Commentationes Mathematicae Universitatis Caroline

Boris S. Klebanov
Remarks on subsets of Cartesian products of metric spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 23 (1982), No. 4, 767--784

Persistent URL: http://dml.cz/dmlcz/106195

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 23.4 (1982)

REMARKS ON SUBSETS OF CARTESIAN PRODUCTS OF METRIC SPACES
 Boris S. KLEBANOV

```
Abstrace: In the paper, results on the structure of certain subsets of Cortesian products of metric spaces are presented. We give an afilmative anmer to a question posed in [2]. The problem of extending the Sierpinski-Stone theorem is considered, too.
Key words: Metric space, Cartesian product, Gorset, retraction.
Classification: 54B10, 54E35, 54Cl5
```

I. Problems which are considered in the paper are close to those treated in sections 1, 2 of our note [1]. Here we generalize some results of [1]. Let us note that the main construction used in the present paper is essentially the same as in [1]. In this paper, we give a positive answer to a question posed by R. Pol and E. Puzio-Pol [2]. We also examine the question of extending the Sierpinski-Stone theorem concerning retractions of zero-dimensional ${ }^{x}$) metric spaces over Cartesian products of such spaces. An example presented in the final section shows that a closed G_{j}-subset of a Cartesian product of zero-dimensional metric spaces need not be its retract.
x) In the paper zero-dimensionality is understood in the sense of covering dimension dim.

Let X be the Cartesian product of sets $X_{\alpha}, \alpha \in A$ and $Y_{\alpha} \subset \mathbf{I}_{\alpha}$ for $\propto \in$ A. Following $[3,2]$, the subset $Y=$ $=\prod\left\{Y_{\alpha}: \alpha \in A\right\}$ of X will be called a cube. By $D(Y)$ we shall denote the set $\left\{\alpha \in A: Y_{\alpha} \neq X_{\alpha}\right\}$. If $|D(Y)| \leq \tau \quad$ for some $\tau \geq s_{0}$ (resp. $D(Y)$ is inite), then Y is called a τ-cube (resp. an l-cube). (In this paper we shall deal only with N_{0} cubes and f-cubes.) A cube Y is called elementary if $\left|Y_{\alpha}\right|=1$ for all $\propto \in D(Y)$.

In $[3,2]$ the sets which are the closures of unions of τ-cubes in X were examined in the cases when X is a Cartesian product of spaces the weight or the character of which does not exceed some cardinal number. We impose on the factors a restriction of other kind: metrizability; the object of our study are the sets which are the closures of unions of r_{0} cubes in Cartesian products of metric spaces.

Let $X=\Pi\left\{X_{\alpha}: \propto \in A\right\}$ and $B \subset A$. By X_{B} we denote $\Pi\left\{X_{\alpha}:\right.$ $: \alpha \in B\}: p_{\alpha}: X \rightarrow X_{\alpha}$ and $p_{B}: X \rightarrow X_{B}$ are projections. A set $\mathrm{U} \subset \mathrm{X}$ is called B -diatinguished if $\mathrm{U}=\mathrm{p}_{\mathrm{B}}^{-1}(\mathrm{U})$. Following [4], we say that a set $U \subset X$ has a countable type if U is B-distinguished for some countable B.

The union of a lamily γ of sets is denoted by $U \gamma$; Int S denotes the interior of a set S. Since there is a difference in the terminology, let us note that we rank inite sets among the countable ones.

Let us proceed to formulating theorems (the proofs will be presented in section II).

Theorem 1. Let $X=\Pi\left\{X_{\infty}: \propto \in A\right\}$, where every X_{\propto} is a metric space, and let $F \subset X$ be the closure of a union of $r_{0}{ }^{-}$
cubes. Then
(i) there exdsts a σ-discrete family λ of open f-cubes such that $U \lambda=X \backslash F$,
(ii) there exdsts a σ-discrete family μ of ipen 1 -cubes such that $U_{\mu}=$ Int F,
(iii) if all the spaces X_{\propto} are zero-dimensional, then λ and μ consist of closed-and-open sets.

In connection with this theorem let us make the following remark. Let X be a Cartesian product of topological spaces. Clearly, a Gj-subset of X is a union of H_{o}-cubes. On the other hand, if all factors of X are spaces of a countable pseudocharacter, then an x_{0}-cube in X is a union of G_{σ}-sets. Hence, the set F above can be defined equivalently as the closure of a union of $G_{\sigma}-$ sets in X.

Using properties of λ stated in Theorem $1(1)$, one can obtain

Corollary. Let X be a Cartesian product of metric spaces and let $F \subset X$ be the closure of a union of tro-cubes. Then F is a functionally closed subset of X.

To prove this corollary, note first that an open f-cube in a Cartesian product of metric spaces is functionally open. Thus, the family λ consists of functionally open sets. Since functional openess is preserved by the operations of taking the union of a discrete family and the countable union, $U \lambda$ is a functionally open set. Hence $F=X \backslash U \lambda$ is functionally closed in X.

This corollary gives a positive answer to a question formulated in [2]. Let us note also that it generalizes Theorem 1 of [5].
A.H. Stone [6], having atrengthened a result of W. Sierpiński [7], proved that if X is a metric space, dim $X=0$, and F is a closed subset X) of X, then there exists a continuous mapping $r: X \rightarrow F$ such that the restriction $r \mid F$ is the identity mapping (i.e., r is a retraction). This retraction has the following property: the set $r(X \backslash F)$ is σ-discrete in X.

