup »(x,y)).d = »(x,B).d . O
yeB 4eB
2.3. Lemma: »(x,UAy) = sup »(x,44).
Proof: Obviously v(x,AJ) < »(x,U4y) and hence
sup »(x,A;) & »(x,UA;). On the other hand, if y e Uy, we
have, for some J, ¥(x,y)= v(x,AJ)é sup » (x,44) so that al-
so ¥ (x,UA ) <sup v(x,ay). O
2.4, For A,Bc (P, ») put
~
¥ (4,B) = Ang, v(x,la).’;rsxfB »(y,a).

2.5. Propogition: % is an L-nearness on the set of all
subsets of (P,» ).
Proof: Obviously ¥(4,A) =1 and P(a,B) = P(B,a).
Now, we have (by 1.1.(ii) and 2.2)
~ ~
(a,B). P(B,C) = 1 (x,B).1 ( . ( .
»(a, (B, xnefAv x,B) ,}n‘va ¥, A) inefB» z,C)

. = . . . %
insfcv(u,B) ;l(refo »(x,B) }cné’e”(z":) ﬂ’gc”(“’B) ,:\*nefav(y,A)
£ » (x,B). inf( . £

)}ng( (x,B) inefal)(z,c)) }Lnsfcv(u,B) %ngbv(y,A))
&inr »(x,C).inf »(u,a) = ¥ (a,0). O

Xxe A weC

2.6, The set of all subsets of (P, ») endowed with the

neerness » will be called the Hausdorff superspace of (P,» )
and denoted by

exp (P,»).
One sees that this 1is an obvious generalization of the well-

known synonymous construction for metric spaces ([41).
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2.7. Remark: (P, ») is naturally embedded into exp(P,»)
by representing xe P as {x}. Indeed, we have » ({x},{y}) =
= M(x,y).

2.8. Remarks: Define a ¥ =¢logure of a set A as
2 =4x | »(x,A) =1},
and call A closed if A = A.
Using 2.2 one proves easily that
» (x,A) = »(x,a)

and in consequence f =A.

The » -closure is easily shown to be additive iff (a,bel &
& avb = 1) =) (a=1 or b=l).

The definition in 1.5 can be modified by replacing (i) by
stronger

(%) »ix,y) =l irex=y
to obtain a notion closer to metric spaces (as it is, it cor-
responds rather to the pseudometric ones). All what is said in
this article can be easily modified for this stronger structu-
re, the basic change being in replacing "subsets" in the defi-

nition in 2.6 by "closed subsets".

§ 3. Fuzz t d fuzzy e it

3.1. Let us recall the basic definition of fuzzy sets and
operations with them (cf., e.g., 1101,[21). L is a residuated
lattice.

An L-fyzzy gset is a mapping

X:1xt—= 1
where 1 X| is a set (the carrier of X). We write (with obvious

interpretation)
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x X for X(x)= a.

The union, intersection, product and tensor product of fuzzy
sets are given by the formulas
;Y Xl = hIx0, () X3)(x) = sup {X,(x) | 1 such that

xelX |3,
Ly xgl = Qgixgd, X)) = tar 44(x) | 1€ 33,

%Xl = XXty (X X)xg) ) = dnf 424(xy) | 1€ 7,
IxX@ Yl = [xlxI¥l, (xX® ¥)x,y) = X(x).¥(y) .

3.2. ("Msppings up to degree a" and fuzzy exponentitation.)
Ir X, Y are L-fuzzy sets, we write
£, X—> Y i £: IXI>Y] and (x e X => £(x) €,y V).

We write X & Y ("the weak inclusion®), if }Xlc(Y!, and fur-
ther,

XcYirXx &Y and (x eX = x eabY).
(ce. £21,191).

