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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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REMARKS ON SUBSETS OF CARTESIAN PRODUCTS
OF METRIC SPACES
Boris S. KLEBANOV

Abstraci: Tn the paper, results on the structure of cer-
tain subse of Cartesian producis of metric spaces are pre-~
cented, We give an affirmative answer to a question posed in
[2], The problem of extending the Sierpinski-Stone theorem is
considered, too.

Ke* words: Metric space, Cartesian product, G ¢ -set
retraction. ’ -l ’

Classification: 54B10, 54E35, 54C1l5

I, Problems which are considered in the paper are close
to those treated in sections 1, 2 of our note [ 1]. Here we ge-
neralize some results of [1], Let us note that the main con-
struction used in the present paper is easentially the same
as in [1]. In this paper, we give a positive mnswer to a ques-
tion posed by R, Pol and E, Puzio-Pol [2]., We also examine
the question of extending the Sierpiﬁaki-stone theorem concer-

x) metrioc spaces over

ning retractions of zero-dimensional
Cartesian products of such spaces. An example presented in the
final section shows that a closed G -subset of a Cartesian
product of zero-dimensional metric spaces need not be its re-
tract.

x) In the paper zero-dimensionality is understood in the sen-
se of covering dimension dim,
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Let X be the Cartesian product of sets X, , <€ A and
Y c X, for o< & A, Following [3, 2], the subset Y =
=[14Y 310ce A} of X will be called a cube. By D(Y) we shall
denote the set{cce AstY *+X %, If |D(Y)|< T for some
Tz §, (resp. D(Y) is finite), then Y is called a T -cube
(resp., an f-cube). (In this paper we shall deal only with o=
cubes and f-cubes.,) A cube Y is called elementary if (Y | = 1
for all ¢ € D(Y).

In [3, 2] the sets which are the closures of unions of
T=-cubes in X were examined in the cases when X is a Cartesi-
an product of spaces the weight or the character of which does
not exceed some cardinal number, We impose on the factors a
restriction of other kind: metrizability; the object of our
study are the sets which are the closures of unions of .H'o-
cubes in Cartesian products of metric spaces.

Let X =[1{X  :1Ce A} and BCA, By Xy we denote [M{X ¢
t <€ B}; py X —>X . and pgiX —> X are projections. A set
UcX is called B-distinguished if U = p3 (U). Following [4],
we say that a set Uc X has a countable type if U is B-distin-
guished for some countable B,

The union of & family 7 of sets is denoted by U7y ;
Int S denotes the interior of a set S, Since there is a diffe-
rence in the terminology, let us note that we rank finite sets
among the countable ones.

Let us proceed to formulating theorems (the proofs will

be presented in section II),

Theorem 1. Let X =[1{X_ :toce A, where every X is a

metric space, and let FcX be the closure of a union of K-
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cubes. Then

(1) there exists a &-discrete family - of open f-cu-
bes such that UA = X\ P,

(11) there exists a &-discrete family (& of open f-cu=-
bes such that Uw = Int P,

(1ii) 1if all the spaces X are zero-dimensional, then
A and “ consist of closed-and-open sets.

In connection with this theorem let us make the following
remark. Let X be a Cartesian product of topological spaces,
Clearly, a Goy -gubset of X is a union of _Ko-cubes. On the ot-
her hand, if all factors of X are spaces of a countable pseu-
docharacter, then an .Ho-cube in X is a union of GJ -gets.
Hence, the set F above can be defined equivalently as the clo-
sure of a union of G -sets in X,

Using properties of A stated in Theorem 1(i), one can
obtain

Corollary. Let X be a Cartesian product of metric spa-
ces and let Fc X be the closure of a union of 5 -cubes. Then
F is a functionally closed subset of X,

To prove this corollary, note first that an open f-cube
in a Cartesian product of metric spaces is functionally open.
Thus, the femily A consists of functionally open sets. Since
functional openess is preserved by the operations of taking
the union of a discrete family and the countable union, UA
is a functionally open set. Hence F = X\ UA is functional-
1y closed in X,