We became interested in the question whether a similar statement holds for certain closed aubsets of Cartesian products of zero-dimensional metric spaces. First of all, it should be found out of what sort these aubsets may be. It is clear that not any suits (otherwise each zero-dimensional compact Hausdorff space, being homeomorphic to a subspace of a certain Cantor cube D^{τ}, would be dyadic, which is wrong). On the other hand, if a closed subset of such a product has a countable type, then it is a retract of the product. Indeed, let $X=\Pi\left\{X_{\propto}: \propto \in A\right\}$, where all X_{\propto} s are zero-dimensional metric spaces, F is closed in X and $F=p_{C}^{-1} p_{C}(F)$ for some countable $C \subset A$. Since $p_{C}(F)$ is closed in the zero-dimensional metric space X_{C}, by the Sierpingki-Stone theorem there exists a retraction r of X_{C} onto $p_{C}(F)$. Obviously, the mapping $r \times i d_{Z}$, where $Z=X_{A \backslash C}$, is a retraction of X onto F.

By virtue of a theorem of R. Engelking [3] (a less general formulation of it was given by B.A. Efimov [8]), if X is a Cartesian product of spaces of a countable weight and FCX is the closure of a union of x_{0}-cubes, then F has a countable type in X. Therefore, if $X=\Pi\left\{X_{\alpha}: \propto \in \mathbb{A}\right.$, where every

x) All subsets up to the end of the section are assumed to be non-empty.
X_{\propto} is a metric space of a countable weight with dim $X_{\alpha}=0$, and FCX is the closure of a union of s_{0}-oubes, then F is a retract of X. In view of the last assertion it is natural to put the question: is the restriction imposed in it on the weight of the factors essential? Below, in section III, an example is presented which shows that the answer is positive. Moreover, we establish that in the case when not all factors have a countable weight even a sequentially continuous mapping $r: X \longrightarrow F$ with $r \mid F=i d_{F}$ may not exist.

Still, for X being a Cartesian product of sero-dimensional metric spaces and $F \subset X$ being the closure of a union of 5_{0}-oubem, the statement that generalizem the Sierpińsi-Stone theorem is succeeded in proving. For convenience s sake of its formulation let us introduce first the notion of a o-mapping.

Let $X=\Pi\left\{X_{\alpha}: \propto \in \mathbb{A}\right\}$ and $Y \subset X$. By $\rho(Y)$ we shall denote the set of all convergent sequences of points of the space Y. A mapping $f: Y \rightarrow Z$, where $Z \subset I$, will be called a c-mapping if for each sequence $S=\left\{y_{n}\right\} \in \mathscr{Y}(Y)$ there edists a aet $A_{p}(S) \subset A$ suoh that $A \backslash A_{p}(S)$ is countable and $p_{\infty}\left(\lim _{n \rightarrow \infty} f\left(y_{n}\right)\right)=$ $=\lim _{n \rightarrow \infty} p_{\infty} f\left(y_{n}\right)$ for $\propto \in A_{f}(S)$.

Clearly, every sequentially continuous mapping of Y to Z is a o-mapping.

Theorem 2. Let $X=\Pi\left\{X_{\alpha}: \propto \in A\right\}$, where every X_{α} is a zero-dimensional metric space, and let $F \subset X$ be the closure of a union of \sim_{r}-cubes. Then for each countable $\widetilde{A} \subset A$ there exists a c-mapping $r: X \rightarrow P$ such that
(a) $\tilde{A} \subset A_{r}(S)$ for all $S \in \mathscr{S}(X)$,
(b) $r \mid F=1 d_{F}$,
(o) $r(X \backslash F)$ is the union of a σ-discrete family of elementary K_{0}-oubes.

Since the sequential continuity of a mapping is equivalent to the continuity when the domain is a metric apace, the Sierpinski-stone theorem follows from Theorem 2 if one takes one-element sets as A and \tilde{A}. Note that, by virtue of the corollary stated above, the set F indicated in Theorem 2 is a Gorsubset of \mathbf{X}.
II. In the proof of Theorms 1 and 2 one common construction is used. This construction is similar to (and was auggeated by) that due to S.P. Gul ko (see the proof of Theorm 1 from [9]).

Let X be the Cartesian product of metric apaces X_{∞}. $\propto \in A, Q \subset X$ be the union of K_{0}-cubes, and $F=c \ell Q$. We shall assume that $F \neq X, F \neq \varnothing$. For every countable $B \subset A$ fix a metric \int_{B} on the metrizable space X_{B} and define the pseudometric d_{B} on X by the formula $d_{B}(x, y)=\rho_{B}\left(p_{B}(x), p_{B}(y)\right)$.

