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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROilNAE 

23,2 (1982) 

ON THE MONOIDS OF HOMOMORPHISMS OF SEMIGROUPS 
WITH UNITY 
Ludek KUCERA 

Ab9tract: It is proved that 
- any semigroup with unity and zero element is isomorph

ic to a semigroup of endomorphisms of some monoid (i.e» 
semigroup with unity), 

- any small category with zero morphisms is isomorphic 
to a small full subcategory of the category of monoids 
and their homomorphisms, 

- any concrete category with zero morphisms is isomorph
ic to a full subcategory of the category of monoids 
and their homomorphisms, provided the non-existence of 
measurable cardinals is supposed. 

Key words; Category theory, full embedding, homomorph
isms of monoids, zero morphisms. 

Clas9ification; 18B15 

The aim of the present paper is to characterize monoids 

which can be represented as the monoids of homomorphism of 

semigroups with unity. 

Let M be a monoid of homomorphism of a semigroup S with the 

unity element 1. M necessarily contains the unity and zero 

elements corresponding to the identity mapping of S and to 

the constant mapping to the element 1 of S. We are going to 

show that there is no other restriction to monoids in ques

tion. More generally, we prove that every concrete category 

K with 0-morphism9 is i3omorphic to a full subcategory of the 

category of monoids (semigroups with unity) and their homo-
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morphisms, provided (M) there e x i s t s a ca rd ina l number oc 

such t ha t every oc-addi t ive two-valued measure i s t r i v i a l . 

In some cases ( e . g . i f K has a s e t of ob jec t s only or K 

i s a category of un ive r sa l a lgebras of a given type and t h e i r 

homomorphisms) the axiom (M) i s not necessa ry , on the o t h e r 

hand the ex i s t ence of a f u l l embedding ( i . e . a f u l l and f a i t h 

ful functor) of e . g . the category of compact abe l i an groups 

i n t o the category of monoids would imply (M) I 73 . 

The proof i s based on the f ac t tha t every concrete c a t e 

gory K can be f u l l y embedded i n t o the category of o r ien ted 

graphs and compatible mappings [ 1, 6 3 (see a l s o 183) . Some 

s p e c i a l cases of t h i s theorem are proved in 1 3 , 4 , 53 . Using 

t h i s r e s u l t we s h a l l prove tha t a concrete category with 0 -

morphism can be f u l l y embedded i n t o a s p e c i a l subcategory of 

the category of o r ien ted graphs with one loop. (O-morphisms 

w i l l correspond to constant mapping to the loops . ) 

The category of one-loop graphs w i l l be f u l l y embedded 

in to the category of monoids by a modif icat ion of the method 

used in the paper [ 2 3 . 

0. Pre l iminary d e f i n i t i o n s . An or ien ted graph i s a coup

le G = (X,R), where X i s a se t and R c X x X . X (R, reap . ) i s ca l 

led the under lying se t ( the r e l a t i o n , r e a p . ) of G. A loop of 

G i s an element x e X such tha t ( x f x ) e R. A mapping f:X—>Y 

i s a compatible mapping from (X,R) in to (Y,S) i f ( x , y ) € B im

p l i e s ( f(x) , f ( y ) ) € 3 . Note tha t a constant mapping to a loop 

i s compatible. 

GRA i s a category of a l l o r ien ted graphs and t h e i r com

p a t i b l e mappings. 
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GOL is a full subcategory of GRA determined by graph® 

G = (X,R) such that G has exactly one loop x , 

(x ,x), (x,x ) e R implies x =- x , 

if x+xA and either (x,x )eR or (x .x)eR, then it is 
O ' O 0' ' 

(x,y)s R iff (y,x) 6 R. 

GOL(l), where I is a set, is a category defined as fol

lows: 

objects are triples (X, (R. ) . f e j f - O t where X is a set, 

R^cXxX for all i€l, xQeX, such that for every iel it is 

(x,x) eR. iff x = x , 

morphisms from (X,(R.),x ) into (Y,(S^),y ) are mappings 

f:X—>X such that for every is I, (x,y) e R^ implies (f(x), 

f(y))ssi. (Note that in this case it is f(xQ) = yQ.) 

A set T̂V- X4 is considered as the set of all mappings 

q from I into ^yx X^ such that q(i)eX.. 