Bemark: Obviously, X c YT iff j: X—> T for the inclus on
mapping j: |XlclYl. On the other hand, if we define T° , the
£raph of B mapping ¢, by

Ir 1= 4(x, (x| xelxl}y, T (x,9(x) = X(x),
we have T & X xY iff @: X—> 1Y,

3.3. The everyday-life examples of fuzzy sets often have,
in addition, a structure of "imperfect equality” =q which we
may reasonably assume to satisfy‘the implication

(1) X=, y&y =z X =z,

Moreover, it is usually (intuitively) such that if an element

x is almost equal to y and y is in X in some degree, then x is

in X in not much worse degree. This second matter will be for-
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malized in 3.5 below. So far note that if we define
»(x,y)2a irf x = 7

we obtain an L-nearness (the condition (1) represents the

1.5.(111)).

This leads to the following definition:

An L-fuzzy set with L—eguality (vriefly, an L=fe set)
(X,» ) consists of an L-fuzzy set X: | X)—> L and an L-space

(x\,»).

3.4. Ve write

) x,») & (Y,w)
ir (ixl,») 41s a subspace of (Y|, ). The basic operations
with L-fe sets are defined as follows:

Ir (x4, »y) & (x,»), we put

Dxy, ») = (G\Xi,”“ DPxh.
For a general system ((xi, vi))ieJ put
= inf ‘Di(xi,yi)-

Finally put
(X, »}) @ (X,, »,) = (X;® X,, ») where »((x7,X,),(y,,5,)) =
= Y1(x3)) - Py(xp,3,).

Remark: Obviously, the usual L-fuzzy sets can be viewed
as L-fe sets with trivial (discrete) equalities. Then, the ope-
rations coincide with those from 3.1.

3.5. An L-fe set (X, ») 1s said to be saturagted if

(X) xeX &y =x=>7 €,%
This is an obvious formalization of the second property from
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3.3. Handier, although perhaps less lucid, is the following e-
vident reformulation of (% ):

(xx) VxVy »ix,y)X(y) <X(x).

3.6. Proposition: (X, ») is saturated iff X viewed as a
mapping between L-spaces satisfies the inequality
¥, (X(x),X(y)) Z »(x,y).
Proof: By l.1.(iv), (k%) is, further, equivalent with
Vx Vy »(x,y) £ h(x(y),x(x)). O

3.7. For an L-fuzzy set put
K(X) = {(x,a) | xel X}, asXx(x)3.

3.8. Let (X, ») be an L-fe set. Define
exp(X, ») = (Y, ),
where
1Yl =42 | 2 saturated, |ZlcIX|3,
Z €Y irf Z X,
and
«(21,2,) = F(K(2)),K(2,)) where » is defined on
IXIx L by 'v((xl,xz),(yl,yz)) = Px3,¥). vo(xz,yz).

3.9. Propogition: exp(X,»)(2) =£.réfz h(z(x),%x(x)).

Proof: We have (exp X)(Z)Z a iff (Vx(Z(x)= bt => X(x)= ab)

ire Vx(X(x)Z a.2(x)) irf Vx(h(Z(x),X(x))Z a iff
ife inf h(Z(x),X(x))Za. O

3.10. Remarks: (1) Realize that the definition of the L~
nearness @« in the power L-fe set in 3.8 1s quite natural. Con-
sider thel"distance" of L-fe subsets with coinciding carriers.

(2) There arises a natural question as to whether the
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L-fe sets obtained from the saturated ones by operations are
again saturated. It is not hard to prove the affirmative di-
rectly. We do not do it here, howev-r, since it will follow

free from the sequel.

§ 4. L-nebulsge

4.1. An L-pebulg is a system N = ((P, );K,R) where
(P,») is an L-space amd K, R are subsets of P. The set K will
be referred to as the kernel and the set R as the rgnge of the

nebula.

4,2. Since the notion of an L-nebula and a representati-
on of L-fuzzy sets and L-fe sets as nebulae is the main item
of this article, let us discuss here briefly the intuitive
background. The space (P, ») is a universe in which we consi-
der the elements we are interested in. Its size is not all that
important. It could be replaced by a (P’, »”) of which (P, »)
is a subspace, or by a subspace of (P,») large enough to con-
tain R, and the situation described by the nebula would be vir-
tually the same. The range corresponds to the carrier of s fuz-
zy set. The kernel is a system of typical elements with the
property we try to describe (elements which have the property
undisputedly); it is not necessarily a subset of the range.