The Main Construction. For an integer $n=0,1, \ldots$ let us construct by induction the families λ_{n}, μ_{n} and ν_{n} of subsets of X such that the following conditions $C l-C 8$ hold:
c1. $\rho_{n}=\lambda_{n} U \mu_{n} U \nu_{n}$ is a family of open sets, both locally finite and σ-discrete;

C2. members of φ_{n} have a countable types
C3. Let $U \in \varphi_{n}$ then $U \in \lambda_{n}$ if $U \cap F=\varnothing, U \in \mu_{n}$ if $U \subset F, U \in \nu_{n}$ if $U \cap P \neq \phi$ and $U \backslash P \neq \phi$;

C4. $\nu_{0}=\{X\}$ for $n \geq 1 \quad \varphi_{n}$ is a cover of $U \nu_{n-1}$ which refines ν_{n-1} *

C5. for each $U \in \nu_{n}, n \geq 1$, the family $\xi(U)=f V \in \nu_{n-1}$: $: 0 \cap \nabla \neq \varnothing\}$ is finite;

C6. to each $U \in \nu_{n}$ the points $a(U), a^{\prime}(U) \in U$ and a countable set $B(U) \subset A$ are assigned such that $p_{B(U)}^{-1} p_{B(U)}(a(U)) \subset$ $\subset U \cap F$ and $P_{B(U)}^{-1} P_{B(U)}\left(a^{\prime}(U)\right) \subset U \backslash F$;

C7. to each $U \in \nu_{n}$, a countable set $R(U) \subset A$ and a pseudometric d_{U} on X are assigned such that
(a) for $n \geq 1, R(U)=U\{R(V): V \in\}(U)\} \cup B(U)$ and $d_{U}=$ $=\max \left\{d_{R(U)}, \max \left\{d_{\nabla} \leqslant V \in \xi(U)\right\}\right\}$,
(b) $d_{U}(x, y)=0$ iff $p_{R(U)}(x)=p_{R(U)}(y)$, and the metric on $X_{R(U)}$ that naturally corresponde to d_{U} induces on $X_{R(U)}$ the existing topology,
(c) if $U^{\circ} \in \nu_{n}$, then $U \cap U^{\circ}$ is $R(U)$-distinguished;

C8. to each $U \in \lambda_{n} U \nu_{n} \sim n \geq 1$, the set $k(U) \in \nu_{n-1}$ is assigned such that
(a) $\mathrm{U} \subset \mathbf{k}(\mathrm{U})$,
(b) if $k(U)=\nabla, U \in \nu_{n}$, then U is $R(V)$-distinguished and the d_{V}-diameter of U is less than $1 / n$.

The initial step of induction. Put $\lambda_{0}=\mu_{0}=\{\varnothing\}$, $\nu_{0}=\{X\}$. Choose an arbitrary point $a(X) \in Q$. From the definitifon of Q it follows that there is a countable $C(X) \subset A$ such that $p_{C(X)}^{-1} P_{C(X)}(a(X)) \subset Q$. Taking some $a^{\prime}(X) \in X \backslash P$, we find then, using the openess of $X \backslash F, a$ finite $D(X) \subset A$ auch that $P_{D(X)}^{-1} P_{D(X)}\left(a^{0}(X)\right) \subset X \backslash P$. Define $B(X)$ as $C(X) \cup D(X)$. Let \widetilde{A} be some countable subset of A. Put $R(X)=B(X) \cup \tilde{A}$ (the inclusion $\widetilde{A} \subset R(X)$ will be needed for the proos of Theorem 2) and $d_{X}=$ $=d_{R(X)}$.

Assume that for all $n \leqslant m$ the construction has been carried
out so that conditions C1-C8 are satisfied. Let us fixa $U \in \nu_{m}$ and put $\eta(U)=\left\{U \cap U^{\prime}: U^{\prime} \in \nu_{m}\right\}$. The family $\eta(U)$ is locally finite and consiats of $R(\mathbb{O})$-distinguished sets (see $C 7(c)$). Let $O^{\prime}(U)$ be an open cover of X by $R(U)$-distinguiahed sets each of which intersects at most a finite number of elements of $\eta(\mathbb{U})$. It is known that every open cover of a metric apace has an open (covering) refinement which is both locally finite and σ-discrete. Uing this fact, one can readily find ar open refinement $\delta_{1}(U)$ of $\delta^{\prime}(U)$ such that: 1) $\delta_{1}(U)$ consists of $R(U)$-distinguished sete, is locally 11nite and σ-discrete, 2) dodiameter of every member of $\sigma_{1}^{\prime}(U)$ is less than $1 /(m+1)$. The family $\gamma(U)=\left\{U \cap U^{\prime} \neq \varnothing\right.$: $\left.: \mathbb{U}^{\prime} \in \sigma_{1}(U)\right\}$ is locally inite, σ-discrete, consists of open $R(U)$-distinguished sets, and $U \gamma(U)=U$. One may asaum that all members of ν_{m} are well-ordered somehow by a relation < . If $V \in \gamma(U), V, P \neq \varnothing$ and there is no $\tilde{U} \neq \mathbb{C}$ such that $V \in$ $\epsilon \gamma(\tilde{U})$, then we put $k(V)=U$ 。