MON is the category of monoids (semigroups with unity) 

and their homomorphisms. We shall say that a category K has 

O-morphisms if for any two objects A, B of K there is a mor-

phi3m Z. B:A—> B such that for every morphism f:A—> B, g: 

:B~-->C it is % f C . f - g o Z A | B * Z A f C . 

!• Embedding into GOL 

Theorem 1: If a category K has O-morphisms and if it can 

be fully embedded into GRA then there exists a full embedding 

of K into GOL (I) for some nonempty set I. 

Proof: Without loss of generality we can suppose that K 

is a full category of GRA and that there exists an object 0 
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of K such that Z^ ^ i s the i d e n t i t y morphism of 0. The object o, o 
0 i s uniquely determined as an image of any 0-morphism in K. 

Denote an underlying set of an object ( i . e . a graph) 6 

of K by XQ and i t s r e l a t i o n by RQ. 

Given x e X , denote ZQ (x) » XQ x ,Z Q Q(x) = aQ x . We have 

X G f x
n X G,y 9 * f o r x * * ' a G f x

e X G f x» a o f x * x» X o,x "*** V 

* *«*& XG x# 1<f ^ : G """* H i s a morphism of K then f maps XQ x 

into XH>x and f ( a Q | X ) » aH > x . 

k f u l l embedding F of K into GOL (X f RQ) can be defined 

as fo l lows: 

F(G) » CyJt^ xQ x , (R^), ZQ Q ) , where re la t ions RQ ± are 

defined in the fol lowing way: 

C Q i t q ^ H B ^ i for i - * € X
0 » Qi<*) * <-2^xi » 

F(f)(q> » f e q. 

I f ( x , y ) e R Q then (.2 Q(xXfZQ .-jCy))*-!^ which imp l ies 

( Z o f G ^ o f G ) c R G f ( x , y ) * Conversely, i f ( q , q ) « R G , ( x , y ) f o r •" 

very ( x , y ) e R then q:X —> XQ i s a mapping such that ( x , y ) e 

e R imp l ies (q(x) ,q (y) ) e RQ. Hence q:0—*• G i s a morphism of 

K and q « q <» 1Q » q « Z 0 f 0 « Z 0 f 0 . 

Now, i t i s easy to see that F i s a fa i th fu l faotor. We 

s h a l l prove that F i s f u l l : 

Let h:FCG) —> F(H) be a compatible mapping of G0L(XQ^ RQ) 

and a eX Q . There e x i s t s a unique x e X 0 such that aeX Q x and 

there i s q e x ] T x XQ x such that q(x) * a. Put f (a ) * (h(q))(x)» 

This does not depend on the choice of qf because q-, e 7TX XQ x > 

q^(q) * a implies (qtq-Je RQ x , (h (q) ,h(q 1 )6 Rfl x > (h(q))(x) = 

a (hCq-jJKx). We have obtained a mapping f:XQ-—** Xff such tfcat 
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h(q) « f o q. Let us suppose that (a ,b)e RQ. There e x i s t x,y<s 

£ X such that a e XQ x , b e X G and q^tq^ e ^Ux XG x s u c h 

that q-_(x) == a,q£(y) - b. We have (x ,y) = ( ^ 0 ( a ) , . % 0 ( b ) j € 

C V C ( ^1^2 ) £ R G, (x ,y )» t h ( q i ) f b ( q 2
J e R

H , ( x f y ) ' ^<a) , f (b) )=-

-= ( f q 1 ( x ) , fq 2 (y ) ) * (h (q 1 >(x) , (h (q 1 ) (y)) e RQ. Thus, f : 0 - > H 

i s a morphism of K and F(f) = h . 

Theorem Z. I f K i s a category with O-morphisms and i f 

there e x i s t s a f u l l embedding of K into GRA then there exists^ 

a f u l l embedding of K into GOL. 

Proof: In view of Theorem 1 i t suf f ices to construct a 

f u l l embedding GOL (I)—> GOL for every set I . For the sake of 

s imp l i c i ty we s h a l l d iv ide the construction into two parts : 

1. A f u l l embedding GOL ( I ) — • GOL (3) 

According to T9J, there e x i s t s an oriented graph T =- (I,U) 

which has the parameter set I as an underlying se t such that 

the only compatible mapping of I into i t s e l f i s the ident i ty 

mapping. 

