Commentationes Mathematicae Universitatis Caroline

František Katrnoška
 On the representation of orthocomplemented poses

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 3, 489--498

Persistent URL: http://dml.cz/dmlcz/106170

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE REPRESENTATION OF ORTHOCOMPLEMENTED POSETS František KATRNOšKA

Abstract

The possibility of the representation of orthomodular orthoposets is discussed in [3],[4],[7] Klukowski [4] used the notion of ultrafilter, which has been introduced by 0. Frink [2], for any poset and proved the theorem of Sto nean type for Boolean weakly orthomodular orthoposets. In this paper the notion of an M-base defined by A.R. Mariow [5] 1s used as a convenient tool for the construction of the representation of orthocomplemented poset. Some consequences of the representation theorem are deduced.

Key mords: Poset, Boolean algebra, ultrafilter of Boolean algebra, Stone space and related topological notions.

Classification: $06 \mathrm{AlO}, 06 \mathrm{EL5}, 54 \mathrm{HLO}$

§ 1. Basic notions and definitions

Definition 1 [3]. An orthocomplemented poset is a partially ordered set ($P, \leqslant, 0,1,{ }^{\prime}$) containing a universal lower bound 0, a universal upper bound 1 , and having a unary operation $: P \longrightarrow P$ called orthecomplementation which for any $a, b \in P$
satisfies
(i) $a \leqslant b$ implies $b^{\circ} \leqslant a^{\circ}$
(ii) $\left(a^{\prime}\right)^{\prime}=a$ for each $a \in P$
(iii) $\wedge a^{\circ}=0$ and $a a^{\prime}=1$, $a \in P$.

The elements $a, b \in P$ are said to be orthogonal if $a \leq b^{\circ}$. We shall write then $a \perp b$. In a contrary case, i.e. if $a \neq b^{\prime} f o r a, b \in P$, we shall call a, b mutually non-orthogonal, and then we write af b. - 489 -

Dapinition_2. Let ($P, 4,0,1,{ }^{\circ}$) be an orthocomplemented paet. A nomempty subset $\emptyset \neq M \subset P$ is said to be an N-set of P, if for any $a, b \in M \quad \notin b$ holds. The N-set $M_{0} \subset P$ is a maximal N-ast, if there is no such N-set $M \subset P$ that $M_{0} \subset M, M_{0} \neq M_{\text {. }}$

Proposition.1. If $\left(P, \leqslant, 0,1,{ }^{\prime}\right)$ is an orthocomplemented poset, $p \in P, p \neq 0$, then there exists such a maximal N-set $M \subset P$, that $p \in M$.

Proof: It is obvious that $A=\{p\}$ is an $N-s e t$. Let X be the set of all N -sets of P containing the element p . X is partially ordered by inclusion. Let $\left\{M_{\alpha}\right\}_{d \in S}$ (S - the set of indexes) be a chain in X. The set $D={ }_{\alpha} U_{S} M_{\alpha}$ is also an N-set. The validity of the proposition is then a consequence of Zorn's lemma.

Dafinition 3. Let ($\left.P_{1}, \leqslant, 0_{1}, 1_{1},{ }^{\prime}\right),\left(P_{2}, 3,0_{2}, 1_{2}, *\right)$ be two orthocomplemented posets. A mepping $f: P_{1} \longrightarrow P_{2}$ is called an orthonorphism, if
(1) $a, b \in P_{1}, a \leqslant b$ implies $f(a)=f(b)$
(ii) $f\left(a^{\prime}\right)=[f(a)]^{*}$ for each $a \in P_{1}$
(iii) $f\left(O_{1}\right)=O_{2}$

An orthomorphism $f: P_{1} \longrightarrow P_{2}$ which is bijective, and such that the inverse mapping $\mathrm{f}^{-1}: P_{2} \rightarrow P_{1}$ is also on orthomorphism is said to be an orthoisomorphism. We shall call then the posets P_{1}, P_{2} orthoisonorphic.
82. M-bases and their characterization. The notion of Mbase was introduced by A.R. Marlow [5] for logics. Without any modification we can use the definition of M-base also for orthocomplemented posets.

Definition 4 [5]. Let ($P, \leq, 0,1$, ') be an orthocomplemented poset. The non-empty subeet $\emptyset \neq B \subset P$ is called an M-base of P, if
(i) $1 \in B$
(ii) $\left\{p, p^{\prime}\right\} \cap B \neq D$ for each $p \in P$
(iii) If $p \in P, q \in B, q \perp p$ then $p \notin B$.