Let $\varphi_{m+1}=U\left\{\gamma(U): U \in \nu_{m}\right\}$. Clearly, we have $U \varphi_{m+1}=$ $=U \nu_{m}$. Since ν_{m} and each of the families $\gamma(U)$ is locally finite and σ-discrete, so is φ_{m+1}. Define λ_{m+1}, μ_{m+1} and ν_{m+1} in accordance with C3. Let us observe that if ν_{m+1} turned out to be empty, there is no need in continuing induction, and the construction should be ended. For every $U \in \nu_{m+1}$ we have $U \cap F \neq \emptyset$, therefore $U \cap Q \neq \varnothing$. Take an $a(U) \in U \cap Q$. $A s U$ is open and Q is a union of r_{0}-cubes, there exist a finite $L(U) \subset A$ and a countable $M(U) \subset A$ such that $p_{L} \mathcal{D}_{(U)}^{-1} p_{L(U)}(a(U)) \subset U$ and $p_{M(U)}^{-1} P_{M(U)}(a(U)) \subset Q$. Then $p_{C(U)}^{-1} P_{C(U)}(a(U)) \subset U \cap Q$, where $C(U)=L(U) U Y(U)$. Since $U \backslash F$ is non-empty and open, there
are a point $a^{\prime}(U) \in U \backslash F$ and a inite set $D(U) \subset A$ such that $\mathbb{P}_{D(U)}^{-1} \mathbb{P}_{D(U)}\left(a^{\prime}(U)\right) \subset U \backslash P$. Evidently, the set $B(U)=C(U) \cup D(U)$ satisfies C6.

From the construction of ν_{m+1} it follows that the family $\xi(U)$ is innite, and hence, taking into account the corresponding inductive assumptions, $R(U)$ is countable (the definitions of $\xi(U)$ and $R(U)$ see in $C 5$ and C7(a) resp.). Finally, let us define the pseudometric d_{U} as indicated in C7(a). This completes the construction for $n=m+1$. It is not hard to see that C1 - C8 are satisfied for this n. Thus, the induction is carried out.

One easily verifies that for $n \geq 1$
(1) if $U \in \nu_{n}$ and $V \in \xi(U)$, then $k(V) \in \xi(k(U))$.

Indeed, $V \in \xi(U)$ means that $U \cap V \neq \varnothing$, and since $V \subset k(V)$ and $U \subset k(U)$ (see C8(a)), then $k(V) \cap k(U) \neq \emptyset$, i.e., $k(V) \in \xi(k(U))$.

Proof of Thoorem 1. We shall begin with the proof of (i). Put $\lambda^{*}=U\left\{\lambda_{n}: n \geq 1\right\}$. By virtue of C3, $U \lambda^{*} \subset X \backslash F$. We shall show that $U \lambda^{*}=X \backslash F$. Let, on the contrary, a point $x \in X \backslash F$ be not covered by λ^{*}. Then, by C4 and C3, for each n there exists a set ${J_{n}}^{\in} \mathcal{\nu}_{n}$ such that $x \in U_{n}$. Let $R_{n}=R\left(k\left(U_{n}\right)\right.$) and $d_{n}=d_{k\left(U_{n}\right)},(n \geq 1)$. Clearly, $U_{n} \in \xi\left(U_{n+1}\right)$, whence, by virtue of (1) and C7(a) we have

$$
\begin{equation*}
R_{n} \subset R_{n+1} \text { and } \alpha_{n} \leq d_{n+1} \tag{2}
\end{equation*}
$$

Since $U_{n} \cap U_{n+2} \neq \emptyset$ and $U_{n+2} \subset k\left(U_{n+2}\right), U_{n} \in \mathcal{F}\left(k\left(U_{n+2}\right)\right)$. Hence, by C7(a), $R\left(U_{n}\right) \subset R_{n+2}$. Condition C7(a) yields also that $R_{n} \subset R\left(U_{n}\right)$. The last two inclusions, along with the inclusion in (2), imply that $U\left\{R\left(U_{n}\right): n \geq 1\right\}=U\left\{R_{n}: n \geq l\right\}$. Denote this u_{-} nion by R. For each $n \geq 1$ let us define the point $x_{n} \in X$ from
the oonditions: $p_{\alpha}\left(x_{n}\right)=p_{\alpha}\left(a\left(U_{n}\right)\right)$ if $\propto \in R\left(U_{n}\right), p_{\alpha}\left(x_{n}\right)=$ $=P_{\infty}(x)$ if $\propto \in A \backslash R\left(U_{n}\right), A s B\left(U_{n}\right) \subset R\left(U_{n}\right)$, so $x_{n} \in P_{B\left(U_{n}\right)}^{-1}$
$P_{B\left(U_{n}\right)}\left(a\left(U_{n}\right)\right)$, and hence $x_{n} \in U_{n} \cap P$ (see C6). Then from $C B(b)$ and (2) we infer that $\lim _{n \rightarrow \infty} d_{n}\left(p_{R_{m}}(x), p_{R_{m}}\left(x_{n}\right)\right)=0$ for each $m \geq 1$. Therefore, by C7(b), $P_{R_{m}}(x)=\lim _{m \rightarrow \infty} P_{R_{m}}\left(x_{n}\right)$, and thus $p_{R}(x)=\lim _{m \rightarrow \infty} p_{R}\left(x_{n}\right)$. Since $p_{\infty}\left(x_{n}\right)=p_{\infty}(x)$ for $\propto \in A \backslash R$, we have $x=\lim _{n \rightarrow \infty} x_{n}$. As all $x_{n} \in$ belong to F and F is olosed, $x \in F$. This contradicts the ascumption $x \in I \backslash P$.

