Commentationes Mathematicae Universitatis Caroline

Luděk Kučera
 On the monoids of homomorphisms of semigroups with unity

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 2, 369--381

Persistent URL: http://dml.cz/dmlcz/106160

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,2 (1982)

ON THE MONOIDS OF HOMOMORPHISMS OF SEMIGROUPS WITH UNITY
 Ludĕk KUČERA

Abstract: It is proved that

- any semigroup with unity and zero element is isomorphic to a semigroup of endomorphisms of some monoid (i.e. semigroup with unity)
- any small category with zero morphisms is isomorphic to a small full subcategory of the category of monoids and their homomorphisms,
- any concrete category with zero morphisms is isomorphic to a full subcategory of the category of monoids and their homomorphisms, provided the non-existence of measurable cardinals is supposed.

Key words: Category theory, full embedding, homomorph-
1sms of monoids, zero morphisms.

Classification: 18B15

The aim of the present paper is to characterize monoids which can be represented as the monoids of homomorphism of semigroups with unity.

Let M be a monoid of homomorphism of a semigroup S with the unity element 1. M necessarily contains the unity and zero elements corresponding to the identity mapping of S and to the constant mapping to the element 1 of S. We are going to show that there is no other restriction to monoids in question. More generally, we prove that every concrete category K with 0 -morphisms is isomorphic to a full subcategory of the category of monoids (semigroups with unity) and their homo-
morphisms, provided (M) there exists a cardinal number \propto such that every α-additive two-valued measure is trivial.

In some cases (e.g. if K has a set of objects only or K is a category of universal algebras of a given type and their homomorphisms) the axiom (M) is not necessary, on the other hand the existence of a full embedding (i.e. a full and faithful functor) of e.g. the category of compact abelian groups into the category of monoids would imply (M) [7].

The proof is based on the fact that every concrete category K can be fully embedded into the category of oriented graphs and compatible mappings [1, 6] (see also [8]). Some special cases of this theorem are proved in [3, 4, 5]. Using this result we shall prove that a concrete category with 0morphism can be fully embedded into a special subcategory of the category of oriented graphs with one loop. (0 -morphisms will correspond to constant mapping to the loops.l

The category of one-loop graphs will be fully embedded into the category of monoids by a modification of the method used in the paper [2].
O. Preliminary definitions. An oriented graph is a couple $G=(X, R)$, where X is a set and $R \subset X \times X$. $X(R$, resp. $)$ is called the underlying set (the relation, resp.) of G. A loop of G is an element $x \in X$ such that $(x, x) \in R$. A mapping $P: X \rightarrow Y$ is a compatible mapping from (X, R) into (Y, S) if $(x, y) \in R$ im plies $(f(x), f(y)) \in S$. Note that a constant mapping to a loop is compatible.

GRA is a category of all oriented graphs and their compatible mappings.

GOL is a full subcategory of GRA determined by graphs; $G=(X, R)$ such that G has exactly one loop x_{0},
$\left(x_{0}, x\right),\left(x, x_{0}\right) \in R$ implies $x=x_{0}$,
if $x \neq x_{0}$ and either $\left(x, x_{0}\right) \in R$ or $\left(x_{0}, x\right) \in R$, then it is
$(x, y) \in R$ iff $(y, x) \in R$.
GOL(I), where I is a set, is a category defined as follows:
objects are triples $\left(X,\left(R_{i}\right)_{i \in I}, X_{0}\right)^{2}$, where X is a set, $R_{i} \in X \times X$ for all $i \in I, x_{0} \in X$, such that for every $i \in I$ it is $(x, x) \in R_{i}$ iff $x=x_{0}$,
morphisms from ($X,\left(R_{i}\right), x_{0}$) into ($Y,\left(S_{i}\right), y_{0}$) are mappings $f: X \rightarrow Y$ such that for every $i \in I,(x, y) \in R_{i}$ implies $(f(x)$, $f(y)) \in S_{i}$. (Note that in this case it is $f\left(x_{0}\right)=y_{0}$.)