This corollary gives a positive answer to a question for-
mulated in [2]. Let us note also that it generalizes Theorem

1 o2 [5],
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AH, Stone [6], having strengthened a result of W, Sier-
pinski [7], proved that i1f X is a metric space, dim X = 0,
and F 1s a closed subset x) of X, then there exists a continu-
ous mapping r:X —> F such that the restriction r|F is the iden-
tity mapping (i.e., r is a retraction). This retraction has
the following property: the set r(X\F) is &-discrete in X,

We became interested in the question whether a similar
statement holds for certain closed subsets of Cartesian pro-
ducts of zero-dimensional metric spaces. First of all, it
should be found out of what sort these subsets may be., It is
clear that not any suits (otherwise each zero-dimensional com-
pact Hausdorff space, being homeomorphic to & subspace of a
certain Cantor cube e , would be dyadic, which is wrong). On
the other hand, if a closed subset of such a product has a
countable type, then it is a retract of the product. Indeed,
let X = M{X, :x€ A}, where all X ‘s are zero-dimensional
metric spaces, F is closed in X and F = palpc(l') for some
countable Cc A, Since pc(F) is closed in the zero-dimensional
metric space xc, by the Sierpinski-Stone theorem there exists
a retraction r of Ic onto pc(F). Obviously, the mapping
rx1id,, where Z = X, s 18 & retraction of X onto F,

By virtue of a theorem of R, Engelking [3] (a less gene-
ral formulation of it was given by B.A, Efimov [81), if X is
a Cartesian product of spaces of a countable weight and Fc X
is the closure of a union of xo-cubes, then F has a countab-

le type in X, Therefore, if X = M {X_ 3 oce A}, where every

x) All subsets up to the end of the section are assumed to be
non~-empty.
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X, 1is a metric space of a countable weight with dim X = O,
and PCX 1s the closure of a union of Ho-cubes, then P 18 a
retract of X, In view of the last assertion it is natural to
put the question: is the restriction imposed in it on the
weight of the factors essential? Below, in section III, an ex-
ample is presented which shows that the answer is positive.
Moreover, we establish that in the case when not all factors
have a countable weight even a sequentially continuous mapping
riX—> F with r|F = 1d, may not exist,

St111, for X being a Cartesian product of sero-~dimensional
metric spaces and FcX being the closure of a union of 1 y=ou=
bes, the statement that generalizes the Sierpinski-Stone theo-
rem is succeeded in proving. For convenience s sake of its for-
mulation let us introduce first the notion of a c-mapping.

Let X ={X s xe A} and YcX, By ¥(¥) we shall deno-
te the set of all convergent sequences of points of the space
Yo A mapping £3Y—> Z, where Z2C X, will be called a c-mapping
1f for each sequence S = iy } e (Y) there exists a set
Ag(8)c A suoh that AN AI(S) is countable and p_ (nlL:I_.’mw f(yn)) -
= %})mw P f(yn) for o« € Af(S).

Clearly, every sequentially continuous mapping of ¥ to Z

is a c~mapping.

Theorem 2, Let X « 14X, : cc € A}, where every X is a
zero~-dimensional metric space, and let FcX be the closure of
e union of ¥ o~cubes. Then for each countable TCA there exists
a c-mapping r:X—> F such that

(a) KcA(S) for all § ef (X),

(d) riP = 1dg,

- 771 -



(6) r(X\P?) 18 the union of a 6-discrete family of e-
lementary s ~cubes.

Since the sequential continuity of a mapping is equiva-
lent to the continuity when the domein is a metric space, the
Sierpinski-Stone theorem follows from Theorem 2 if one takes
one-element sets as A and A. Note that, by virtue of the co-
rollary stated above, the set P indicated in Theorem 2 is a
G, ~-subset of X,

II. In the proof of Theorems 1 and 2 one common const-
ruction is used. This construction is similar to (and was sug-
geated by) that due to S.P. Gul ‘ko (see the proof of Theorem
1 from [9]).