Lemma 1. Let ($P, \leq, 0,1,{ }^{\prime}$) be an orthocomplemented poset, then the following conditions are equivalent:
(a) The set $B \subset P$ is an M-base of P
(b) The set $B \subset P$ satisfies the conditions

I $p \in B, p \leqslant q$ implies $q \in B$
II card $\left[\left\{p, p^{\prime}\right\} \cap B\right]=1$ for each $p \in P$
(c) B is a maximal N-set.

Proof: $\quad(a) \Longrightarrow(b)$
(b) I Let $p \in B, q \in P$ and $p \leqslant q$. Since $p \leqslant q=\left(q^{\prime}\right)^{\prime}$, we get $p \perp q^{\prime}$. Now (ii), (iii) of Definition 4 implies $q^{\circ} \neq B$. Therefore $q \in B$.
(b) II follows immediately from (ii) and (iii) of Definition 4.
(b) $\Rightarrow(c)$. Assume that the set $B \subset P$ satisilies (b) I, (b)II, and let $p, q \in B$. Then $p \nmid q$. Indeed, if $p \leqslant q^{\circ}$ then (b)I would imply $q^{\prime} \in B$, which contradicts (b)II. We prove that B is a maximal N-set.

Let B_{1} be such an N-set in P that $B \subset B_{1}, B \neq B_{1}$. If $p \in B_{1} \backslash B$, then by (b)II we should have $p^{\prime} \in B \subset B_{1}$. But this last argument contradicts the fact B_{1} being an N-set. The validity of (c) is now established.
$(\mathrm{a}) \Rightarrow(\mathrm{a})$. Let $\mathrm{B} \subset \mathrm{P}$ be a maximal fret. We shall show that B satisfies (i) - (iti) of Definition 4.
(1) For each $p \in B, p \neq 0$ whave $1^{\circ}=0<p$. Therefore $p \nvdash 1$. The maximality of the N-set P implies $1 \in B$.
(ii) Let $p \in P$, and assume that $p \notin B, p^{\prime} \notin B$. Maximality of the N-set B implies the existence of such elements $q_{1}, q_{2} \in B$ that $p \perp q_{1}$ and $p^{\prime} \perp q_{2}$. From this it follows $q_{1} \perp q_{2}$-a cont radiction. Now it can be easily seen that for each $p \in P$, card $\left[\left\{p, p^{\prime}\right\} \cap B\right]=1$.
(iii) Let $p \in P, q \in B$ and $q \perp p$. Then $p \notin B$ because B is an H-set.

Corollaty. Let ($\mathrm{P}, \leq, 0,1,{ }^{\prime}$) be an orthocomplemented pom set. If $p \in P, p \neq 0$, then always such an M-base B exists in P, that $p \in B$.

Proof: evident.
Remerber that if (p, \leqslant) is a poset, $p, q \in P, p \leqslant q$, then $\langle p, q\rangle=$ $=\{x \in P \mid p \leqslant x \leqslant q\}$.
The following lemsa shows a method how to construct naw m-bases from a given one.

Lemma_2. Let ($P . \leq, 0,1,{ }^{\prime}$) be an orthocomplemented poset, B_{0} an M-base of $P, p \in P \backslash B_{0}, p \neq 0$. Then the set $B_{1}=$ $=\left(B \backslash\left\langle 0, p^{\prime}\right\rangle\right) \cup\langle p, 1\rangle$ is an M-base containing p.

Proof: Follows immediately. It suffices to verify the validity of conditions (b)I, (b) II of Lemma 1 for B_{1}.

Gorollary. If $\left(P, \leqslant, 0,1,{ }^{\prime}\right)$ is a Boolean algebra, then each ultrafilter of P is an M-base in P_{*}

Proof: evident.

But the contrary assertion may be falsa.
Proposition 2. Let ($P, \leq, 0,1$, ') be such a Boolean algebra that card $B \geq 8$. Then P contains on M-base, which is not on witrafliter.