Let us give a few examples:

(a) The "set"™ of very large natural numbers: Take for"
the universe the set of naturals plus « , with the nearness,
say, »{m,n) =1 - m-ln-l~im—nl, »(n,0) =1 - nl, For R ta-
ke the set of natural numbers, K ={o0} .

(b) The "set" of all yellow objects in & given area:

Choose a nearness function expressing tolerance in interchan-
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geability of colors. R is the set of objects which can be ta-
ken for yellow considered tolerantly (although someone could
take some of them for, say, ochre, light brown, or greenish).
K is a set of undisputedly yellow ones; may be there is none
in the area considered - then choose a reslly yellow sample
elsewhere.

(¢) The "set" of patients suffering a particular dise-
ase. There are border cases with not very vypical symptoms,
but still included in R, while K contains only the typical
ones, perhaps alsé imaginary textbook examples.

4.3. The product 5( (Pyy »4) of a system ((Py, V)
of L-spaces is defined as (§ Py, ») with "((xi)J'(yi)J) =
= inf »y(x.,7,).

Further, we define the tensor product (Py, »;) ® (P, »,)
of two L-spaces as (PyxP,, ») with »((xy,x;),(y,,7,)) =
= P (x,7;). Yo(xas¥y) e

Remarks: Thus, the products (tensor products) of L-fe
sete in 3.4 are carried by the products (tensor products) of
the carrying spaces. Also observe that the K(Z;) in 3.8 are
considered as elements of exp((IX!,»)® L).

The product is the categoriasl product in the naturally
defined category of L-spaces (where the morphisms correspond
to non-expanding mappings of metric spaces). Also, the tensor

product 1s one in this category, having a natural right adjoint.

4.4. We write N = ((P,»);K,R) & ((P", »");K",R") = N*
ir (P,») 1s a subspace of (P, »’) and RcR’, If, moreover,
also Kc K*, we write Nc N'. The former case is referred to as

weak inclusion, the latter one simply as inclugion of nebulae.
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The operations are defined as follows:

Ir Ny = ((Py, ;) ;KR & N = ((P,»);K,R) (1€),
M A ((\P,v);yxi,yni).
@“1 (P, » l@pi);g\xi,g\ni).

For an arbitrary system (Ni) jeJ ©f nebulae put
§ Ny = (_)Tt (Pyy »4); ‘),_(Ki, gni).
Further, put
N ® N, = ((Py) ®3) & (P, »,) ;K3 %K, ,Ry % Ry)e

4.5, For N = ((P,»);K,R) put
exp N = (exp(p,¥ )x exp(P, »); expKx expR, expRx expR).
Thus, the kernel of exp N consists of all the nebulae includ-
ed in N, the range consists of these weakly included there.
(Here, of course, the subnebulae are represented simply by
their kernels and ranges, the universe being silently under—

stood as the original one.)

§ 5. L-nebulae 38 L-fe sets an vice versa. An L-nebula

can be viewed as an L-fe-set in a very natural way (see 5.1).
In this section we will show that, on the other hand, any se-
turated L-fe set can be represented by a nebula and, moreover,
there is a representation such that the operations with the
L-fe sets get represented as the corresponding operations

wi th nebulae. Thus the (more complicated, since involving
counting in L) L-fe set operations reduce, in principle, to o-
perating with couples of crisp sets (see 5.14 and 5.15 below).

5.1l. For a nebula N = ((P, » );K,R) define an L-fe set
A
F(N) by putting
F (M) =(F(N),»iR) where |F (M =R, FN(x) = »(x,K).
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A
We say that N realizes an L-fe set (X,») if (X, ») = F(N),

5.2+ Proposition: Each ?(N) is saturated.
Froof: We have »(x,y) « »(y,K) £ »(x,K) by 2. O

5.3. Convention: In gpaces P® L we replace the pointas
(x,1) by x. Thus, P is embedded into P® L as a subspace in-

stead of the Px4l% level.