A set $\prod_{i} X_{i}$ is considered as the set of all mappings q from I into $U_{i \in I} X_{i}$ such that $q(i) \in X_{i}$.

MON is the category of monoids (semigroups with unity) and their homomorphisms. We shall say that a category K has 0 -morphisms if for any two objects A, B of K there is a morphism $Z_{A, B}: A \rightarrow B$ such that for every morphism $f: A \rightarrow B, g$: $: B \rightarrow C$ it is $Z_{B, C} \circ f=g \circ Z_{A, B}=Z_{A, C}$.

1. Embedding into GOL

Theorem 1: If a category K has 0 -morphisms and if it can be fully embedded into GRA then there exists a full embedding of K into GOL (I) for some nonempty set I.

Proof: Without loss of generality we can suppose that K is a full catefory of GRA and that there exists an object 0
of K such that $Z_{0,0}$ is the identity morphism of 0 . The object 0 is uniquely determined as an image of any 0 -morphism in K.

Denote an underlying set of an object (i.e. a graph) G of K by X_{G} and its relation by R_{G}.
Given $x \in X_{0}$, denote $Z_{G, 0}^{-1}(x)=X_{G, x}, Z_{o, G}(x)=a_{G, x}$. We have $X_{G, x} \cap X_{G, y}=\emptyset$ for $x \neq y, a_{G, x} \in X_{G, x}, a_{0, x}=x, X_{o, x}=\{x\}_{X_{G}}=$ $=\bigcup_{x} X_{0} X_{G, x^{\circ}}$ If $f: G \rightarrow H$ is a morphism of K then f maps $X_{G, x}$ into $X_{H, x}$ and $f\left(a_{G, x}\right)=a_{H, X}$.

A full embedding F of K into GOL ($X_{0} \cup R_{0}$) can be defined as follows:
$F(G)=\left(\prod_{x \in X_{0}} X_{G, x},\left(R_{G}\right), \mathbb{Z}_{0, G}\right)$, where relations $R_{G, i}$ are defined in the following way:
$\left(q_{1}, q_{2}\right) \in R_{G, i}$ for $i=x \in X_{0}, q_{1}(x)=q_{2}(x)$,
$\left(q_{1}, q_{2}\right) \in R_{G}$ for $i=(x, y) \in R_{0},\left(q_{1}(x), q_{2}(x)\right) \in R_{G}$,
$F(f)(q)=f \in q$.
If $(x, y) \in R_{0}$ then $\left(Z_{0, G}(x), Z_{0, G}(y)\right) \in R_{G}$ which implies: $\left(Z_{0, G}, Z_{o, G}\right) \in R_{G,(x, y)}$. Conversely, if $(q, q) \in R_{G,(x, y)}$ for every $(x, y) \in R_{0}$ then $q: X_{0} \rightarrow X_{G}$ is a mapping such that $(x, y) \in$ $\in R_{0}$ implies $(q(x), q(y)) \in R_{G}$. Hence $q: 0 \rightarrow G$ is a morphism of K and $q=q \circ I_{0}=q \cdot \circ Z_{0,0}=Z_{0, G}$

Now, it is easy to see that F is a faithful factor. We shall prove that F is full:

Let $h: F(G) \rightarrow F(H)$ be a compatible mapping of $G O L\left(X_{0} \cup R_{0}\right)$
and $a \in X_{G}$. There exists a unique $x \in X_{0}$ such that $\theta \in X_{G, x}$ and there is $q \in \prod_{x} X_{0} X_{G, x}$ such that $q(x)=a$. Put $f(a)=(h(q))(x)$. This does not depend on the choice of q, because $q_{1} \epsilon_{x} \prod_{X_{0}} X_{G, x}$, $q_{I}(q)=a$ implies $\left(q, q_{1}\right) \in R_{G, x},\left(h(q), h\left(q_{1}\right) \in R_{H, x},(h(q))(x)=\right.$ $=\left(h\left(q_{1}\right)\right)(x)$. We have obtained a mapping $f: X_{G} \rightarrow X_{H}$ such that
$h(q)=f \circ q$. Let us suppose that $(a, b) \in R_{G}$. There exist $x, y \in$ $\in X_{0}$ such that $a \in \mathbb{X}_{G, x}, b \in X_{G, y}$ and $q_{k}, q_{2} \in \prod_{x \in X_{0}} X_{G, x}$ such that $q_{1}(x)=a, q_{2}(y)=b$. We have $(x, y)=\left(z_{G, o}(a), \mathbb{z}_{G, 0}(b)\right) \in$ $\in R_{0},\left(q_{1}, q_{2}\right) \in R_{G},(x, y),\left(h\left(q_{1}\right), h\left(q_{2}\right) \in R_{H,(x, y)},(f(a), f(b))=\right.$ $=\left(f q_{1}(x), f q_{2}(y)\right)=\left(h\left(q_{1}\right)(x),\left(h\left(q_{1}\right)(y)\right) \in R_{G}\right.$. Thus, $f: G \rightarrow H$ is a morphism of K and $F(f)=h$.

Theorem 2. If K is a category with 0 -morphisms and if there exists a full embedding of K into GRA then there exists a full embedding of K into GOL.

Proof: In view of Theorem 1 it suffices to construct a full embedding GOL (I) \longrightarrow GOL for every set I. For the sake of simplicity we shall divide the construction into two parts:

1. A full embedding GOL (I) \longrightarrow GOL (3)

According to [9], there exists an oriented graph $T=(I, U)$ which has the parameter set I as an underlying set such that the only compatible mapping of I into itself is the identity mapping.

Define F as follows:
$F\left(\left(X,\left(R_{i}\right)_{i \in I}, x_{0}\right)=\left(\left(\left(X-\left\{x_{0}\right\} 2 \times I\right) \cup\left\{x_{0}\right\},\left(r_{i}\right)_{i=0,1,2}, x_{0}\right)\right.\right.$,
where $(a, b) \in r_{i}$ iff
either $i=0, a=(x, p), b=(x, y)$,
or
$i=1, a=(x, p), b=(x, q),(p, q) \in U$,
or $\quad i=2, a=(x, p), b=(y, p),(x, y) \in R_{p}$,
or $\quad i=2, a=(x, p), b=x_{0},\left(x, y_{0}\right) \in R_{p}$,
or $\quad i=2, a=x_{0}, b=(y, p),\left(x_{0}, x\right) \in R_{p}$,
or $\quad i=0,1,2, a=b=x_{0}$,
for some $x, y \in X-\left\{x_{0}\right\}, p, q \in I$,
$F(f)((x, 1))= \begin{cases}(f(x), i) & \text { if } f(x) \text { is not a loop, } \\ f(x) & \text { if } f(x) \text { is a loop, }\end{cases}$
$F(f)\left(x_{0}\right)=f\left(x_{0}\right)$.
It is easy to see that F is a faithful functor. Let $h=$ $: F\left(\left(X,\left(R_{i}\right), x_{0}\right)\right) \longrightarrow F\left(\left(Y,\left(S_{i}\right), y_{0}\right)\right)$ be a compatible mapping. We have $h\left(x_{0}\right)=y_{0} \cdot r_{0}$ is an equivalence with the equivalence classes $\{x\} \in I, x \in X, x \neq x_{0}$ and $\left\{x_{0}\right\}$; similarly for s_{0}. The mapping h preserves these partitions. According to the definition of r_{1}, s_{1} and the properties of $T=(I, U)$, there exists a mapping $f: X \longrightarrow Y$ such that
$h((x, i))= \begin{cases}(f(x), i) & \text { if } f(x) \neq y_{0}, \\ y_{0} & \text { if } f(x)=y_{0},\end{cases}$ $h\left(x_{0}\right)=y_{0}$.