Proof: Let B_{1} be any M-base in P. Firat of all we shall show that we can always find such elements $p, q \in B_{1}$ for which $p \neq q, q \neq p$. Suppose, on the contrary, that for every $p, q \in B_{2}$ holds either $p \leq q$ or $q \leq p$. Because card $B_{1} \geq 4$ must such $p_{1} \in B_{1}$, $1=1,2,3$ exist that $p_{1}<p_{2}<p_{3}<1$. Now let us take the element $a=p_{3} \wedge p_{2}^{\prime}$. Then $a \leq p_{2}^{\prime}, p_{2}^{\prime} \notin B_{1}$ and it follows that $a \notin B_{1}$ 。 Therefore $a^{\prime} \in B_{1}$. But $a^{\prime}=\left(p_{3} \wedge p_{2}^{\prime}\right)^{\prime}=p_{3}^{\prime} \vee p_{2}$. The fact that neither $p_{3}^{\prime} \vee p_{2} \leqslant p_{3}$ nor $p_{3} \leq p_{3}^{\prime} \vee p_{2}$ contradicts the assumption about B_{1}.
Now let B_{0} be an ultrafilter in P. By Corollary of Lemma $2 B_{0}$ is an M-base. Let further p, q be such elements of B_{0} that $p \notin q$, q 米 p. Then $p \wedge q \neq 0, p \wedge q \in B_{0}$ because B_{0} is a proper filter. Lemma 2 implies that $B_{1}=\left(B_{0} \backslash\langle 0, p \wedge q\rangle\right) \cup\left\langle(p \wedge q)^{\prime}, i\right\rangle$ is an M-base in P. But $p \wedge q \notin B_{1}$ although $p, q \in B_{1}$. Therefore B_{2} is not an ultrafilter in P. This completes the proof.

Remarc. With little modifications one can prove an analogical proposition for the somcalled Boolean orthomodular orthom posets. In this case the ultrafilters are considered in the sense of Frink's definition [2].

§ 3. Representation theorem for orthocomplemented pagate

Notations. Let ($P, \leq, 0,1$, ") be an orthocomplemented poeet and denote by $M(P)$ the set of all M-bases in P. If $p \in P, p \neq 0$ put $Z(p)=\{B \subset M(P) \mid B \supset p\}$ and let $Z(0)=$. Finally we put
$Z(M(P))=\{Z(p) \mid p \in P\}$. Then the following theorem of the Stom aesn type turns out to be valid.

Theorem. Every orthocomplemented poset ($P, \leq, 0,1$, ') is orthoisomorphic with the orthocomplemented poset $(Z(M(P))$, $\subseteq \mathbb{S}, \mathrm{M}(\mathrm{P}), *$) the elements of which, the sets $Z(p), p \in P$ are clopen subsets of zero-dimensional completely regular topolom gical T_{1}-space $X=(M(P), \tau)$. The set $Z(M(P))$ is a aubbasis for the topology \mathcal{J}. The symbols \subseteq and $*$ denote the inclusion relation and set-theoretical complement in $M(P)$ respectively.

Proof: $M(P) \neq 0$ by Corollary of Lemma 1. Now we introduce a topology \mathcal{T} on $M(P)$, requiring that $Z(M(P)$) be a subbasis for closed subsets of $M(P)$.
(i) The class $Z(M(P))$ is also a subbasis for open sets of the topological space $(M(P), \mathcal{T})$. Indeed, if $B \in M(P)$, then there exists such $p_{0} \in P, O \neq p_{0} \neq 1$ that $p_{0} \in B$. Therefore $B \in Z\left(p_{0}\right)$. Now bII of Lemma 1 implies $Z(p)=M(P) \backslash Z\left(p^{\prime}\right)$ for each $p \in P$. Therefore the sets $Z(p)$ are open and it is also clear that $Z(M(P))$ is a subbasis for open sets in $(M(P), T)$.
(ii) \mathcal{T} is a Hausdoref topology on $M(P)$. Let $B_{1}, B_{2} \in M(P)$, $B_{1} \neq B_{2}$. Then there exists such $p \in P$ thet $p \in B_{1}, p^{\circ} \in B_{2}$. The open sets $Z(p), Z\left(p^{\prime}\right)$ are then disjoint neighbourhoods of B_{1}, B_{2} respectively.
(iii) The topological space $(M(P), \mathcal{T})$ is zero-dimensional. In fact, the basis U of open sets of the topology \mathcal{T} is of the $\operatorname{rorm} U=\{U \subset M(p) \mid U=\overbrace{i=1}^{n} z\left(p_{1}\right), p_{i} \in P, 1=1,2, \ldots, n\}$. Sin ce $Z\left(p_{i}\right)$ are clopen sets, it follows that the sets $U \in U$ are also clopen.
(iv) The topological space ($u(P), T)$ is completely regum 1ar. This is a aimple consequence of (ii) and (iif),
(v) $(Z(M(P)), \subseteq, D, M(P), *)$ is an orthocompleinented poset. The set $Z(M(P))$ is partially ordered by the inclusion relation. \subseteq - If $A \in Z(M(P))$, then we put $A^{*}=M(P) \backslash A$. Cleaxiy $Z(1)=$ $=M(P), Z(0)=\varnothing$, and $M(P)$ and δ are the universal uppari and lower bounds in $Z(M(P))$ respectively. According to the reiation $Z\left(p^{\prime}\right)=M(p) \backslash Z(p), p \in P$ we obtad 2
(1) $[Z(p)]^{*}=M(p) \backslash Z(p)=Z\left(p^{\prime}\right) \cdot$ for each $p \in P_{\text {e }}$