Define F as fo l lows: 

F ( ( X , ( H 1 ) l £ l > X o ) » « ( r - * x 0 . ) x I ) l H x 0 } - , ^t)lso>l)2,x0), 

where ( a , b ) e r * i f f 

e i ther i « 0 , a = ( x , p ) , b s (x ,y)» 

or i * 1, a =s ( x , p ) , b « ( x , q ) , ( p , q ) e U * 

or i as 2f a » ( x , p ) , b s ( y , p ) , ( x , y ) c R •, 

or i » 2 , a * ( x , p ) , b a x 0 , ( x , y 0 ) € R * 

or i -= 2 , a -= x 0 , b a ( y , p ) , ( x o , x ) € R p , 

or i =s 0 , 1 , 2 , a * b ** x , 

for some x ,y£ X - i xQ*, P,q£ I , 
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S (f(x),i) if f(x) is not a loop, 
F(f)((x,i)) =- C 

\ f(x) if f(x) is a loop, 

F(f)(x ) a f(x ). o o 

It is easy to see that F is a faithful functor. Let hr 

:F((X,(Ri),x0))—> F((Y,(Sii,y())) be a compatible mapping- We 

have h(x ) « y . r is an equivalence with the equivalence 

classes -Cxi el, xsX, x4=x and Ax } ; similarly for s . The 

mapping h preserves these partitions. According to the defi

nition of r^i, and the properties of T =- (I,U), there exists 

a mapping f:X—>Y such that 

^ (f(x),i) if f(x)4-yftf 
h((x,i)) = 

h(x) - yn. 
o v o 

'Of 

if f(x) -* yQf 

In view of the definition of r2 , s 2 and the properties of 

the mapping f we know that (x,y)e R implies (f(x) , f(y)) e S • 

Therefore f:(X,(RjL) ,x0)—> (Y(S i),y0) is a morphism of 

GOL (I) such that F(f) » h. 

A full embedding GOL (3)—» GOL 

F ( ( X , ( v i ) i a o f l f 2 f x 0 ) ) « (((JC - - J x 0 U x - [ l f 2 , 3 f 4 } x 4 l f 2 f 3 r 4 ? ) u 

vixj ,R), where (a,b)« R i f there exist x,yeX --fx J such 

that either a » (x , i ,p ) ,b * (x,:j,p),p -=- 1,3 and 

either i » 1, j » 2 , 

or i « 2 , j =* 3 , ^ l s 

or i =- 3, t * 1 , 

or i a e f Jj * 4 , 3^ j<-

or i M J = 3 , 
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or a = (x,i,p),b =* (x,i,q), i = 1,2,3,4 and 

either p=l,3, q = p * l , 

or p =r 2,4, q = p - 1, 

or a s (x,l,l), b = (x,l,3)? 

or a «-= (x,i • 2,2), b = (y,i • 3,4), (x,y!le r± i = 0,1,2, 

or a = (x,i • 2,2), b = xQ, (x,xQ)€ r± i = 0,1,2, 

or a = xQ, b = (y,i • 2,4) (x0,y)e r% i = 0,1,2, 

or a = b ae x^ • o 

* (f(x),i,p) if f(x) is not a leop, 
P(f)((x,i,p)) = C 

^ f(x) If f (x) is a lire*, 

F(f)(x ) = fix). 
0 0 

It is easy to see that P is a faithful functor from 

GOL (3) into GOL. We shall prove that P is full: 

Let h:F((X,Cri),x0))—> P((Y,(Si),q0)) be a compatible 

mapping. 

Given x^X, p = 1,3, the points (x,l,p), (x,2,p), (x,3,p) 

form a cycle and therefore there is y « Y, q = 1,3, u = 0,1,2 

such that either 

h((x,i,p)) a y for i = 1,2,3, '0 
, i 

or h((x,i,p)) ss 
y (y,i • u,q) if i • u . é 3 , 

\ (y,i + u - 3,x) if i • u^3 for i 1,2,3* 

Considering the arrows ((x,2,p),Cx,4,p)) and ((x,4,p), 

(x,3,p)), we can show that 

h((x,i,p)) = yQ for i = 1,2,3,4 in the first case, 

h((x,i,p)) = (y,i,q) for i = 1,2,3,4 in the second case. 

