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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROilNAE 

23,2 (1982) 

CONSTANT AND VARIABLE DROP THEOREMS ON METRIZABLE 
LOCALLY CONVEX SPACES 

Mihai TURINICI 

Abstract: A maximality pr inc ip l e on quaai-ordered qua
s i -metH!zable uniform spaces, appearing as a common extension 
of both "uniform" Brxkidsted s and "abstract" Br^zia-Browder a 
onea i s used to obtain a number of constant as wel l aa var i 
able drop theorems on metrizable l o c a l l y convex apace*. 

Kev words: Quasi-ordered quasi-metrizab le uniform spa
ce, maximal element, closed mapping, constant drop , support 
theorem, variab le drop, mapping theorem. 

Class i f i ca t ion: Primary 54E35, 54C10, 46A05, 52A07 
Secondary 54C08, 54H25, 47H17 

Let X be a f i n i t e or i n f i n i t e dimensional Banach space. 

For any y i n X and r;>o, l e t S (y ,r ) denote the closed sphere 

with center y and rad ius r . Given x , y e X and r .>o ( r e s p e c t i 

ve ly , given x e X and o^q-< l ) l e t K(x;y,r) (V(x,q)) ind icate 

the subset of a l l combinations Ax+(l-S\ . )z , o - - A . 6 1 , z e 

€ S(y,r)(S(o*qllxli)) and c a l l them the constant (variab le) 

drop generated by x, y and r (x and q) . The fol lowing r e s u l t s 

eatab l iahed by DaneS 112 3 (cf . alao Brandsted [53) and, r e a -

pec t ive ly , by Turinici 128J muat be mentioned as a s tar t 

point of our development*. 

Theorem \ . Let Y be a c losed aubaet of X and l e t y e X, 
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r > o be such that Y is disjoint from S(y,r). Then, to every 

X G Y there corresponds a z c bd(Y) n K(x;y,r) ( here, bd indi

cates the boundary) with the property K(z;y,r) ={zl* 

Theorem 2. Let X-̂  be a closed subset of X and suppo9e q e 

e Lo,l) is 3uch that, for any x + o in X-_ the subset X-̂ E. V(x,q) 

contains more than one point. Then, we necessarily have oeX,. 

As already pointed out by Brdzis and Browder [43 (se« al

so Ursescu [293), the first result - appearing as a non-convex 

extension of the famous Bishop-Phelps' support theorem [3 3 -

represents a very appropriate instrument of the normal solva

bility theory as developed by Pohozhayev £233, Browder £83, as 

well as by Zabreiko and Krasnoselskii 1313* On the other hand, 

as indicated in the above quoted author s paper, the second 

result may be viewed as an abstract variant of a very interes

ting mapping theorem established by Altman [13 and having some 

useful applications to nonlinear programming [23. Taking into 

account these facts, a metrizable locally convex generalizati

on of these contributions may therefore be of interest. It is 

precisely our main aim to state and prove such a couple of ex

tended variants of the above results, the basic tool of our 

investigations being a maximality principle on quasi-ordered 

quasi-metrizable uniform spaces appearing as a common extensi

on of both "uniform" Brandsted's and "abstract" Br^zis-Browder a 

ones. As applications, a metrizable locally convex version of 

the above quoted Bishop-Phelps support theorem and, respecti

vely, Altman s mapping theorems will be given. 

Let X be a nonempty set and let D =- (d^ieN) be a denu-

merable family of quasi-m~-^^ics on X. It is well known that, 
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by the construction 

d a. ..21K1(l/2
i)d./(l + d,) 

-tv e N 1 1 

the structure (X,d) appears as a quasi-metric space (respecti

vely, a metric space in case D is a sufficient family (dj(x,y)~ 

= o, all ieN imply x = y)); for this reason, (X,D) will be ge

nerally termed a quasi-metrizable (respectively, metrizable) 

uniform space. We shall say the sequence (x ;neN) is a D-Cau-

chy one provided that it is d̂ ""Cauchy for any ieN, and D-con-

vergent to x when d^Cx fxi—> o as n—> oo for all ieN (in 

which case we write x — > x ) . Also, ̂  being a quasi-ordering 

(that is, a reflexive and transitive relation) on X, let us say 

the sequence (x ;neN) is monotone if x . ^ x , whenever i^.j, and 

bounded from above provided that x ^y, all neN, for some y in 

X called in this context an upper bound of the considered se

quence. Finally, the element z of X will be said to be D-maxi-

nial when z£y implies d^(z,y) = o, all ieN. 