In view of the definition of r_{2}, s_{2} and the properties of the mapping f we know that $(x, y) \in R_{p}$ implies $(f(x), f(y)) \in S_{p}$.

Therefore $f:\left(X,\left(R_{i}\right), x_{0}\right) \rightarrow\left(Y\left(S_{i}\right), y_{0}\right)$ is a morphism of GOL (I) such that $F(f)=h$.

A full embedding GOL (3) \longrightarrow GOL
$F\left(\left(X,\left(\nabla_{i}\right) 1=0,1,2, x_{0}\right)\right)=\left(\left(\left(X-\left\{x_{0}\right\}\right) \times\{1,2,3,4\} \times\{1,2,3,4\}\right) \cup\right.$ $\left.v\left\{x_{0}\right\}, R\right)$, where $(a, b) \in R$ if there exist $x, y \in X-\left\{x_{0}\right\}$ such that either $a=(x, i, p), b=(x, j, p), p=1,3$ and either $i=1, j=2$,
or $\quad i=2, j=3$,
or $\quad 1=3, j=1$,
or $\quad i=2, j=4$,
or $\quad i=4, j=3$,

or $a=(x, 1, p), b=(x, 1, q), i=1,2,3,4$ and
either $p=1,3, q=p+1$,
or $\quad p=2,4, q=p-1$,
or $a=(x, 1,1), b=(x, 1,3)$,
or $a=(x, i+2,2), b=(y, i+3,4),(x, y) \in r_{i} \quad i=0,1,2$,
or $a=(x, 1+2,2), b=x_{0}, \quad\left(x, x_{0}\right) \in r_{i} i=0,1,2$,
or $a=x_{0}, \quad b=(y, i+2,4)\left(x_{0}, y\right) \in r_{i} i=0,1,2$,
or $a=b=x_{0}$.
$F(f)((x, i, p))=\left\{\begin{array}{ll}(f(x), i, p) & \text { if } f(x)\end{array}\right)$ is not a loop,
$F(f)\left(x_{0}\right)=f\left(x_{0}\right)$.
It is easy to see that F is a faithful functor from GOL (3) into GOL. We shall prove that F is full:

Let $h: F\left(\left(X,\left(r_{i}\right), x_{0}\right)\right) \longrightarrow F\left(\left(Y,\left(S_{i}\right), q_{0}\right)\right)$ be a compatible mapping,
Given $x \in X, p=1,3$, the pointe $(x, 1, p),(x, 2, p),(x, 3, p)$
form a cycle and therefore there is $y \in Y, q=1,3, u=0,1,2$ such that either
$h((x, i, p))=y_{0}$ for $i=1,2,3$,
or $h((x, i, p))=\left\{\begin{array}{l}(y, i+u, q) \text { if } i+u \leqslant 3, \\ (y, i+u-3, x) \text { if } i+u>3 \text { for } i \text { i,2,3. } . ~ . ~\end{array}\right.$
Considering the arrows $((x, 2, p),(x, 4, p))$ and $((x, 4, p)$, ($x, 3, p$)), we can show that
$h((x, i, p))=y_{0}$ for $i=1,2,3,4$ in the first case,
$h((x, i, p))=(y, i, q)$ for $i=1,2,3,4$ in the second case.
In view of the existence of an arrow $((x, 1,1),(x, 1,3))$ there is $y \in Y$ such that $h((x, i, p))=(y, i, p)$ for $i=1,2,3,4, p=$ $=1,3$. Since we have $((x, i, p),(x, i, p+1)),((x, i, p+1)$,
$(x, i, p)) \in R$ for $i=1,2,3,4, p=1,3$, necessarily $h((x, i, q))=$ $=(y, i, q)$, for $i=1,2,3,4, q=2,4$.
Therefore there is a mapping $f: X \longrightarrow Y$ such that
$h((x, i, p))= \begin{cases}(f(x), i, p) & \text { if } f(x) \neq y_{0}, \\ y_{0} & \text { if } f(x)=y_{0},\end{cases}$
$h\left(x_{0}\right)=y_{0}$.
Now, it can be easily seen that f is a compatible mapping from ($\left.X,\left(r_{i}\right), x_{0}\right)$ into $\left(Y,\left(s_{i}\right), y_{0}\right)$ and that $h=F(f)$.
2. Embedding into MON. The next three theorems constitute the main results of the paper:

Theorem 3. Assuming (M), a category K is isomorphic to a full subcategory of the category of monoids and their homomorphisms if and only if it is a concrete category with 0-morphisms.

Theorem 4. If K is either a small category or a category of universal algebras of a given type and their homomorphisms then K is isomorphic to a full subcategory of the category of monoids and their homomorphisms if and oñly if K has O-morphisme.

Theorem 5. Every multiplicative semigroup with the unity and zero elements is isomorphic to a semigroup of endomorphisms of some monoid.

Proof of Theorems 3-5. The theorem 5 is an immediate consequence of the theorem 4. The "only if" part of the theorems 3, 4 follows from the fact that any full subcategory of MON is a concrete category with 0 -morphisms.

Now, we are going to prove the "if" part of Theorems 3, 4. It follows from the assumption of the theorems and from $[3,4,6]$ (see also [81) that K can be fully embedded into GRA.

Since K has 0 -morphisms, the theorem 2 gives a full embedding $K \rightarrow$ GOL. Therefore it is sufficient to construct a full embedding of GOL into MON. It can be defined as follows.

Given a graph $G=(X, R)$, which is an object of GOL, let $M^{\prime}(G)$ be a pree monoid over $X^{\prime}=X-\left\{x_{0}\right\}$, where x_{0} is the loop of G, i.e. $M^{\prime}(G)$ be a set of all finite (possibly empty) sequences of elements of X^{\prime}, the composition in $M^{\prime}(G)$ is given by concatenation and the unity is the empty sequence.

Let \equiv be the smallest congruence on $M^{\prime}(G)$ such that
(1a) $x z^{2} y x^{2} z \equiv x z^{2} y^{2} x^{2} z$ whenever $x, y, z \in X^{\prime}$ and $(x, y),(y, z) \in R$ (note that it is $x \neq y$ and $z \neq x$),
(lb) $x y x^{2} \equiv x y^{2} x^{2}$, whenever $x, y \in X^{\prime}$ and (x, y), $\left(y, x_{0}\right) \in R($ note that $x \neq y)$,
(1c) $z^{2} y z \equiv z^{2} y^{2} z$ whenever $y, z \in X^{\prime}$, and ($\left.x_{0}, y\right)$, $(y, z) \in R($ note that $y \neq z)$.