Each space $X_{\alpha<}$ being metric, there is a σ-discrete base in X_{α}. Applying this fact, one readily shows that an open aubset of X having a countable type is a union of a σ-discrete family of open f-oubes. By virtue of c2, every $U \in \lambda^{*}$ ham a countable type, so that for it there exists a σ-discrete family $\psi(U)$ of open f-cubes such that $U \psi(U)=U$. Condition Cl implies that the family λ^{*} is open and σ-discrete. Since $U \lambda^{*}=I \backslash F$, we oonclude that $\lambda=U\left\{\Psi(\mathbb{U}): \mathbb{U} \in \lambda^{*}\right\}$ is the family sought for.

Let us prove (ii). Put $\mu^{*}=U\left\{\mu_{n} \mathrm{n} \geq 1\right\}$. Let us cheok that $U \mu^{*}=$ Int F. The inclusion $U \mu^{*} \subset$ Int F follows from C3. Take an $x \in F \backslash U \mu^{*}$. To prove the desired equality, we must show that x is an accumulation point of $X \backslash P$. It is readily seen that for each n there exists a set $U_{n} \in \nu_{n}$ which contains x. Conducting further reasonings similar to those in the proof of (1), one can find a sequence $\left\{x_{n}\right\} \subset X \backslash F$ converging to x (the only difference from the former reasoninge is that now the points $a^{\prime}(J)$ are used in place of $\left.a(U)\right)$. Arguing as in the prool of (1) (see the transition from λ^{*} to λ), one can construct a σ-disorete family μ of open f-oubes such
that $U \mu=U \mu^{*}$. This onds the proof of (ii).
Now let all X_{α} 's be zero-dimensional. Then (see, e.g., [10]), 1) every open cover of X has a clopen (= closed-andopen) diserete refinement, 2) if CCA is countable, then dim $X_{C}=0$. Making use of these properties, the construction in the case of zero-dimensional $X_{\infty}{ }^{\prime}$ a can be carried out in such a way that the following atrengthening of condition Cl holds:
$C 1_{0}$. $\varphi_{n}=\lambda_{n} U \mu_{n} U \nu_{n}$ is a discrete family of olopen sets.

Therefore in the present case one can consider all members of λ_{n} (and thus, of λ^{*}) to be olopen. Since a rero-dimensional metric apace has a σ-disorete base consisting of olopen sets, the members of $\psi(U), U \in \lambda^{*}$, can be assumed to be clopen. Then λ also consists of olopen sets. The analogous statement concerning μ is proved similarly. Thus, (iii) is eatablished.

Proof of Theorem 2. We use the main construction aged n. One can muppose that it has been carried out so that conditions $C 1_{0}$ and C2 - C8 are satisfied.
$F_{1 x}$ an $n \geq 1$ and a set ${U_{n}} \in \lambda_{n}$. Adopt the notation $\nabla_{n}=$ $\left.=k\left(U_{n}\right), Q\left(V_{n}\right)=P_{B\left(V_{n}\right.}^{-1}\right)^{P_{B}\left(V_{n}\right)}\left(a\left(V_{n}\right)\right)$. For every point $x \in J_{n}$ let us define the point $y_{X} \in X$ from the conditions: $p_{\mathcal{C}}\left(y_{X}\right)=$ $=p_{\alpha}\left(a\left(V_{n}\right)\right)$ if $\alpha \in R\left(V_{n}\right), p_{\alpha}\left(y_{x}\right)=p_{\alpha}(x)$ if $\propto \in A \backslash R\left(V_{n}\right)$. By virtue of C7(a) and C6, $R\left(\nabla_{n}\right) \supset B\left(\nabla_{n}\right)$ and $Q\left(\nabla_{n}\right) \subset V_{n} \cap P$, so that
(3)

$$
X_{\mathbf{x}} \in \nabla_{\mathbf{n}} \cap F
$$

Put $r(x)=x$ if $x \in P$ and $r(x)=y_{x}$ if $x \in X \backslash F$. Let us show that the mapping r is defined on $X \backslash F$ correctiy. Note that $U \lambda_{m}$ is disjoint from $U \lambda_{n}$ for $m \neq n$. Indeed, if, for instance, $m>n$, by $C 4$ we have $U \lambda_{m} \subset U \nu_{n}$, whereas $U \nu_{n}$ is disjoint from $U \lambda_{n}$. In addition, the families λ_{n} consist of disjoint sets and - as it was established when proving Theorem 1(i) - in total cover $X \backslash F$.
 $\subset \nabla_{n} \in \nu_{n-1}$ and ν_{n-1} is σ-discrete, we get that the family $\Theta=\left\{Q\left(V_{n}\right): V_{n} \in \nu_{n-1}, n=1,2, \ldots\right\}$ is σ-discrete as well. It is readily seen that $r(X \backslash F)=U \Theta$, which proves (c).

Let us verify that r is a c-mapping. Let $S=\left\{x_{n}\right\} \in \mathcal{Y}(X)$ and $x=\lim _{n \rightarrow \infty} X_{n}$. We shall consider the case when $x \in F,\left\{x_{n}\right\} \subset$ $C X \backslash P$ (other cases either are trivial or come to this one).