The following maximality principle will play a central ro

le in the sequel. 

Theorem 3. Let the quasi-ordered quasi-metrizable uniform 

space (X,D,^) be such that 

(i) any monotone sequence in X is both D-Cauchy and boun

ded from above. 

Then, to every x in X there corresponds a D-maximal element z 

in X with x^ z. 

Proof. Of course, without any restriction we may suppose 

D is an increasing family (d. _£d. whenever i^j). We claim the 
-*• J 

following property holds at every x in X 
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(1) for any ieN and © p- o there exists y « y(i, e )> x such 

that d i(y,z)^ e , all z>y. 

Indeed, assume by contradiction (1) were not valid. Then, the

re must be a couple ieN, e- >• o such that, for any y>x, a 

z>y may be found with d..(y,z) > e .It immediately follows 

a monotone sequence (yn;ncN) in X may be chosen with d^(ynf 
yn+l^ z 0 ' a11 n € N > contradicting the first part of (i) and 

proving our claim* In such a case, given x . i n X, it is not 

hard to construct a monotone sequence (x ;ncN) in X with x^x n, 

all neN, and 

(2) neN, y z x n imply dn(xn,y)-< l/2
n. 

By the second part of (i), xn-£ z, all n e N (so, by (2), 

x n — > z ) for some z in X. Clearly, x£z; moreover, again by (2), 

z^y implies xn-2->-y that is, d1(z,y) « o, all ieN, and the 

proof is complete. Q.E.D. 

A partial indication about the power of this maximality 

principle follows from the considerations below. Let (Xfl£) be 

a quasi-ordered set, (X,e,---) a quasi-ordered metric space and 

( 9-f ;ie N) a denumerable family of mappings from X into Y. As 

a first application of Theorem 3, the following "combined" ma

ximality principle may be formulated. 

Theorem 4. Suppose that, for any ieN 

(ii) 9>£ is increasing 

(iii) every monotone sequence in 9^(X) is e-Cauchy 

Then, the following conclusions are - respectively - valid. 

A). Under the assumption: there is a uniformity % on X 

with 
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( i v ) any monotone 2(-Cauchy sequence (x ;n€N) i n X con

verges to some x in X with x .4 x, a l l n e N 

(v) for every U in 01 there e x i s t s i e N and e > o such 

that x£y and e ( 9 i ( x ) , 9 A (y ) ) -^ £ imply ( x , y ) c U 

given any x in X there e x i s t s z in X with x£ z and, in a d d i t i 

on, z ^ y imp l ies ( z , y ) € U, a l l U in QJL • 

B) . Under the supplementary hypothesis 

(v i ) any monotone sequence in X has an upper bound 

to every x in X tnere corresponds an element z in X with x&z 

and, in addition, z - . y imp l ies 9.^(z) =- 9-i(y)> a l l i e N. 

Proof. Let us define a family of quasi-metries D s (d*; 

i e N) on X by 

d . (x ,y ) =- e( ^ ^ ( x ) , 9 i ( y ) ) , a l l x , y e X . i e N 

and l e t (x ;n€N) be a monotone sequence in X. By ( i i ) + ( i i i ) , 

the f i r s t part of ( i ) w i l l be es tab l i shed . I t remains only to 

prove ( iv) • (v) lead us to the second part of ( i ) (because, 

by ( v i ) , t h i s assert ion i s t r i v i a l ) . To t h i s end, l e t U in 21 

be arb i trary f ixed and l e t i € N, e ^ o be introduced by ( v ) . 