Put $F(G)=M^{\prime}(G) / \equiv$ 。
A) It is evident that $\mathrm{x}^{\mathrm{p}} \mathrm{x}^{\mathrm{q}}$ for $\mathrm{x} \in \mathrm{X}^{\prime}, \mathrm{p} \neq \mathrm{q}$ (especially $x \neq 1$) and that $x, y \in X^{\prime}, x \equiv y$ implies $x=y$.
B) Let $a=x_{1} \ldots X_{k}$ be a wrord over X^{\prime}. Define $C(a)$ to be the number of indices $i=1,2, \ldots, k-1$ such that $x_{i} \neq x_{i+1}$. It is easy to see that $a \equiv b$ implies $C(a)=C(b)$. Moreover, $C(a b c) \leqslant C\left(a b^{2} c\right)$ and the equality holds iff $b=x^{k}, x \in X^{\prime}$, with a nonnegative integer k. Especially, if a $c^{2} b a^{2} c \equiv$ $\equiv a c^{2} b^{2} a^{2} c$ then $b=x^{k}, x \in X^{\prime}, k \geqq 0$.
C) Let $u, v, w \in X^{\prime}, p, q, r$ be natural numbers and one of the following equalities hold:
(2a) $u^{p_{w}} 2 r_{\nabla} q_{u} p_{w} r \equiv u^{p} p^{2 r} 2 q_{u} 2 p_{w} r$,
(2b) $u^{p} v_{u} u^{2 p} \equiv u^{p} v^{2} q_{u}^{2 p}$,
(2c) $\quad w^{2 r} q_{w} r=w^{2 r} \nabla^{2} q_{w} r$.
We have to transform the right side of (2) by subsequent applications of the equations ($1 a, b, c$) into the left side if (2). During the application of (1) which changes the exponent of v for the first time necessarily $v=y, 2 q \leqslant 2$, which implies $q=1$.
D) Suppose that $u, v, w \in X^{\prime}$ and one of the following equalities holds:
(3a) $u w^{2} v u^{2} w=u w^{2} v^{2} u^{2} w$,
(3b) $u v u^{2}=u v^{2} u^{2}$,
(3.c) $w^{2} v w \equiv w^{2} v^{2} w$.

We have to transform the left hand side of (3) into its right hand side by means of the equations ($1 a, b, c$). (1 b) is the only equation which can be applied to (3 b). Thus, $u=x$, $\nabla=y$ and hence $(u, v),\left(\nabla, x_{0}\right) \in R$. Similarly in the case (3 c) we have $\left(x_{0}, \nabla\right)(\nabla, w) \in R$. If ($1 q$) is applied to (3 a) then u, $\nabla=y, w=z$ and $(u, v),(v, w) \in R$.
If (1 b) is applied to the left hand side of (3 a), then
either $u=\nabla+w, u w^{2} v u^{2} w=u w^{2} u^{3} w$, which could be equivalent to $u w u^{3} w$ if $(u, w),\left(w, x_{0}\right) \in R$, but no other word is equivalent to $u w^{2} v u^{2} w$ which is a contradiction, or $u=w=$ $=x, v=y,(u, v),\left(v, x_{0}\right) \in R$ and according to the properties; of G we have $(v, w)=(v, u) \in R$.

```
Analogously, if (1 c) is applied to (3 a) then u = w = z,
```

$\nabla=y,\left(x_{0}, \nabla\right),(\nabla, w) \in R$ which implies $(u, v)=(w, \nabla) \in R$.
We have proved that
(3 a) implies $(u, v),(v, w) \in R$,
(3 b) implies $(u, v),\left(v, x_{0}\right) \in R$,
(3 c) implies $(x, \nabla),(\nabla, w) \in R$.
F can be defined equivalently as a factorization of a free monoid $M(G)$ over X by the smallest equivalence \sim defined by
(4a) $x z^{2} y^{2} z \sim x z^{2} y^{2} x^{2} z$ whenever $x, y, z \in X,(x, y)(y, z) \in$ $\in \boldsymbol{R}$,
(4b) $x_{0} \sim 1$.
We can reformulate the above reaults as follows:
$\left.A^{\prime}\right)$ given $x, y \in X, x \sim y$ implies $x=y$,
B^{\prime}) given words a, b, c over $X, a c^{2} b a^{2} c \sim a c^{2} b^{2} a^{2} c$ implies that there exists $x \in X$ and a natural number p such that $\mathrm{b}=\mathrm{x}^{\mathrm{p}}$,
c^{\prime}) given $u, w \in X, \nabla \in X^{\prime}, p, q, r$ natural, $u^{p} w^{2 r} \nabla^{q} u^{2} p_{w} r \sim$ $\sim u^{p}{ }^{2 r} v^{2} q_{u} u_{w} p^{r}$, then $q=1$,
D^{\prime}) given $u, w \in X, \nabla \in X^{\prime}, u w^{2} v u^{2} w \sim u w^{2} v^{2} u^{2} w$, then $(u, \nabla),(\nabla, w) \in R$.