It can be easily seen that $*$ satisfies all requirements imposed on orthocomplementation.
(vi) If $p, q \in P$, then $p \leqslant q \Longleftrightarrow Z(p) \subseteq Z(q)$.
(a) Let $p \leqslant q$. The property (b)I of Lemma 1 implies $Z(p) \subseteq$ $\subseteq Z(q)$.
(b) Assume $Z(p) \subset Z(q)$. If $p=0$, then clearly $0=p \leqslant q$. Also let $p \neq 0$, and suppose that $p \not \subset q$. Then we can select such an M-base B that $B \in Z(p)$. Following Lemma $2 B_{1}=(B \backslash\langle 0, q\rangle) \cup$ $U\left\langle q^{\prime}, I\right\rangle$ is an M-base, and $B_{1} \in Z(p)$. Therefore $B_{1} \in Z(q)$, and $q^{\prime} \in B_{1}, q \in B_{1}$ which contradicts (b)II of Lemma 1.
Now define a map $h: P \rightarrow Z(M(p))$ setting $h(p)=Z(p)$ for sach $p \in P$.
(จii) h is bifective. This follows immediately from the definition of h and by (vi).
(viii) The orthocomplemented posets ($\mathrm{P}, \leq, 0,1$, ') and $(Z(M(P)), \subseteq, \varnothing, M(P), *)$ are orthoisomorphic. The fact that h is an orthoisomorphism is namely a consequence of (vi), (vii) and (1).

Remapy. If for $p_{1}, p_{2} \in P \quad p_{1} \vee p_{2}$ resp. $p_{1} \wedge p_{2}$ exists in P, then the following equalitites hold:

$$
h\left(p_{1} \vee p_{2}\right)=h\left(p_{1}\right) \vee h\left(p_{2}\right), h\left(p_{1} \wedge p_{2}\right)=h\left(p_{1}\right) \wedge h\left(p_{2}\right.
$$

But it is necessary to warn. The operations V and \wedge in a poset
 ral differ from the usual set-theoretical operations U and n.

Proposition 3 [1]. Every zero-dimensional, completely regular topological T_{1}-apace X of the total character $w(X)=\tau$ can be embedded homeomorphically in the Cantor cube $D^{\tau}=\prod_{S} S_{s} A_{s}$, where $D_{s}=\{0,1\}$, sES are endowed as topological spaces with a diacrete topology, and card $S=\tau$.

Proof: Set [1].
Conollany. If $(P, \leq, 0,1$, ') is an orthocomplemented poset and if card $P=\tau$, then the space $(X(P), \mathcal{T})$ can be embedded homeomorphically in D^{τ}.

Proof: Clearly card $Z(X(P))=\tau$. If U is a basis of elopen sets in $M(P)$ generated by $Z(M(P)$) as a subbasis of topom logy \mathcal{T}^{\prime}, then card $U=\tau$. Therefore for the total character $W(M(P))$ of $M(P)$ we get $W(M(P)) \leqslant \tau$. Corollary follows now applying Theorem 1 and Proposition 3.

In a apecial case, when ($P, \leqslant, 0,1,{ }^{\prime}$) is a Boolean algebra, and $\mathscr{\rho}(p)$ the Stomean space of P, then the following assertion establiahes the connection between the topological apaces $\mathscr{P}(P)$ and $M(P)$.

Prepoatition_A. Let ($P, \leqslant, 0,1,{ }^{\prime}$) be a Boolean algebra. Then the Stonean opace $\mathscr{P}(P)$ of P is a compact subspace of the topological space $\mathbf{M}(P)$.

Proof: Follows as a simple consequence of the fact that the topology of the Stone space $\mathscr{P}(P)$ is induced by the topology of $\mathrm{m}(\mathrm{P})$.