From the above conclusion about our sequence, there e x i s t s 

n * n ( i , e ) € N such that d^(x ,x ) ** e , a l l p , q e N, n£ p ^ q 

so (again invoking (v) ) (x ,x ) € U , a l l p , q ^ N , n .^p^q , prov

ing (x ;neN) i s a monotone 'Zt-Cauchy sequence and completing, 

by ( i v ) , our argument. Consequently, in e i ther case Theorem 3 

appl ies . Q.E.D. 

Let (X,D) be a quasi-metrizab le uniform space. A func t i 

on «p:X—> H w i l l be said to be D-isc (use) provided that , for 

any sequence (x n ;n€N) in X and any couple x c X , t e R , r e l a t i 

ons xn-?--->x and <f(*n) -* t ( 2 t ) , a l l n c N , imply < y ( x ) ^ t ( - ? t ) . 
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Also, (X ,D ) being another quasi-metrizable uniform space, 

we shall say the mapping T:X—> x' is closed when xn-=-~> x and 

Tx n—-> x' imply Tx =* x'. Suppose in what follows (X,D) and 

(X ,D ) are complete quasi-metrizable uniform spaces and T: 

:X—•> x' is a closed mapping from X into x'. Let us introduce 

a new denumerable family of quasi-metrics E = (e^jicN) on X 

by the convention 

ei(x,y) = max (di(x,y) ,d^(Tx,Ty)), x,yeX, i c N 

In t h i s case, as a second app l icat ion of Theorem 3 , the fo l low

ing "operator1* maximality pr inc ip l e may be formulated 

Theorem 5. Let the denumerable famil ies ( <p±;i£W) and 

( Y ^ i e N ) of functions from X into R be such that 

( v i i ) cy± and Y± a r e E "l sc and bounded from below, for 

a l l i € N . 

Then, to every x in X there corresponds an element z in X such 

that (a) d jL(x,z) 4 <?±(x)- <?±(z)t d^(Tx,Tz) £ ^ ( x ) - y±lz), 

i € N , (b) for any y in X with d±(z9y) £ g>±(z)- 9±(y)$ 

d± (TzfTy) £ ^ ( z ) - Y±(yh i € N, we necessari ly have d±(zty)~ 

« o f d±(TzfTy) a o, a l l i € N. 

ProQf. Let us define a quasi-ordering £ on X by 

x£y i f and only i f d±(xty) £ ^ ( x ) - $>±(y) f and 

d^(TxfTy) ^ y±(x)- Y±(yh a l l i € N 

and l e t (x n ;n£N) be a monotone sequence in X, that i s 

d i ( x n» x m ) * » ± ( x n } - »i(*«>"» d i ( T x n» T x m ) * T±^n
)' 

" ' / i ( x m'» a 1 1 n ' m c Nf n*m> a 1 1 *^ N » 

F irs t ly , as ( <f±(x ) ;n€N) and ( t j^ (x n ) ;n€N) are decreasing 

sequences (hence, by the second part of ( v i i ) , Cauchy sequen

ces) in R for a l l i « N, i t immediately follows that (x R ;nsN) 
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and (Txn;ncN) are D (D')-Cauchy sequences in X (x') or, in ot

her words, that (x ;neN) is an E-Cauchy sequence in X. Second

ly, by completeness hypotheses, x R — > x and Txn---~->.x' for some 

x € X, x € X' and this gives (by closedness hypothesis) Tx =- x' 

that is, x — > x in which case, from the preceding relation we 

get (by a limit process combined with the first part of (vii)) 

di(xn,x) .* 9i<* n)- 9 i(x), d^(Txn,Tx)^ Ti
( xn }- Ti<x> t 

all neN, ie N 

proving x ^ x , all neN. Consequently, Theorem 3 again applies 

(with D replaced lsry E) and the proof is finished. Q.E.D. 