A compatible mapping $f: G \longrightarrow H$ can be uniquely extended to a homomorphism from $M(G)$ into $M(H)$. The extended homomorphism preserves congruence and therefore gives rise to a homomorphism $F(f): F(G) \longrightarrow F(H)$. It is easy to see that F is a functor from GPL into MON. F is faithful in view of A^{\prime}.

To prove that F is full, let us consider a homomorphism $h: F(G) \longrightarrow F(H)$.

Given $y \in X$, there are $x, z \in X$ such that $(x, y),(y, z) \in R$, which implies: $h(x)(h(z))^{2} h(y)(h(x))^{2} h(z) \sim h(x)(h(z))^{2}(h(y))^{2}$
$(h(x))^{2} h(z)$. In view of B^{\prime}, there exists $v \in X$ and a natural number q such that $h(y)=\nabla^{2}$. Similarly, we can show that there exists $u, \nabla \in X$ and natural numbers p, r such that $b(x)=$ $=u^{p}, h(y)=v^{r}$. Thus it is either $\nabla=y_{0}$ and $h(y)=y_{0}^{q} \sim y_{0}$, or $\nabla \neq y_{0}$ and $q=1$.

Therefore there exists a mapping $f: X \rightarrow Y$ such that $h(x) \sim f(x)$ for $x \in X$.
Given $(a, b) \in R$, then either $f(a)=p(b)=y_{0}$ and $\left.f(a), f(b)\right) \in$
ϵS, or there are $u, v, w \in X$ such that $(u, v),(v, w) \in R$ and either
$u=a, v=b, f(b) \neq y_{0}$ or $v=a, w=b, f(a) \neq y_{0}$. Because
$u v^{2} v u^{2} w \sim u w^{2} v^{2} u{ }^{2} w$, we have
$f(u)(f(w))^{2} f(v)(f(u))^{2} f(w) \sim f(u)(f(w))^{2}(f(v))^{2}(f(u))^{2} f(w)$ and it follows from D^{\prime} that $(f(a), f(b)) \in S$. Thus, $f: G \rightarrow H$ is a morphism and $h=F(f)$.

Reperences
[1] Z. HEDRLfN: Extensions of structures and full embeddings of categories, Actes du Congrès Internat. des Mathématiciens 1970, tome 1, Paris 1971, 319-322.
[2] Z. HEDRLfN, J. LAMBECK: How comprehensive is the category of semigroups? J. Algebra ll(1969), 195-212.
[3] Z. HEDRLIN, A. PULTR: On representation of small categories (in Russian), Dokl. Akad. Nauk SSSR 160 (1965), 284-286.
[4] Z. HEDRLIN, A. PULTR: On full embeddings of categories of algebras, Illinois J. of Math. 10(1966), 392406.
[5] Z. HEDRLIN, A. PULTR: On categorial embeddings of topological structures into algebraic, Comment. Math. Univ. Carolinae 7(1966), 377-400.
[6] L. KUKERA: Full embeddings of categories (in Czech), CSc. Thesis, Charles University, 1974.
[7] L. KUČERA, A. PULTR: Non-algebraic concrete categories, J. Pure and Appl. Alg. 3(1973), 95-102.
[8] A. PULTR, V. TRNKOVÁ: Combinatorial, Algebraic and Topological Categories, Academia, Prague, 1980.
[9] P. VOPĚNKA, Z. HEDRLÍN, A. PULTR: A rigid relation exiats on any set, Comment. Math. Univ. Carolinae 6 (1965), 149-155.

Matematicko-fyzikalni fakulta, Universita Karlova, Malostransk nám. 25, Praha 1, Czechoslovakia
(Oblatum 26.10. 1981),