Let X be the Cartesian product of metric speces X,
oc € Ay QCX be the union of 5 -cubes, and P = el Q. We shall
assume that P#+X, P+@, For every countable BCA fix a metrioc
5°B on the metrizable space IB and define the pseudometrie dB
on X by the formula dp(x,y) = @ p(Pp(x),Px(y)).

The Main Construction. For an integer n = 0,1,... let
us construct by induction the families J\.n, 4y and Y of

subsets of X suoh that the following conditions Cl - C8 hold:

Cl. ¢, = A, Uwu, U> 1s a family of open sets, both
léoslly finite and 6 -discrete;

C2. members of P have a countable type;

C3. 1let Uécpn; then Uea,n it UNT? =@, U e “n i
UcCPF, Ue v, 12 UNP+¢¥ and U\ P+ 4;

C4. = 1iX}3 for nz1 P, 18 & cover of Uvn-l
which refines » 41
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C5, for each U € »
sUNV+ @3 18 finite;
C6. to each Ue » the points a(U), a’(U)e U and a coun-

n* 221, the family g(U) --{Vevn_lx

table set B(U)c A are assigned such that p‘n'%u)pn(u)(a(v)) c
CUNP and p];%mpB(U)(a'(U))cU\ F;

C7. to each Ue ‘»’n, a countable set R(U)c A and a pseu-
dometric dU on X are assigned such that

(a) for n21, R(U) = U{R(V):V e § (0)% U B(U) ana oy =
- max{dR(U). max {dy iV e §(U)33,

(v) du(x,y) = 0 1f¢ pR(U)(x) - pR(U)(’)’ and the metric
on xR(U) that naturally corresponds to d.[J induces on xR(‘U) the
existing topology,

(¢) 12U"e » , then UNU° is R(U)-distinguished;

C8, to each Ue&.nU'v_n, nZ1, the set k(U) e 7’n_1 is
agsigned such that

(a) Ucx(U),

(b) 12 (W) = V, U e P, then U is R(V)=-distinguished
and the dy-diemeter of U is less than 1/n,

The initiel step of induction. Put A, = u = {87,

D, = {X%, Choose an arbitrary point a(X)< Q. Prom the defini-
t;on of Q it follows that there is a countable C(X)c A such
that pa%x)pc(x)(s(X))c Q. Taking some a’(X)e X\P, we find
then, using the openess of X\F, a finite D(X)C A such that
Ppix)Ppcx)(8 (X)) XNP. Detine B(X) as C(X)UD(X). Let X be
some countable subset of A. Put R(X) = B(X)UX (the inclusion
e R(X) will be needed for the proof of Theorem 2) and dx -

= dp(x)*

Assume that for all n£m the construction has been carried
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out so that conditions Cl - C8 are satisfied. Let us fix a
U e, and put 7 (U) ={UNU W e » . The family % (U) is
locally finite and consists of R(U)-distinguished sets (see
C7(c))e Let J(U) be an open cover of X by R(U)-distinguish~
ed gets each of which intersects at most a finite number of
elements of 'rL(U). I¢ is known that every open cover of a
metric space has an open (covering) refinement which is both
locally finite and & -discrete. Using this fact, one can re-
adily find an open refinement cf'l(U) of J(U) such that:
1) J,(U) consists of R(U)-distinguished sets, is locally fi-
nite and S-discrete, 2) dj-diameter of every member of
d1(U) 1s less than 1/(m+l). The family (U) = {UNU %+ @:
e dJl(U)§ is looally finite, &-discrete, consists of open
R(U)-distinguished sets, and U (U) = U, One may assume that
all manbex:s of Y, are well~-ordered somehow by a relation < .
If£ Vay(U), VN P+P and there is no U4 U such that V €
e fg'(ﬁ), then we put k(V) = U,