In view of the existence of an arrow ((x,l,l),(x,l,3)) there 

is ysl such that h((x,i,p)) = (y,i,p) for i = 1,2,3,4, p -

= 1,3. Since we have ((x,i,p) ,(x,i,p * l)), ((x,i,p • 1), 
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( x , i , p ) ) c R for i a 1,2,3,4, p =* 1,3, necessarily h( (x , i ,q ) ) = 

» ( y , i , q ) , for i = 1,2,3 ,4, q =. 2,4. 

Therefore there i s a mapping ftX —> 1 such that 

s ( f (x) , i ,p ) if f (x )*y 0 f 
h ( (x , i ,p ) ) * C 

\ y0 i f f(x) -* y0> 

h(xQ) « y o . 

Now, it can be easily seen that f is a compatible mapping 

from (X,(ri),x0) into (Y,Csi),y0) end that h =- F(f). 

2. Eiqbeddj.ng into MON. The next three theorems consti

tute the main results of the paper: 

Theorem 3» Assuming (M)/, a category K is isomorphic to 

a full subcategory of the category of monoids and their homo-

morphisms if and only if it is a concrete category with O-mor-

phisms. 

Theorem 4. If K is either a small category or a catego

ry of universal algebras of a given type and their homomorph-

i9ms then K is isomorphic to a full subcategory of the cate

gory of monoids and their homomorphisms if and only if K has 

O-morphisms. 

Theorem jf« Every multiplicative semigroup with the unity 

and zero elements is isomorphic to a semigroup of endomorph-

isms of some monoid. 

Proof of Theorems 3 - 5. The theorem 5 is an immediate 

consequence of the theorem 4. The "only if" part of the theo

rems 3, 4 follows from the fact that any full subcategory of 

MON ia a concrete category with O-morphisms. 
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Now, we are going to prove the °ifw par t of Theorems 3 , 

4 . I t follows from the assumption of the theorems and from 

C3, 4t #3 (see a l so t 8 j) t h a t K can be f u l l y embedded i n t o 

GRA. 

Since K has O-morphisms, the theorem 2 gives a f u l l em

bedding K—> GOL. Therefore i t i s s u f f i c i e n t to cons t ruc t a 

f u l l embedding of GOL in to MON. I t can be defined as fo l lows. 

Given a graph G = (X,R), which i s an object of GOL, l e t 

M ' ( G ) be a f ree monoid over X = X - ix l t where x 0 i s the 

loop of G, i . e . M ' ( G ) be a s e t of a l l f i n i t e (poss ib ly emp

ty ) sequences of elements of X, the composition in M (G) i s 

given by concatenat ion and the un i ty i s the empty sequence. 

Let •== be t h e smal les t congruence on M (G) such t h a t 

Clai x z y x z •= x z y x z whenever x , y , z €X and 

Cx,y) , ( y , z ) e 1 (note t ha t i t i s x # y and z + x ) , 

( lb) x y x 2 s x y x 2 , whenever x , y e X ' and ( x , y ) , 

(y ,x ) « R (note t h a t x4 -y ) , 

( l c ) z y z s z y z whenever y , z € X ' , and (xQ,y)>, 

Cy ,z )cR (note t ha t y=t=z). 

Put F(G) = M ' ( G V . S . 

A) I t i s evident tha t yP^k x^ for x c X ' , p + q ( e s p e c i a l l y 

x f(r 1) and tha t x , y€ x ' , x s y impl iea x = y . 

B) Let a = x 1 . . . . X k be a word over x ' . Define C(a) to be 

the number of i nd ices i - l , 2 , . . . , k - l such t ha t x ^ x ^ . I t 

i s easy to see t ha t a s b implies C(a) = C(b). Moreover, 

C(a b c ) | C ( a b 2 c) and the equa l i ty holds i f f b = x k , x € X ' , 
2 2 

with a nonnegative integer k. Especially, if a c b a c s 
== a c b2a c then b = x , xeX', k|0. 
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C) Let u,v,weX", p,q,r be natural numbers and one of 

the following equalities hold: 

tea) u V M u 2 V s u p W ^ / ' 

(2b) u ¥ u 2 P 2 u
p v V P , 

iZci w ^ v V s w ^ V * * 

We have to transform the right side of (2) by subsequent 

applications of the equations (1 a,b,c) into the left side 

>f (2). During the application of (l) which changes the expo

nent of v for the f irst time necessarily v « y, 2q ii2 f which 

implies q « 1. 