5.4, For a saturated L-fe set (x,») put
N, ») = (X}, ») & L;k(x),1x1)
(K(X) from 3.7).

5.5. Lemma: In a saturated (X, ») one has
Y (x,y).h(a,X(y))£ h(a,X(x)).

Proof: We have X(y). »(x,y) £X(x), hence X(y)< h(»(x,y),
¥{x)). Hence further, by 1.1.(iii), 1.2.(4) snd the commutati-
vity of the multiplication, h(a,X(y))< h(a,h(» (x,y),X(x)) =
= h{ »(x,y).h(a,X(x)) and by 1.2.(4) again h(a,X(y)). » (x,y) <
<h(a,X(x)). O

5.6. Proposition: Let (X, ») ve saturated. Then one has
in (IXlxL,5) = (IXl,»)® L the equality
» ((x,a) X(X)) = h(a,X(x)).
Proof: Consider a (y,b)e K(X). We have b£K(y) and hen-
ce, by 6.5,
Y ((x,9),(y,0)) = »(x,y). ¥,(a,b) £ »(x,y).h(a,b) =
‘ £ Y (x,y).h(a,X(y))< h(a,X(x)),
Thus, »((x,a),K(X)< h(a,X(x)). On the other hand, (x,X(x)A a)
is in K(X) and we have by 1.4.(5)
¥ ((x,3),0,X(x)A0)) = O (a,X(x) Aa) = h(a,X(x) Aa) =
h(a,X(x)). O

i
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5.7. Theorem: If (X,%) is saturated, then
FNE,») = (X,»).
Thus, each saturated L-fe set is realized by an L-nebula.
Proof: (Recall Convention 5.3.) By 5.6 and 1.4.(3),
» (x,K(X)) = h(1,X(x)) =x(x), O

5.8. Remgrk: From the proof of 5.6 one sees that X(x) =
= ¥ (x,k(X)) = ¥ (x,(x,X(x)))., B

5.9. The following is evident
Proposition: (X,») & (Y,m) = MX,») ¥ N(y,»).
NN =>Fm £Fm). O

5.10. Proposition: N'( /) (X4, vi)) = fJ\J{‘(Xi, 91).
Proof: The coincidence of the universa is obvious. Furt-
her, we have
(x,a) e NV K(Xy) iff Vi X (x)za iff a&inf X;(x) = (N X3 (x)
ire ire (x,a) e KN (X, »)). O

5.11. Remark: One does not have, in genersl,
N U Xy, vy)) = UNXK,, »). In case of a linearly ordered
L, however, this equality holds at least for finite J.

5.12. Proposition: (1) # ( u N = U?(N)T(N ).
(2) Py @ Ny = F(n) ® .a:m ).
Proof: The coincidence of the carrying universa is evi-
dent. Further, we have by 2.3
FUND () = »(x, UK, = sup »(x,K;)
which yields (1), rfinally, we have (use 1.2.(1))
A
F(N®N )(xl,x2) = supd»(x;,y,). vz(xz,yz) ] (ypov-) e
€ Kyx Ky = , ("f;ucpK (»(xg,57) Yolxp,55)) =

= su (V(x ).su*) v, (x )=
%6%1 1 1’3’1 ek, 2 2295
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= (a8, P1lxm)fowm, Vplxp)) = FO ), F(N,) (xy)
which yields (2). O

5.13. Lempa : Let Ny = ((Py , »,);K;,R,) be such that
for each x € Ry there is an X€K; such that »;(x,K;) =
= P4(x,X). Then

Foxw) = X% .