Let ¥ .1 = U{y (N e vmg' Clearly, we have U9m+1 =
- Uvm. Since »  and each of the families y(U) is locally
finite and & -discrete, so is Py Define ﬂ.mﬂ, (4pyy 204
Pps1 i accordance with C3, Let us observe that if Ve tor-
ned out to be empty, there is no need in continuing induocti-
on, and the construction should be ended. For every U e ? nel
we have UN P4, therefore UNQ+P, Take an a(U)c UNQ, As U
is open and Q is a union of .Ko-cubu, there exist a finite
L(U)c A and a countable M(U)c A such that pz%u)pL(U)(s(U))CU
and pi%u)pl(u)(a(u))CQ. Then pa%u)pc(u)(a(v))cUﬂQ. where
C(U) = L(U)UM(U). Since UNF is non-empty and open, there

- 774 -



are a point a’(U)c U\ P and a rinite set D(U)c A such that
Pheu)Pp(u)(e (U))cUNF, Evidently, the set B(U) = C(U)UD(U)
satisfies C6,

From the comstruction of Dm 41 1t follows that {the family
? (U) is finite, and hence, taking into account the correspon-
ding inductive assumptions, R(U) is countable (the definitions
of € (U) and R(U) see in C5 and C7(a) resp.). Finally, let us
define the pseudometric d‘U as indicated in C7(a). This comple-
tes the construction for n = m+l, It is not hard to see that
Cl - C8 are satisfied for this n. Thus, the induction is car-
ried out.

One easily verifies that for n=1

(1) it U E‘Pn and Ve §3(U), then k(V) g(k(U)).

Indeed, Ve § (U) means that UNV+@, and since Vc k(V) and
Uc k(U) (see C8(a)), then k(V)Nk(U)3F@, i.e., k(V) e § (x(U)).

Proof of Theorem 1. We shall begin with the proof of (i).
Put A*= U{Q_:mZ1}. By virtue of €3, UX*c X\F. We shall
show that U2* = X\ F, Let, on the contrary, a point xe X\ P
be not covered by ar . Then, by C4 and C3, for each n there
exists a set Un e vn such that stn. Let Rn = R(k(Un)) and
d = dk(Un)’ (nZ1). Clearly, U, e § (Un+1)’ whence, by virtue
of (1) and C7(a) we have

(2) Ra Rpyy 80 = dpy,e

Since U NU, »+8 and Uy oc k(Uy ), Uy € (k(T,,5)).
Hence, by C7(a)s R(U,)C R, ,. Condition C7(a) yields also that
R c R(U,). The last two inclusions, along with the inclusion in
(2), imply thet U4{R(U )mz1} = U{R m>1}. Denote this u-
nion by R, Por each nZ1 let us define the point x,€X from
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the conditionss p,(x,) = p,(a(U,)) 1f cc € R(U,), P (X;) =

= P (x) 1f L€ ANR(U,). As B(U,)cR(U,), 80 X & p;%un)

Py(u )(a(Un)), and hence x, €U NF (see C6), Then from C8(b)
n

and (2) we infer that %:l_.;nm %(p%(x). p%(xn)) = 0 for each
m=>1l, Therefore, by C7(b), pnm(x) -ﬂ}})nw p%(%), and thus

PR(x) -”ll-’i’nm Pr(x,)e Since B (Xy) = Pic (x) for <& ANR, we
have x -N}imw X,o As all x » belong to F and F is closed, xeF,
This ocontradicts the assumption xe X\ P,

Each space X_ being metric, there is a & -discrete base
in X . . Applying this fact, one readily shows that an open sub-
set of X having a countable type is a union of a & -discrete
family of open f-oubes, By virtue of C2, every U € A* has a
countable type, so that for it there exists a 6&-discrete fa-
mily y(U) of o.pen f-cubes such that Uy (U) = U, Condition
Cl implies that the family A* 1s open and & -discrete. Since
U2* = X\ P, we conclude that A= U{y(U):U € A*} is the fa-
mily sought for,

Let us prove (11), Put w*= U4 m21%, Let us cheock
that Uu™ = Int P, The inclusion U ’c Int P follows from
C3. Take an xeP \ Uu* , To prove the desired equality, we
must show that x is an accumulation point of X\ F, It is rea-
dily seen that for each n there exists a set Un € », which
ocontains x, Conducting further reasonings similar to those in
the proof of (i), one can find a sequence ‘(xn}C X\ F converg-
ing to x (the only difference from the former reasonings is
that now the points a’(U) are used in place of a(U)), Arguing
as in the proof of (1) (see the transition from A* to A ),

one can construct a © ~discrete family « of open f-cubes such
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that Uw = U™ . This ends the proot of (ii).