Theorem2. If the orthocomplemented posets $\left(P_{1}, \leqslant, O_{1}, 1_{1},{ }^{\circ}\right)$ $\left(P_{2}, \leq, 0_{2}, I_{2}, *\right)$ are orthoisomorphic, then the corresponding topological apaces $\left(M\left(P_{1}\right), \mathcal{J}_{1}\right),\left(M\left(P_{2}, \mathcal{T}_{2}\right)\right.$ are homeomorphic.

Proof: Let $h: P_{1} \rightarrow P_{2}$ be an orthoisomorphism from P_{1} on $P_{2^{*}}$ It is easy to show that B is an M-base in P_{1} iff $h(B)$ is an -base in P_{2}. Therefore the mapping h induces a mapping $\hat{\mathrm{h}}: \mathrm{m}\left(\mathrm{P}_{1}\right) \rightarrow$ $\rightarrow M\left(P_{2}\right)$. The bijectivity of h implies bijectivity of h. Now if we denote by $Z_{i}(p), p \in P_{i}$ the elements of subbsess $Z_{i}\left(M\left(P_{i}\right)\right)$ of topological spaces $\left(\mu_{1}\left(p_{i}\right), J_{i}\right), i=152$, then the following equality turns out to be valid:
(2) $\hat{h}^{-1}\left(Z_{2}(p)\right)=Z_{1}\left(h^{-1}(p)\right) \quad p \in P_{2}$ Now, if F is an element of the basis for closed subsets of the topological space $M\left(P_{2}\right)$, then there exists such $p_{j} \in P_{2}, j=$ $=1,2, \ldots, n$, that $F=\bigcup_{j} \bigcup_{1} Z_{2}\left(p_{j}\right)$. According to (2) we obtain
 This implies that $\hat{h}^{-1}(F)$ is an element of basis for closed aubsets in $\boldsymbol{Y}\left(P_{1}\right)$, and hence the continuity of \hat{h}. The continuity of \hat{h}^{-1} can be shown anal ogically. The converse of the theorem may fail.

Example. Let be $X=\{1,2,3,4\}, P_{1}=\left\{Y_{G} \exp X \mid\right.$ card Y \& \& $\{1,3\}, Z=\{1,2,3,4,5,6,7,8\}$ and $P_{2}=\{0, Z,\{1,2\},\{3,4\},\{5,6\}$, $z \backslash\{1,2\}, Z \backslash\{3,4\}, Z \backslash\{5,6\}$.

Defing the partial ordering and the orthocomplement on $P_{1}, 1=$ $=1,2$ as the inclusion relation and the set-theoretical comple-
ment respectively. It can be easily shown that $\left(P_{1}, c, D, X_{j}^{\prime}\right)$ and ($P_{2}, \subseteq, \varnothing_{,} Z$, ') are orthocomplemented posets. For the paye ces $M\left(P_{1}\right), M\left(P_{2}\right)$ it may be found that card $M\left(P_{1}\right)=\operatorname{card} M\left(P_{2}\right)=$ $=$ 4. So we can see that the spaces $M\left(P_{1}\right), M\left(P_{2}\right)$ are discrete and homeomorphie. But the posets P_{P}, P_{2} cannot be orthoisonorm phic, because while P_{2} containe three difierent mutually orthou gonal elements, P_{1} contsins always only at most two mutusily orthogonel elements.

References
[1] R. ENGELKIMG: Topologia ogólna, Warszawa 1976.
[2] O. FRIKK: Ideala in partially ordered sets, Amer. Math. Monthly 61(1954), 225-234.
[3] H. GRAVES - S.A. SELESNICK: An extension of the Stone representation for orthomodular lattices, Colloq. Math. 27(1973), 21-30.
[4] J. KLUKOWSKI: On the representation of Boolean orthomodular partially ordered sets, Demonstra\&io Mathematice 8(1975), 405-423.
[5] A.R. MARLOW: Quantum theory and Hilbert Space, Journal of Math. Phys. 19(1978), 1-15.
[6] M.H. STONE: The theory of representation for Boolean algebras, TAMS 40(1936), 37-111.
[7] N. ZIERLER - M. SCHLESINGER: Boolean Embeddings of orthomodiviar sets and Quantum logics, Duke Math. Journal 32(1965), 251.

Department of Mathematics, Institute of Chemical Technology, Suchbútarova 1905, 16628 Preha, Czechoslovakia
(Oblatum 14.10. 1981)

