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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,3 (1982) 

SELF-DUAL SÜBNORMAL OPERATORS 
G . J. MÜRPHY 

Abstract : A cha rac t e r i za t ion of se l f -dua l subnormal ope
r a t o r s i s given, and t h i s cha rac t e r i za t ion i s shown to give 
quick proofs tha t ce r t a in c lasses of operators consist of se l f -
dual subnormal opera to r s . 

Ke.v words: Self-dual subnormal operator 

C la s s i f i ca t ion : 47B20 

Recall that a subnormal operator i s the r e s t r i c t i o n to an 

invar iant subspace of a normal operato r (3II operators are un

derstood to be bounded l inea r operators defined on Hilber t spa

c e s ) . Every subnormal operator has a minimal normal extension 

N, and N i s unique up to un i t a ry equivalence 12J. Suppose then 

S i s a subnormal operator on a Hilber t space H and N i s a nor

mal operator on a Hilber t space K »̂H such tha t N i s the mini

mal normal extension of S. Then r e l a t i v e to the decomposition 

K = H®H of K, N has operator matrix 

N = ( 0
S ?*)• 

Now if S is a pure subnormal operator (i.e. S has no nonzero 

reducing subspace on which it is normal) then T is unique up 

to unitary equivalence and is called the dual of S (see, ̂ or 

example,[1]). S is said to be self-dual if S is unitarily 
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equivalent to i t s dual T. 

I t i s convenient to make the following d e f i n i t i o n - an ope

r a t o r S i s pure i f S has no non-zero reducing subspace on which 

S i s normal. 

,Ve now give a simple cha rac te r i za t ion of se l f -dua l subnor

mal operators which e l iminates reference to the minimal normal 

extension. 

[X,Y] denotes the commutator XY - YX for operators X and Y. 

Theorem 1. Let S be a pure operator on a Hilber t space H. 

Then S is a se l^ -dua l subnormal operator i f and only i f t he re 

e x i s t s a normal operator A on H such that 

IS*,S3 = AA* and AS « S*A. 

Proof: Suppose f i r s t that S i s a se l f -dua l subnormal ope

r a t o r and 

* B (o T») 

is its minimal normal extension on H © H. Then for some unita

ry operator U on H, T = USU* . But the equation NN* = N* K im

plies 

/ SS* • XX* XT \ / S* S S* 

^ T* X* T* T -

\ ( S*S S* X \ 

? / ^ X* S X* X + TT* * 

Hence [S*,S] = XX* , XT = S* X and [T*,T] = X*X. 

7/e define A = XU. Then X a AU* , and AS = XUS(U* U) = 

= (XT)U = (S* X)U = S* A, i.e. AS = S*A. Also [S*,S] » XX*: 

= AU*(AU*)* = AA* . Finally A is normal, because 
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«*A * (XU)*XU 

m U*X*XU 

» U*[T*fT]U 

» u*Uusu*)*usu* - usu*(usu*)*)u 
• u*(us*su* - uss*u*)u 
* is*fsa 
* AA* 

Now to prove the converse, suppose we are given a normal 

operator A such tha t lS* fS3 » AA* and AS =- S*A, and w e ' l l 

show t h i s implies S i s a s e l f -dua l subnormal opera tor . 

Put 

• U S*) ,o s*/ 
Thus N i s an opera tor on H© H, and some t r i v i a l matrix cal~ 

cu la t ions show 
/ S*S S*A \ 

N*N 
\A*S A*A*SS*/ •c 
/SS*+AA* AS \ 

NN* -
VS*A* S*S! 

So from the relations rs*fSl » AA* and AS « S*A we deduce that 

NN"* = N*Nf i.e. N is normal. Thus the proof will be concluded 

if we show N is the minimal normal extension of S. 

Supposing it is not, we derive a contradiction: 

(For notatlonal convenience let K denote the space on 

which NT acta and regard H as a subs pace of K, so that K = 

» H © H X . ) 

Now as N is not the minimal normal extension there exists 

a proper subspace If of K which reduce? N, and If contains H 
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but i s not equal to H. Thus WM, the r e s t r i c t i o n of N to M, i s 

normal • 

Now K = E<S> H 1 ^ (H© M €>E) © MX= M®MX . 

Thus r e l a t i v e to the decomposition K = H © ( M e H) © M1 , IT has 

operato r matrix 

/s xx ox 

N = 0 X2 0 

^ o o n2/ 

and relative to the decomposition K = M © M , N has operator 

matrix 

N, 0 
N = [ X 

N, 

Also since M is reducing for N, we must have N^, N2 normal. 

But we can also identify the operator matrix of N relative to 

the decomposition K = H © (M © H) © M 1 as 

/s xx 0\ 

- I : (••)/ 
Hence ident i fy ing corresponding submatrices of the above 3 x 3 

operator matrices we deduce that 

( X7 0 
S* = 2 

V 0 N 2 

relative to the decomposition (M© H) © M . 