Now let all X ‘s be zero-dimensional. Then (see, e.g.,
[10]), 1) every open cover of X has a clopen (= closed-and-
open) disorete refinement, 2) if Cc A is countable, then
dim xc = O, Making use of these properties, the eonstruction
in the case of zero-dimensional X, ‘s cean be carried out in
such a way that the following strengthening of condition Cl
holds:

Cl,. @, = ﬁ'n v ¢a U V, is a discrete family of olo-
pen sets,

Therefore in the present case one can consider all mem~
bers of Jt.n (and thus, of A*) to be clopen., Since a gzero-di-
mensional metric space has a 6 -disorete base consisting of
olopen mets, the members of y(U), U € A* , can be assumed
to be clopen. Then A also consists of elopen sets, The mma-
logous statement oconcerning « is proved similarly. Thus, (ii1)
is eatablished.

Proof of Theorem 2, We use the main construction egain,
One can suppose that it has been carried out so that conditi-
ons Clo and C2 - C8 are satisfied.

Pix an n21 and a set U € .9»“. Adopt the notation Vn -
= k(U ), QV,) = ps%vn)pn(vn)(a(vn)). Por every point x&U,
let us define the point yxcx from the conditionss p_ (yx) =
= P (8(V,)) 12 K€ R(Vy), P (Fy) = Pog (X) 12 & ANR(T,).
By virtue of C7(a) and C6, R(Vn): B(Vn) and Q(vn)c Vnﬂl', 8o
that

(3) Y€ VaNFe
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Put r(x) = x if x€P and r(x) = ¥y it x€ X\ P, Let us show
that the mapping r is defined on X\ P correctly. Note that
U XA, 18 disjoint from U9Ln for m+n, Indeed, if, for inst-
ence, m>n, by C4 we have UL < U » s Whereas Us, is
disjoint from U.ln. In addition, the families -7Ln consist of
disjoint sets and - as it was established when proving Theorem
1(1i) - in total cover X\ F,

Clearly, r(U,) is the elementary .5 -cube Q(V,). As Q(V,)c
€V, € Ypa and v, _, is & -discrete, we get that the family
O = V)V e» 4, n= 1,2,e00 ¢ 18 & ~discrete as well, It
is readily seen that r(X\PF) = U® , which proves (c).

Let us verify that r is a c-mapping. Let 8 = i{x } e ¥ (x)
end x = ii_.:aw X, We shall consider the case when xcP, -ign} [
c I\P (other cases either are trivial or come to this one).

For every point X there exists & (unique) member of ¥
which contains 1t. Let it be & set Uinc J'\.._,n. Put W, = k(Uin).

The points x, and r(rh) being contained in 'n (see C8(a) and
(3)), 1t follows from C8(b) that dy y y(x;, (%)) <1/(1,;- 1)
n

for 1 >1, According to the construction, for every Ues L)
mZz 0, we have R(X)c R(U) and dy<dy (R(X) and dy were defined
at the initial step of induction)., Teking x(wn) as U,we conc-
lude that dx(xn,r(xn))< 1/(in-1). The condition x = %inm x,
implies that the sequence {1n7; increases unboundedly, whence
}&Pw dx(xn.r(xn) )- = 0, Therefore, by C7(b), Pa(x)(x) -

= qll_i_.'mw pR(I)(xn)‘ Since AcR(X), we infer that py(x) =

=- %:_l.’nm pz(%). Let R be the union of all the sets R(W,). Since
each R(Wn) is countable, then so is R, From the definition of
r it follows that pA\B(xn.) = Pp\p{x) for each n, Put Ar(s) -
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= TU(ANR). It is olear then that p_ r(x) = p (x) =
- lm P T(x,) for occ A (8). We also have: | AN Ar(s)l =
= IR\XI4|RI 25 . The theorem is proved,