Por every point x_{n} there exists a (unique) member of λ^{*} which contains it. Let it be a set $U_{i_{n}} \in \lambda_{i_{n}}$. Put $W_{n}=k\left(U_{i_{n}}\right)$. The points x_{n} and $r\left(x_{n}\right)$ being contained in W_{n} (see $C 8(a)$ and (3)), it follows from C8(b) that $d_{k}\left(W_{n}\right)\left(x_{n}, r\left(x_{n}\right)\right)<1 /\left(i_{n}-1\right)$ for $1_{n}>1$. According to the construction, for every $U \in \nu_{m}$, $m \geq 0$, we have $R(X) \subset R(U)$ and $d_{X} \leq d_{U}\left(R(X)\right.$ and d_{X} were defined at the initial step of induction). Taking $k\left(W_{n}\right)$ as U,we conclude that $d_{X}\left(x_{n}, r\left(x_{n}\right)\right)<1 /\left(1_{n}-1\right)$. The condition $x=\lim _{n \rightarrow \infty} x_{n}$ implies that the sequence $\left\{i_{n}\right\}$ increases unboundedly, whence $\lim _{n \rightarrow \infty} d_{x}\left(x_{n}, r\left(x_{n}\right)\right)=0$. Therefore, by C7(b), $p_{R(X)}(x)=$ $=\lim _{n \rightarrow \infty} p_{R(X)}\left(x_{n}\right)$. Since $\tilde{A} \subset R(X)$, we infer that $p_{A}(x)=$ $=\lim _{n \rightarrow \infty} p_{A}\left(x_{n}\right)$. Let R be the union of all the sets $R\left(W_{n}\right)$. Since each $R\left(W_{n}\right)$ is countable, then so is R. From the definition of r it follows that $p_{A \backslash R}\left(x_{n}\right)=p_{A \backslash R}(x)$ for each $n_{\text {. Put }} A_{r}(S)=$
$=\tilde{\pi} U(A \backslash R)$. It is clear then that $p_{\alpha} r(x)=p_{\alpha}(x)=$

- $\lim _{n \rightarrow \infty} P_{\alpha} r\left(X_{n}\right)$ for $\propto \in A_{r}(S)$. We also havez $\left|A \backslash A_{r}(S)\right|=$
$=|R \backslash \tilde{A}| \leq|R| \leq S_{0}$. The theoren is proved.

Remarks. 1. The main construction described above is applicable not only to the whole Cartesian product but also to its appropriate aubsets. This onables us to obtain a generalisation of Theorem 2. To mtate it, we shall need the following

Deifinition. Let $X=\Pi\left\{X_{\alpha} z \propto \in A\right\}$. A set $Y \subset X$ is asid to be x_{0} convex, provided that for any points $y_{1}, y_{2} \in Y$ and any $B \subset A$ such that $|B| \leq f_{0}$ the point $x \in X$ which is defined from the conditions: $p_{B}(x)=p_{B}\left(y_{1}\right), p_{A \backslash B}(x)=p_{A \backslash B}\left(y_{2}\right)$ belonge to $Y_{\text {. }}$

Examples of Hooconvex aubsets of a Cartesian product are $\Sigma_{\tau-p r o d u c t s}$ for all $\tau \geq \mu_{0}$, σ-product, and defined in the case of metric factors a \sum_{*}-product (the definitions see, e.g., in $[9,11]$).

Let X and F be the same as in Theorem 2. The atatement of this theorem will remain true if one replaces in it X by eny its L $_{0}$-convex subset $Y, F-$ by $F_{Y}=F \cap Y \neq \varnothing$, and itm (c) by the following: $r\left(Y \backslash P_{Y}\right)$ is the union of a σ-discrete famiiy each member of which is the intersection of an elementary S_{0}-cube with Y.

The proof of this result is actually the same as of Theorem 2. Let us show where in the proof the 5_{0}-convexity of Y is mployed. First, when proving Theorem 2, we used the equality $U \lambda^{*}=X \backslash F$, which ensures that the retraction is defined on the whole X. It was established in the proof of Theorem 1(i). Proving the analogous equality for $X \backslash F_{Y}$, we need the x_{0}-convexity of Y to obtain that the points x_{n} (introduced in
the course of proving Theorem $1(i)$) belong to Y. Besides, defining the mapping r on Y, weed all the pointa y_{x} (1.e., the range of x) to be contained in Y. This is also guaranteed by the H_{0}-convexity of Y.
2. The family μ indicated in Theorem $1(i 1)$ giver an inner approximation of the set F. Another approximation of that kind is expressed by

Theorem 3. Let X be a Cartesian product of metric apaces and $F=c \ell U_{\gamma}$, where γ is a family of \boldsymbol{H}_{0}-ouber in $X_{\text {. Then }}$ there exdats a σ-discrete subfamily σ^{σ} of γ such that $F=$ $=0 \ell$ Uor.

Theorem 3 can be established by applying a known construotion due to A.M. Gleason (Cf. the proof of Theorem 1 of [2]). In the proof only the existence of a σ-discrete network in factors of X is used.
3. Suppose that in Theorems 1 and 3 all factors of X have the waight $\leq \tau\left(\tau \geq \mu_{0}\right)$. Then the families λ, μ and γ have cardinality $\leq \tau$. This follows immediately from the fact that every discrete family of non-empty τ-cubes in a Cartesian product of spacen of the weight $\leq \tau$ has cardinality $\leq \tau$ (see [3], Th. 3).
III. Let X be a Cartesian product of zero-dimensional metric spaces and F a closed Gg-subset of X. We shall present now an example which shows that there may not exist a sequentially continuous mapping $r: X \rightarrow P$ such that $r \mid P=1 d_{F}$.