Thus S* a X2 Q N 2 on the space (M © H) © M
1 = H 1 , and hence 

S = Xj © Nj*. This implies S is normal on the reducing subspace 

M (since N2 is normal) and hence M = 0 by the purity of S. 

Thus M = K, a contradiction. Q 
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Coro l lary 1. If S i s a pure hyponormal operator and 

[ S * , S 3 1 / 2 S = S*[S*,S3 1 / 2 then S i s a se l f -dua l subnormal ope

r a t o r . 

Proof: Take A = [ S * , S 3 1 / ? . 

Coro l lary 2 . I f S i s a pure isometry, S i s a ae l f -dua l 

subnormal opera to r . 

Proof: S* S = 1 impliee [S*,S3 =- 1 - SS* i 3 a p r o j e c t i 

on, whence [ S * , S 3 1 / 2 = 1 - SS* . Thus [S* ,S3 1 / 2 S = ( l - SS*)S = 

= 0 = S*(l - SS*) = S * [ S * , S ] 1 / 2 . The r e s u l t now follows by ap

plying Coro l lary 1. • 

Coro l lary 3 . A pure quasinormal operator S i s a s e l f -dua l 

subnormal opera to r . 

Proof: S has a commuting po lar decomposition S = U(Sl= 

= 1S1U, and as S i s pure U i s an isometry. Now U*lS| = ISlU* 

a l s o , so S*S - SS* = U*JSlUlS\ - U\S\U*\S\ = \S\2(U*U - UU*) = 

= l S l 2 ( l - UU*). Hence [ S * , S 3 1 / 2 = i S K l - UU*). 

We conclude [ S * , S 3 l / 2 S = lSl(S - UU*S) = lSl(S - UlSl) = 

» ISKS - S) = O, and so a l so S*[S*,S3 1 / 2 = 0 . Q 

Remarks. One could general ize Coro l lary 2 by s t a t i n g tha t 

i f S i s a pure opera to r , [S*,S3 i s a p ro j ec t ion , and [S*,S3S = 

» S*[S*,S], then S i s a ae l f -dua l subnormal operato r . 

The r e s u l t s in Co ro l lar ies 2 & 3 are not new, see [13 fo r 

example. 

The condit ion given in Corollary 1 i s not a necessary con

d i t i o n on an a r b i t r a r y pure operator that S be a se l f -dua l sub

normal. In [13 i t ±r «hown th^t the u n i l a t e r a l weighted sh i f t 
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S with weights? (1 /4 , 1 , 1 , 1 , . . . ) i s a se l f -dual subnormal ope-

rator. But S does not sa t i s fy the condition [S*,S3X /* S » 

* S * [ S * , S ] 1 / 2 . This i s because S*S - SS* i s the diagonal ope

rator with diagonal sequence ( 1 / 4 , 3 / 4 , 0 , 0 , . . . ) , and hence 

[ S * , S ] 1 / 2 i s diagonal with sequence (1 /2 , j ^ , 0 , 0 , . . . ) » Thus 

[S*,S] 1 / 2 S e 0 = C S * , S ] 1 / 2 e-,/4 * ^ 1 ^ 0 a n d s * [ S * , S ] 1 / 2 e 0 » 

= 0 (here as usual «0t«^>S2»**# denote the orthonormal basis 

for the Hilbert space) . Hence t S * , S ] 1 / 2 S + S ^ S ^ S ] 1 ^ 2 . 

He conclude with a new characterization of the pure hypo-

normal operators which are se l f -dual subnormal operators. 

Theorem 2 . Let S be a pure hyponormal operator on the 

Hilbert space H. Then S i s a se l f -dual subnormal operator i f 

and only i f there i s a unitary operator U on H such that 

U t S * , S ] l / 2 S * S * t S * , S ] 1 / 2 U 

and U t S * , S ] l / 2 » t S * , S ] 1 / 2 U. 

Proof: Suppose f i r s t l y that S i s a se l f -dual subnormal* 

Then by Theorem 1 there i s a normal operator A on H such that 

AS a S*A and tS*,S] » AA* • Now we can polar decompose A * 

* UlA * |AlU where U i s a unitary. 

Hence AA* * 1A\2 * tS* ,S] implies 1A 1 » t S * , S ] 1 / 2 . Also 

AS = S*A imp l ies U t S * ^ ] 3 7 2 S * S * t S * , S ] 1 / 2 U. 

Conversely i f we suppose that a unitary operator U ex i s t s 

for which U t S * , S ] 1 / 2 S » S * t S * f S ] 1 / 2 U and U t S * , S ] 1 / 2 • 

* t S * ^ ] 3 7 ' 2 U, we simply put A » U [ S * f S ] 1 / 2 and find that 

tS*,S] » AA*f As * S*A, and A i s normal. Thus by Theorea l f S 

i s a se l f -dual subnormal operator. O 
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