Concerning the first of these applications, it must be no

ted that, in case Y^= R, e = the usual distance in R and -£ the 

usual dual ordering on R, Theorem 4(B) - reductible to a previ

ous author's result 126J - appears as a sequential version of 

Br^zis-Browder's ordering principle C4J, while Theorem 4(A) as 

a sequential extension of a similar Brjdndsted s maximality 

principle [53. At the same time, the second of these applica

tions - refining Theorem 2 of the above quoted author s paper -

may be viewed as a Mdenumerable" variant of a related Downing— 

Kirk's result [133 (see also Turinici [273) as well as (under 

the assumption T is the identity mapping) of a variational ty

pe Ekeland/ s result [14, 15, 163 or, equivalently, - after 

Br^ndsted's pattern C63 - of the fixed point Caristi-Kirk's 

theorem [10, 19J (see in this direction Kasahara [18J, Browder 

[93, Wong [303 , Pasicki I22J, Siegel [243, Turinici [25 3, 

Br^ndsted [73 for a number of interesting new viewpoints con

cerning this problem) so that, our initial maximality princip

le extends all these contributions. 
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In what follows, a precise statement of the results an

nounced in the introductory part of the note will be perform-

td. Let X be a metrizable locally convex space whose topology 

it generated by the denumerable sufficient family of seminomas* 

D at ( I • Ij^icN). For any y in X and any r = (ri;ieN) in R
N 

with :r.|> o, icN, let B(y,r) denote the subset of all z in X 

with l a r - i l . ^ r^, U N ; also, given any x in X, let K(x;y,r) 

indicate the subset of all combinations .A x*( 1-A,) z, o-f=^^l, 

i€B(y,r), and call it the (constant) drop generated by x, y 

and r# Clearly, B(y,r) is a closed convex subset of X and so 

it K(x;y,r); indeed, let (un =- &n% • (1-A,n)vn;ne N) - for 

sowe (&n;ncN) in lIot13 and (vn;ncN) in B(y,r) - be such that 

» J->u for some u in X then (observing that, without loss of 

generality one may suppose A,n4-1, ne N and 3-n—> A # l) vn= 

* (u^ -^nx)/(l- An)-=?^(u- ./tx)/(l-Jl )eB(y,r) proving our 

assertion. Suppose further (X,D) is a complete metrizable lo

cally convex space. Then, as an interesting application of our 

initial maximality principle, the following (constant) drop the

orem can be derived. 

Theorem, 6. Let the closed subset Y of X, the element y in 

X and the vector r » (r^jicN) in R with r ^ o , i€N, be such 

that Y is disjoint from B(y,r). Then, to any x in Y and any 

s » (sjjicN) in R with ô ŝ -crr.̂ , ic N, there corresponds a 

8 » i(x,e) in bd(Y)nK(x;y,s) with YHK(z;y,s) = iz\. 

£&&&£• Lot 6 denote the ordering on Y defined by 

w4» if and only if veK(u;y,s) 

(tht foot that «t is actually an ordering is an Immediate con-

ttqutnoe of our contentions). Given x in Y arbitrary fixed, let 

WO put fti » l-c-yl̂ t icN; also, denote by oC± the I • ..j-dis-
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tance between y and Y ( c l e a r l y , O C ^ P ^ f o r an ± e N. Now, 

l e t u, v in Y be such that x ^ u * v . As u,v € K ( x ; y , s ) , i t c lear

l y follows l u - y l ^ l v - y l t ^ fi± + a i f a l l i £ N . On the other 

hand, as u^v means v » ^ u + ( l - ^ ) f f0r a o m e 0 *. x £. 1, w £ 

£ B ( y , s ) , one has 

I v - y i ^ A l u - y l i • ( l - ^ ) I w - y l ^ X\ u-y l± • ( l - A ) a l f i € N 

and th is immediately gives (by the above re la t ions ) 

( l - A K c C j - s ^ . * ( l - A H l u - y l ^ - s ^ l u - y ^ - I v - y ^ , i € N 

Final ly, again from the re la t ion between u and v 

l u - v l i ^ ( l - A ) l u - w l i ^ ( l - A ) ( fi± • 2 8 ^ , i € N 

s o , combining with the preceding one 

l u - v l ^ U ^ i-«-2s i)/CoC i"-s i))Clu-yI i - I v - y ^ ) , i € N 

proving condition (i) of Theorem 3 will be satisfied (witn X 

replaced by Y) and completing the argument. Q.E.D. 