For every integer $n \geq 1$ fix a certain set J^{n} of real numbere such that $\left|J^{n}\right|=N_{1}$ and $1 /(n+1)<x<1 / n$ for each $x \in J^{n}$.
O_{n} the set $J=\{0\} \cup \cup\left\{J^{n}: n \geq 1\right\}$, introduce the metric $\hat{\rho}$ by letting $\hat{\rho}(x, y)=x+y$ if $x \neq y$ and $\hat{\rho}(x, x)=0$. The metric epace $(J, \hat{\varsigma})$ denote by \hat{J}. clearly, all points of \hat{J} except zero are isolated, and the neighbourhoods of zero in \hat{J} are the same as in the Euclidean topology.

Let $D^{-\mathrm{H}_{1}}=\Pi\left\{D_{\alpha}: \alpha<\omega_{1}\right\}$, where each D_{α} is the two-point discrete space $\left\{0_{\alpha}, I_{\alpha}\right\}$. Put $X=\hat{J} \times D^{5_{1}}$. Obviously, all the factors of X are zero-dimensional metric apaces. Let π_{∞} : $: D^{\text {人H }^{\prime}} \rightarrow D_{\propto}, p_{1}: X \rightarrow \hat{J}$ and $p_{2}: X \rightarrow D^{+{ }_{D}} 1$ be projections. Let ue number the points of each J^{n} by countable ordinale: $J^{n}=$ $=\left\{j_{\beta}^{n}: \beta<\omega_{1}\right\}$. For $\beta<\omega_{1}$ set $s_{\beta}=\left\{a \in D^{\nu^{5}} 1_{2} \pi_{\alpha}(a)=o_{\alpha}\right.$ for all $\alpha<\beta\}$ and $F_{\beta}^{n}=\left\{x \in X_{i f}(x)=j_{\beta}^{n}, p_{2}(x) \in S_{\beta}\right\}$. Let $F=p_{1}^{-1}(0) \cup \cup\left\{p_{\beta}^{n}\right.$ sn $\left.\geq 1, \beta<\omega_{1}\right\}$. It is not hard to see that F is a closed G_{δ}-subset of X.

Let us prove that there is no sequentially continuoue mapping $F s X P$ such that $r \mid F=i d_{F}$. Let, on the contraxy, such an r exist. Put $Y=\left\{x \in X_{z}\left|\left\{\propto \in A: \pi_{\infty} p_{2}(x) \neq 0_{\alpha}\right\}\right| \leq 1\right\}$. Hote that Y is closed in X. Since Y is contained in the Σ-product of metric spaces \hat{J} and $D_{\alpha}, \propto<\omega_{1}$, which is a Frohet apece (see [10], Bx. 3.10.D), Y is also a Fréchet space. Hence, $\mathrm{F} \mid \mathrm{Y}$ - being a sequentially continuous mapping of a Frochet apae is contimous. Let $\Phi_{\beta}^{n}=\Gamma_{\beta}^{n} \cap y$. The set Φ_{β}^{n} is open in $F \cap Y$, because j_{β}^{n} is an isolated point of \hat{J}, and $r\left(\Phi_{\beta}^{n}\right)=$ $=\Phi_{\beta}^{n}$. Hence, by the continuity of $r \mid y$, each point $y \in \Phi_{\beta}^{n}$ has a neighbourhood $O y$ in Y euch that $p_{1}\left(O_{y}\right)=\left\{j_{\beta}^{n}\right\}$ and $r(O y) \subset \Phi_{\beta}^{n}$. One can suppose that $O y$ has the form $O^{*} y \cap Y_{0}$ where $O^{*} y$ is open in $X, P_{1}\left(O^{*} y\right)=\left\{j_{\beta}^{n}\right\}$ and the set $K(y)=$ $=\left\{\alpha \in A: \pi_{\alpha} p_{2}\left(O^{*} y\right) \neq D_{\alpha}\right\}$ is finite. The set $p_{1}^{-1}\left(j_{\beta}^{n}\right)$, homeomorphic to S_{β}, is compact, and so is ite closed mbeppec Φ_{β}^{n}.

Choose from the open cover $\left\{0 y s \mathcal{E}^{\prime} \Phi_{\beta}^{n}\right\}$ of Φ_{β}^{n} a inite subeover ψ_{β}^{n} and put $0_{\beta}^{n}=U \psi_{\beta}^{n}, K_{\beta}^{n}=U\left\{K(y): 0 y \in \psi_{\beta}^{n}\right\}$. The set X_{β}^{n} is innite. We have: 1) $p_{1}\left(0_{\beta}^{n}\right)=\left\{j_{\beta}^{n}\right\}, 2$) $p_{2}\left(0_{\beta}^{n}\right)$ is the interseotion of a certain K_{β}^{n}-distinguished set with Y, 3) $r\left(0_{\beta}^{n}\right)=\Phi_{\beta}^{n}$. This implies that for $y \in Y$ we have
(*) if $p_{1}(y)=j_{\beta}^{n}$ and $\pi_{\alpha} p_{2}(y)=o_{\alpha}$ for all $\alpha \in K_{\beta}^{n}$, then $r(y) \in \Phi_{\beta}^{n}$.