D) Suppose that u,v,wcX' and one of the following equ

a l i t i e s holds: 

(3a) uw*v u ^ - u w V i A r , 

(3b) uvu2=5 uv2u2, 

(3c) ŵ v w •— w*v w. 

We have to transform the left hand side of (3) into its 

right hand side by means of the equations (l a,b,c). (l b) is 

the only equation which can be applied to (3 b). Thus, u = x, 

v » y and hence (u,v),(v,x0)« R. Similarly in the case (3 c) 

we have (xQ,v)(v,w)e R. If (l q) is applied to (3 a) then u x, 

v s y, t s z and (u,v) ,(v,w) € R. 

If (1 b) is applied to the left hand side of (3 a), then 

either u - v+w, u w v u w * u wH-Tw, which could be e-

quivalent to u w u w if (u,w),(w,x )e R, but no other word is 

equivalent to u w^v u w which is a contradiction, or u -* w » 

» x, v =s y, (u,v) ,(v,x )s R and according to the properties; 

of G we have (v,w) » (v,u)e R. 

Analogously, if (1 c) is applied to (3 a) then u * w = z, 
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v = y , lx
0
,v),Cv,w) e R which implies Cu,v) = Cw,v)cR. 

We have proved that 

C3 a) implies Cu,-v),Cv,w) e R, 

(3 b) implies (u,v), (v,x
Q
)e R, 

C3 c) implies Cx ,v)>Cv,w)eR. 

F can be defined equivalently as a factorization of a free 

monoid MCG) over X by the smallest equivalence ^ defined by 

(4a) x z 3. 2 A/ xz y x z whenever x,y,zeX, Cx,y) Cy,z)c 

Є B , 

Ubï xQ~ 1 

We can refoxnaulate the above re su l t s as fo l lows: 

A ) given x , y e X , x /v y imp l ies x = y, 

B') given words a ,b,c over X, a c b a c ^ ac b a e im

p l i e s that there e x i s t s x c X and a natural number p such that 

b = x P , 

C') given u ,weX, v e . x ' , p , q , r natural, ^ i r v ^ u V ^ / 

~ u V ^ u ^ w * , then q - l f 

J)') given u,w*6X, v c X ' , u w v vrw^n w^v2u w, then 

Cu,v) , (v ,w)c R. 

A compatible mapping f:G —> H can be uniquely extended 

to a homomorphi8m from M(G) into M(H). The extended homomor-

phism preserves congruence and therefore gives r i s e to a ho-

momorphism F(f ) :F(G)—*F(H). I t i s easy to see that F i s a 

functor from GPL into MON. F i s fa i thfu l i n view of A . 

To prove that F i s f u l l , l e t us consider a homomorphism 

h:F(G)-~» FCH). 

Given y « X , there are x , z c X such that ( x , y ) , ( y , z ) e R, which 

imp l ies h(x)ChCz)).2 hCy)(h(x)) 2 hCz) ~ h ( x ) ( h C z ) ) 2 ( h ( y ) ) 2 
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(h(x) ) h ( z ) . In view of B ' , there e x i s t s veX and a n a t u 

r a l number q such that h(y) =- v . S i m i l a r l y , we can show that 

there e x i s t s u , v c X and natural numbers p , r such that b(x) = 

* u p , h(y) -=- v^. Thus i t i s e i t h e r v = yQ and h(y) =- y^ ^ yQ -> 

or v-4=yA and q = 1 . v o 

Therefore there e x i s t s a mapping f:X—-> Y such that 

h(x) r^j f (x) f o r x e X , 

Given ( a , b ) c R , then e i ther f ( a ) =-= f (b) « yQ and f ( a ) f t ( b ) ) e 

€ S, or there are u , v , w c X s u c h that (u, v ) , (vfw) € R and either 

u s a, v a b , f ( b > # y 0 or v « a, w = b , f ( a ) # y 0 . Because 

u i rv u w ~ u r v V w , we have 

f (u) ( f (w)> 2 f ( v ) ( f C u ) ) 2 f ( w ) ~ fCu)(f(w)) , 2 ( f (v)) 2 ( f (u) i 2 f (w . ) 

and i t follows from D ' that (f ( a ) , f (b) i s S . Thus, f:G—>H i s 

a morphism and h » F ( f ) . 
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