Remarks. l. The main construction described above is
applicable not only to the whole Cartesian product but also to
its appropriate subsets, This enables us to obtain a generali-
sation of Theorem 2, To state it, we shall need the following

Definition. Let X =M< X 3cce A}, A Boet YcX 18 said
to bde $°~convcx, provided that for any points 71,326Y and any
BC A such that |B) £, the point xc X which is defined from
the conditions: pp(x) = pB(yl). pA\B(*) = pA\B"Z) belongs to Y.

BExamples of R g~convex subsets of a Cartesian product are
Z . -products for all T = &, & &-product, and defined in
the case of metric factors & =, -product (the definitions see,
¢.g8., in 9, 111),

Let X and F be the same as in Theorem 2, The statement of
this theorem will remain true if one replaces in it X by emy
its $°-oonvex subset Y, F - by Py = PNY#@, and item (c) =~
by the followings: r{¥Y\ Py) is the union of & &-discrete fami-
ly each member of which is the intersection of an elementary
$omoube with Y.

The proof of this result is actually the same as of Theo-
rem 2, Let us show where in the proof the .ﬁ'o-oonvcnty of Y
is employed, First, when proving Theorem 2, we used the equali-
ty UA* = X\ P, which ensures that the retraction is defined
on the whole X, It was established in the proof of Theorem
1(i). Proving the analogous equality for Y\ ry, we need the
:Ko-convexity of Y to obtain that the points X, (introduced in
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the course of proving Theorem 1(i)) belong to Y. Besides, de-
fining the mapping r on Y, we need all the points y, (L.e.,
the range of r) to be contained in Y. This is also guaranteed
by the :‘io-oonvoxity of Y.

2. The family u indicated in Theorem 1(ii) gives an in-
ner approximation of the set F, Another approximation of that
kind is expressed by

Theorem 3. Let X be a Cartesian product of metrio spaces
and P = oL Uy , where 3 is a family of ¥ -ouber in X, Then
there exists a G -discrete subfamily J’ ot 7 such that P =
= of Ud".

Theorem 3 can be establisghed by applying a known cons truo-~
tion due to A.M, Gleason (cf. the proof of Theorem 1 of [2]),
In the proof only the existence of a 6 -discrete network in

faotors of X is used,

3, Suppose that in Theorems 1 and 3 all factors of X ha-
ve the weight < v (v = ..y:o). Then the families A, « and 7
have cardinality < v . This follows immediately from the fact
that every discrete family of non-empty ~ -cubes in a Cartesi-
an product of spaces of the weight < T has cardinality < T
(see [ 3], Th. 3).

III, Let X be a Cartesian product of zero-dimensional me-
tric spaces and F a closed Géd -subset of X, We shall present
now an example which shows that there may not exist a sequen-
tially continuous mapping r:X—> P such that P = 1dy.

For every integer nZ1 fix a certain set J® of real mm-
bers such that |J%) X, end 1/(n+1)<x<1/n for each xeJ™.
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On the set J = {0} UU £ 3% >1%, introduce the metrie f\o vy
letting @(x,y) = X +yif x4y and @ (x,x) = O, The metric

space (J,@) denote by 3\. Clearly, all points of 3 exoept ze-
ro are isolated, and the neighbourhoods of zero in J are the

same as in the Euclidean topology.