For $\beta<\omega_{1} \operatorname{pur} \mathbb{R}_{\beta}^{\mathbf{n}}=\{\propto: \alpha<\beta\} \backslash \mathbf{x}_{\beta}^{\mathbf{n}}$ 。
Leman. There exist equences $n_{1}<n_{2}<\ldots$ of natural numbere and $\beta_{1}, \beta_{2}, \ldots$ of countable ordinals such that $\cap\left\{R_{\beta_{1}}^{n_{1}}{ }^{21} \geq 1\right\} \neq \varnothing$.

Suppose that the leama has been already proved. Let $\gamma \in R_{\beta_{i}}^{n_{i}}$ for all $1 \geq 1$. Define the point $t \in D^{d^{4} 1}$ from the conditions: $\pi_{\alpha}(t)=0_{\alpha}$ if $\alpha \neq \gamma, \pi_{\gamma}(t)=I_{\gamma}$. Let us consider the following points of $Y_{i} z=(0, t)$ and $\varepsilon_{i}=\left(j_{\beta_{1}}, t\right), i \geq 1$. obviously, $z=\lim _{i \rightarrow \infty} z_{i}$. Since $\gamma \notin K_{\beta_{1}}^{n_{1}}$, the definition of t implies that $\pi_{\alpha} p_{2}\left(\Sigma_{1}\right)=\pi_{\alpha}(t)=0_{\alpha}$ for each $\alpha \in K_{\beta_{1}}^{n_{1}}$. Then, according to $(*), r\left(z_{i}\right) \in \Phi_{\beta_{i}}^{n_{i}}$. A: $\gamma<\beta_{i}$ and $p_{2} r\left(z_{i}\right) \in S_{\beta_{i}}$, by the definition of $s_{\beta_{1}}$ we have $\pi_{\gamma} p_{2} r\left(s_{1}\right)=o_{\gamma}$. On the other hand, $\pi_{\gamma} p_{2} r(z)=\pi_{\gamma} p_{2}(z)=\pi_{\gamma}(t)=1_{\gamma}$. Since the sem
 $r \mid Y$ too, cannot be continuous at the point z. The contradietion obtained completen the proof.

It remains to prove the lemma. Suppose that it does not hold. Then for every $\gamma<\omega_{1}$ there exiets a natural muber
$n(\gamma)$ such that $\gamma \neq R_{\beta}^{n}$ for all $n \geq n(\gamma)$ and $\beta<\omega_{1}$. This implies that $\gamma \in K_{\beta}^{n}$ whenever $\mathbf{n} \geq \mathbf{n}(\gamma)$ and $\gamma<\beta$. As $\left\{\gamma: \gamma<\omega_{1}\right\}$ is uncountable, there exists an much that the set $M=\left\{\gamma^{\prime}: \gamma<\omega_{1}, n(\gamma)=m\right\}$ is uncountable. Take m LCM with $|L|=r_{0}$ and a $\sigma^{\prime} \in M$ such that $\gamma<\sigma^{r}$ for all $\gamma \in L_{\text {. }}$ Clearly, $\gamma \in \mathbb{E}_{\delta^{j}}^{m}$ for each $\gamma \in L$. This contradicts the finiteness of $\mathrm{K}_{\sigma^{\prime}}^{\mathrm{m}}$. The lemma is proved.

In conclusion we take the opportunity of indioating that the mapping x in Theorem 1 of [1] is a c-mapping - not sequentially continuous as it was stated. Theorem 2 of [1], whioh bases itself on that theorem, does not hold. To exclude these incorrect statements, ohanges were made at our request in English translation of [1] (Soviet Math. Dokl. 21(1980), 303-306).

Referencea

[1] В.С. КЛЕБАНОВ: О подпространствах проиаведений метрических пространств, Доклады АН СССР 250(1980), 1302-1306.
[2] R. POL, E. PUZIO-POL: Remarks on Cartesian produots, Frund. Math. 93(1976), 57-69.
[3] R. ENGELKKING: Cartesian products and dyadic spaces, Fund. Math. 57(1965), 287-304.
[4] Е.В. пЕпин: Веществениме функцим канонические мпожества т тихововских промяведениях м топодогмчеких группах, успехп Мат. Hayх 31(1976), вмд. 6, 17-27.
[5] Е.В. пепин: 0 топологмчесих промеведения, группах м повом кдассе простравств более өбиих, чем метрмчесхие, Доххадм АН СССР 226'1976), 527-529.
[6] A.H. STONE: Non-separable Borel sets, Rozprawy Mat. 28 (1962), 3-40.
[7] W. SIERPIfSKI: Sur les projections des ensembles complémentaires aux onsembles (A), Fund. Math. 11(1928), 117-122.
[8] В.А. Ефу 14(1965), 211-247.
[9] С.П. ГУльНО: О своиствах мпохеств, лежаиих в \sum-проиаведемиях, Дөклады АН СССР $237(1977)$, 505-508.
[10] R. ENGEELKING: General topology, PWN, Warssawa, 1977.
[11] H.H. CORSON: Formality in subsets of products, Amer. Journ. of Math. 81(1959), 785-796.

IVI AR SSSR, 127412 Momcow, USSR
(Oblatum 27.8. 1982)