Again let Y be a closed subset of X, with a nonempty boun

dary bd(Y). We shall say xebd(Y) is an essential point of X 

provided that, given any neighborhood V of x there exists y in 

V and r * (r^icN) in RN with r ^ o , i£N f such that V.oB(yfr) 

and YnB(y,r) =- #; the subset of all such points will be term

ed the essential boundary of Y and denoted by Bd(Y). Also, % 6 

e bd(Y) will be called a support point of X when the element y 

in X and the vector r * (r^icN) in R with r ^ o, icN f mar/ 

be found with YnB(y,r) «- 0 and YnK(z;y,r) »-fis"J; the subset 

of all points having such a property will be denoted by Sp(X)v 

Now, as a direct consequence of the above result, the following 

"sequential" support theorem can be stated end proved. 

Theorem 7. Let Y be a closed subset of X having a non-
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empty essential boundary (hence, a nonempty boundary). Then, 

the subset of all support points is nonempty too, and dense in 

the essential boundary. 

Proof* Let x be an arbitrary point of Bd(Y) and let V be 

a neighborhood of x (of course, without any loss one may suppo

se V is closed and convex). By the definition of the essential 
/ \ N boundary, there exists y in X and r = (r^jieN) in R with r.,>-

> o , i £ N, such that Vr?B(y,r) and YnB(y,r) * 0. By the above 

theorem, given s = (s.jieN) in R with o-Oa-^r^, icN, a z = 

* z(x,s) in bd(Y)n K(x;y,s) may be found with YnK(z;y,s) = *fzj. 

Clearly, zcSp(Y); moreover, V3B(y,r) implies z cV and this 

ends our argument. Q.E.D. 

Regarding the elements involved into the above statements, 

some remarks are in order. Firstly, it is clear that, in case 

D reduces to a single element (that is, in case (X,D) becomes 

a Banach space) these results coincide with Theorem 1 and, res

pectively, the Bishop-Phelps support theorem quoted in the in

troductory part of the note. Secondly, as remarked by Holmes 

[17, ch. Ill, § 203 it is possible to construct closed subsets 

Y of X having no support points (hence no essential points) 

and this shows that, generally, the conclusion of Theorem 7 has 

a "relative" character (modulo the assumption Bd(Y) is not emp

ty in case bd(Y) is such) in contrast to the "effective" charac

ter of the normed case (where Bd(Y) coincides with bd(Y)). Fin

ally, it should be noted our statements may be put, without ma

jor changes into a "pure" metrizable uniform framework, by the 

use of a well-known Kuratowski s embedding procedure 121, ch. 

II, § 153; a detailed version of such a development will be gi-

- 392 -



ven elsewher*. 

Suppose in what follows Y is a complete metrizable local

ly convex space under the denumerable and sufficient family of 

seminorms D'= ( I- l^ieB). Given any x in Y, let lxl denote 

the vector (Ixl^i £ N); also, letting q = (q^icN) in RN with 

o ^ q ^ l , ieN, let us put V(x,q) = K(x;o,qlxl) and call it 

the variable drop generated by x and q. Now, as a useful ap

plication of the operator maximality principle we expressed be

fore, the following variable drop theorem can be derived. 

Theorem 8. Let Y, be a closed subset of Y having the pro-

perty: there exists q ~ (q-jieN) in R with o^-qi<rl, 1<=N, 

such that, for any y in Y* distinct from o, the intersection 

T . ,nV(y,q) contains more than one point. Then, we necessarily 

have oeY* (o is an element of Y,). 