Let 51 . M{iD, 1t < @, %, where gooh Dy, is the two-point
discrete space {0, ,1 }. Put X = TxD 1. Obviously, all the
factors of X are zero-dimensional metric spaces. Let I :
:D'hl—; plxx—> 3 and pazx—-> D 1 be projections. Let us
number the points of each J® by countable orﬂinalu J° a
-{3ﬂz{3<¢0} !‘or[a‘<co1utsﬁ--fasnl . (a) = O
for all o¢ <3} and r‘ = {xeXipy(x) = 3[3 » Pp(x)e Sp} o Let
Fe= p{l(O)UU{FE :nz1,(5< @.%. It is not hard to see that
P is a closed Gy -subset of X,

Let us prove that there is no sequentially continuous map-
ping rsX—> P such that riP = idp. Let, on the contrary, such
an r exist, Put Y = {xeXsl{cC & As o, py(x)40 3| < 1f. Note
that Y is closed in X, Since Y is contained in the = -product
of metric spaces 3 ana Descc< 2 which is a Préchet space
(see [10], Ex, 3.10,D), Y is also a Fréchet space. Henoe, Tr|Y
- being a sequentially continuous mapping of a Fréchet space -
is contimous. Let g = P§ N Y, The set $; 1s open in
PNY, because J} 1is en isolated point of 3, ana x( dp ) =
- @’? . Hence, by the contimuity of r|Y, each point y € '
has & neighbourhood Oy in Y such that py(0y) = -ur':} and
r(0y) c {)ﬁn « One can suppose that Oy has the form 0*yNY,
where Oy ig open in X, pl(o*y) = {j;} and the set K(y) =
e{we At 7, p,(0*y)+ D, } is finite, The set p11(,1n ), homeow
morphioc to Sﬂ , 1s compact, and so is its closed subspace Qﬁ .

- 781 =



Choose from the open cover {0y:y € @ﬁn} of @,? a finite
subsover w,’; and put Of; - Umy(,,n . Kﬁ = U4 K(y) 10y sqrrf} .
The set KE 18 finite. We have: 1) pl(oz ) = {32; , 2)
;;2(0,’51 ) is the intersection of a certain x,‘; -digtinguished
set with Y, 3) r(og ) = 7 + This implies that for yc¥Y we
have

(x) 12 p(y) = J; and 7, py(y) = 0, for allc«e Kg .

then r(y) e §7 .

For 3 < @y pur R’,‘s a{cstoc<BNEKS ,

Lemma, There exist sequences ny<ny;<aeoo of natural num-
bers and f3,, 3544.. 0f countable ordinals such that

Tl

N{R *11>1344.

By

Suppose that the lemma has been already proved, Let

a ¥
e Mi for all 121, Define the point teD 1 from the oondi-

tionss T (%) = O, if o€ += %, Tp(¥) = 1zr « Let us consider
the following points of Y: 2 = (0,%) and z; = (JZ’,t), iz1.

Obviously, z = }1:” %, . Since 7€ K;;i, the definition of ¢

n,
implies that ar, p,(s;) = 7 (t) = O for each cce xﬁi. Then,

n

1
scoording to (%), r(z) € éﬂi. As ¥ < 3, and pxr(sy)e sﬂi’
by the definition of sﬁi we have . por(s;) = O, o On the

other hand, . por(z) = Ty py(2) = -’"’.a,(t) = 14+ Since the se-
quence -isi} converges to s, we infer that Jl’?pzrlY. and hence
r!Y too, cannot be contimmous at the point z. The contradicti-
on obtained completes the proof,

It remains to prove the lemma, Suppose that it does not
hold. Then for every "< @, there exists a natural mmber
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n(y ) sueh that 3 ¢ n{‘; for all mzn(y) and 3 < ;. This
implies that Yy e Kg whenever n>n(2) and ¥ < 3 o As

{7 s+ ¥ < @,1 1s uncountable, there exists an m such that the
set M = iy 3y< wl,n('y) = m3} is uncountable. Take a» Lc M
with |L) = 35 and a "€ M such that ¥ <J for all ¥ < L,
Clearly, ¥ € K‘C';- for each 7'c L, This contradicts the fi-
niteness of K;, o The lemme is proved.

In coneclusion we take the opportunity of indicating that
the mapping r in Theorem 1 of [1] is & c-mapping ~ not sequen~
tially continuous as it was stated. Theorem 2 of [1], which
bases itself on that theorem, does not hold. To exclude these
incorrect statements, changes were made at our request in Eng-

lish translation of [1] (Soviet Math. Dokl, 21(1980), 303=-306).
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