Proof: Again, the coincidence of the carriers is evident.
Denote by » the nearness in X P,. We have, for x = (x) €
€ X Ry,
FOK NG = »x, KKy = supd» ((x), (3 ) (y))e
X Ki} = sup {2.21‘3 » 4 (xg,54)) \ (yq) € X K3,
b= ( XF(N))(x) = inf » (x4,K,) =

"

a

m

%21’3 sup‘f-vi(xi,yi) | y €Kyt
and consequently a<b.
On the other hand, consider X = (X;). We have
sup{vi(xi,yi)l yieKii = vi(xi,i'i)
end hence

%r:fJ »y(xy,%) £a b = jur; »y (xg,%4) o
5.14. Theorem: For (X;, »;) b (X, ») we have

A
(1) f(.’.QJX‘(xi’ ¥y) = (X, »y),

(2) y(;ijjx;(x,y))”xi’ P = &h(x, Kpr Py
Generally

(3) ?(lb‘(JN‘(Xi, »y)) = «'.)e(J (Xgy 24

(8) F(N(Xy, ») & HN(Xy, »,)) = (X, ¥)) 8 (Xy, ).

Proof: The expressions on the left hand side in (1) and
(2) make sense by 5.9.
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A

W A&y, 2 = Fr N, »)) = FOKE, »,))

by 5.7 and 5.10.
A A

(2): FUNER,»)) = VINE, , ») = U, )
by 5.12.(1) and 5.7.

(3 FORNx, »)) = XFHE, ») = XX, », ) by
5.8, 5.13 and 5.7.

() F (N(Xp, ») BN (K, »)) = FH (X, ») @
® FH(Xy, ¥,) = (X}, ¥)) ® (Xy, D,) by 5.12 and 5.7.

5.15. Before formulating a statement on exponentiation
analogous to the statements concerning the other operations,
let us realize that it cannot be of the form ? (exp NM(X,»))=
= exp (X,»). The carrier of ?’(exp X (X,»)) is a set of L-ne-
bulae, that of exp (X,») is a set of L-fe sets. Thus, one has
to have a translation of fe~subsets to subnebulae. Such a trans-
lation really exists and, moreover, it is coherent with the con-

struction X . We have

Theorem: Define a mapping
Jfl: lexp (X, ») | — R(exp N(X,¥))
by putting (Y, »”) = (K(Y),I¥)) for (¢, ») & (X,»). Then

(1) Xy, »7) = (UYi,»): MY, »)),

(2) le preserves the L-nearness, and

() % (exp N (X, »)) o ‘Ml = exp (X, »).

Proof: (1) is obvious.

(2): Let us denote the L-nearness in (x|, »)& L by 20
Recall that the L-nearness in lexp (X,» )| (see 4.8) is given
by

@(Y,1,) = ’51§K<Yl),x(12)).
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Now, for the nearness (u,' in R{exp #'(X,»)) we also have (re-
call 4,5}

@), M) = TR KD A B )1 =
Py ((¥y) k(1))

since obviously Fp(K(Y;),K(¥,)) £ F (1%1,IL,1).

(3): 1In the product of two spaces we have »((u,v),UxV)=

= 3 (u,U) whenever v €V. Thus,
¥ (exp X (X, ») (N (Y, »)) = FKYD), exp K(O).
Take an McK(X). We have
B KD, = tne 4% ((x,0),00 | (x,2)e K(DF.1ne 9, ((3,),
K(Y)) | (y,b) e M§ Sinf 1, ((x,8),W) | (x,a) e kK(D)} 2
€ int4{ 2, ((x,8) ,K(X)) | (x,a) € K(V)F.
Thus, by 5.6 and 3.9,
PLE(Y) M) £ inf { h(a,X(x)) | a£¥(x)} = inf {0(¥(x),X(x)) | xe€
e | Y1} = explx, »)(Y).
On the other hand, we have by 6.10, 6.6 and 3.9
FLEKD KON K(D) = F (KD ,KXAY)) =

inf { ¥, ((x,0) , k(XN 1)) | (x,8) € K(V)E=
inf { h(a,X(x) A¥(x) | (x,2) e K(V)§=

"

[}

~i°t‘lf h(Y(x),X(x)A ¥(x)) = igf h(¥(x),X(x)) =

exp (X,»)\Y¥).
Thus, F (exp(X,»)) (N)(1) = exp (X,»)(V). O
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