Proof. Let u, v in L be such that veV(u,q); then, v = 

= Jtu • (1- A)w for some o-£ A <£• 1, weB(o,qlul) so that 

I v I ^ A l u ^ + (1-A)qiluli> ieN 

or, equivalently, 

(l-A)(l-q1)|u ±U\u ±\ - IVIJL, ieN 

At the same time, again from the relation between u and v 

lu-vl^ (l-A)(l+qiJ|uli , icN 

so, combining with the preceding one 

I u - v l i . 6 ( ( l * q 1 ) / ( l - q i ) ) ( l u l i - \v\±), i£N 

proving all conditions of Theorem 5 hold (with X = Y, , D = D' 

and T = the identity mapping). Consequently, given x in Y, , 

there exists z in Y^ satisfying conclusions (a) -*• (b) of that 

result and this necessarily implies z = o because, otherwise, 

the hypothesis we accepted about the nonzero elements of Y^ 
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would oontradict the conclusion (b). Q.E.D. 

KB an i-.mediate consequence of this result, we have 

Theorem 9. Let X be an abstract set and T a mapping from 

X into Y with T(X) closed in Y. Suppose there exists a vector 

q a (q1;ieN) in R with o ^ q . ^ 1 , icN, such that, for any x 

in X with Tx%o, a xc X may be found with Tx + Txe V(Tx,q). 

Then, Tz = o for some z in X. 

A simple inspection of this result shows the essential 

property of the mapping T we used here is the closedness of 

its range T(X). It would be interesting to know whether this 

condition may not be replaced by the closedness of its graph 

<?,-, « ((x,Tx);x€X) in case we suppose X is endowed with a qua-

si-metrizable uniform structure D =- (d1;icN). In this direc

tion, as a completion of the preceding statement, we have 

Theorem 10. Let the complete quasi-metrizable uniform 

space (X,D) and the closed mapping T:X—> Y be such that a 

q » (q-i.ie N) in RN with o ^ q ^ l , i e N and a r = (r^ic N) 
N i n R with r 1 > o , i e N may be found with the proper ty : fo r any 

x in X with Tx4=o t he re e x i s t s x i n X with Tx=j-Tx€ V(Tx,q) and 

d 1 ( x , x ) ^ r 1 I Tx - T x / i f i c N . Then, the equat ion Tx « o has 

at least a solution in X. 

Proof. By the above developments it follows that, x and 

x given as before 

d1(x,x)^(ri(l^qi)/(l-qi))(lTxli - iTx!.,), ieN 

lTx-Txli^((l+qi)/(l-qi))(iTxljL - iTxf.,), i€N 

As Theorem 5 again applies, it follows that, given x in X a 

corresponding z in X may be found with the properties (a) •*-
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• (b)> of t h a t r e s u l t . Suppose Tz-Jro then , by the hypotheses 

we adopted, t h e r e e x i s t s 2" i n X with Tz +TST€V(Tz,q) and 

d . ( z , z* ) - r r . 1 T z - T z L , U N so t h a t , by the above r e l a t i o n s , 

(b) w i l l be c o n t r a d i c t e d . Therefore , n e c e s s a r i l y , Tz = o and 

the r e s u l t fo l lows . Q.E.D* 

From a t e c h n i c a l viewpoint , i t i s now evident t h a t , i n 

case (Y,D ) reduces to a Banach space , Theorems 8 and 9 r e d u 

ce to Theorem 2 and, r e s p e c t i v e l y , Altman's mapping theorem 

[1J (see a l so Kirk and C a r i s t i T20]) ; moreover, i n case (XfD> 

reduces to a complete met r ic space , Theorem 10 may be i d e n t i 

f i ed with another Altman s mapping theorem (see the above r e 

ference as wel l as Downing and Kirk f l 3 3 ) . On the o ther hand, 

as pointed out by these au tho r s , t h e i r con t r i bu t ions extend a 

s im i l a r Browder s one E8.1 s o , the same conclusion may be f o r 

mulated about our s t a t e m e n t s . F i n a l l y , i t must be noted t h a t , 

by the same procedure as tha t used he re , one may s t a t e and 

prove a wdenumerablew va r ian t of some recen t con t r ibu t ions i n 

t h i s d i r e c t i o n due to Cramer and Ray L123(see also Altman 121); 

a development of these arguments w i l l be done in a forthcoming 

paper. 
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