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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLiNAE 
23,4 (1982) 

REMARKS ON SUBSETS OF CARTESIAN PRODUCTS 
OF METRIC SPACES 
Boris S. KLEBANOV 

Abstract? In the paper, resul t s on the structure of cer­
tain suBs¥ie*"of Cartesian products of metric spaces are pre­
sented* We give an affirmative answer to ,a question posed in 
121. The problem of extending the Sierpiriski-Stone theorem i s 
considered, too• 

Key words t Metric space, Cartesian product, Gj - s e t , 
re tract ion. 

Class i f icat ion! 54B10, 54E35, 54C15 

I . Problems which are considered in the paper are close 

to those treated in sections l t 2 of our note E l l . Here we ge­

neral ize some resul ts of CU. Let us note that the main con­

struction used in the present paper i s essent ia l ly the same 

as in [13. In this paper, we give a posit ive answer to a ques­

tion posed by R. Pol and E. Puzio-Pol £ 2 ] . We also examine 

the question of extending the Sierpinski-Stone theorem concer­

ning retractions of zero-dimensional x ' metric spaces over 

Cartesian products of such spaces. An example presented in the 

f inal section shows that a closed Gj-* -subset of a Cartesian 

product of zero-dimensional metric spaces need not be i t s re ­

trac t . 

x) In the paper zero-dimensionality i s understood in the sen­
se of covering dimension dim. 
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Let X be the Cartesian product of s e t s X^ , oC e. A and 
Yo6c \c * o r °° e *• * o l l o w i n S [ 3 , 2 j , the subset Y -

• n-t Y^ t oG€ Aj of X w i l l be ca l led a cube. By D(Y) we sha l l 

denote the se t^ooe AtY^^X^} • I f ID(Y)| *k tf for some 

t Z. i^0 (resp. D(Y) i s f i n i t e ) , then Y i s ca l led a -xr-oube 

(resp. an f -cube) . (In this paper we shal l deal only with *K -

oubes and f-cubes.) A cube Y i s ca l led elementary i f J Y l̂ * 1 

for a l l oC e D(Y). 

In E3, 23 the s e t s which are the closures of unions of 

<t-cubes in X were examined in the cases when X i s a Cartesi­

an product of spaces the weight or the character of which does 

not exoeed some cardinal number. We impose on the factors a 

re s tr i c t ion of other kindt metrizabil i ty* the object of our 

study are the s e t s which are the closures of unions of Jrf0-

cubes in Cartesian products of metrlo spaces. 

Let X • (1 i X^ t oC c Al and Be A. By Xg we denote VI i X^ t 

t oce B}$ p^ tX—>*£ and PgtX—> Xg are projections. A se t 

UcX i s cal led B-distinguished i f U - PgX(U). Following [43 , 

we say that a s e t UcX has a countable type i f U i s B-dist in­

guished for some countable B. 

The union of a family -y of s e t s i s denoted by U 7 ; 

Int S denotes the interior of a s e t S. Since there i s a d i f f e ­

rence in the terminology, l e t us note that we rank f i n i t e s e t s 

among the countable ones. 

Let us proceed to formulating theorems (the proofs w i l l 

be presented in sect ion I I ) . 

Theorem 1 . Let X »fl-CXo0toC€ A$, where eyery X^ i s a 

metrio space, and l e t FcX be the closure of a union of -tfQ-
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cubes* Then 

(i) there exists a €?-discrete family X of open f-cu-

bes such that \JX m X\ P, 

(ii) there exists a e'-discrete family ru. of open f-cu-

bes such that U^a » Int F, 

(iii) if all the spaces X ^ are teero-dimensional, then 

Jt and u> consist of closed-and-open sets* 

In connection with this theorem let us make the following 

remark* Let X be a Cartesian product of topological spaces* 

Clearly, a Qj -subset of X is a union of JKQ-cubes* On the ot­

her hand* if all factors of X are spaces of a countable pseu-

docharacter, then an j« -cube in X is a union of G^ -sets* 

Hence, the set P above can be defined equlvalently as the clo­

sure of a union of G^-sets in X. 

Using properties of X stated in Theorem l(i), one can 

obtain 

Corollary* Let X be a Cartesian product of metric spa­

ces and let P e l be the closure of a union of in -cubes* Then 

P is a functionally closed subset of X. 

To prove this corollary, note first that an open f-cube 

in a Cartesian product of metric spaces is functionally open* 

Thus, the family % consists of functionally open sets* Since 

functional openess is preserved by the operations of taking 

the union of a discrete family and the countable union, UJl 

is a functionally open set* Hence P « X \ UX is functional­

ly closed in X. 

This corollary gives a positive answer to a question for­

mulated in [2 3* Let us note also that it generalizes Theorem 

1 of 153. 
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A.H. Stone [61, having strengthened a result of W. Sier-

pinski C7J, proved that if X is a metric space, dim X - 0, 

and P is a closed subset x' of Xf then there exists a continu­

ous mapping r:X—:> P such that the restriction rlP is the iden­

tity mapping (i.e., r is a retraction). This retraction has 

the following property: the set r(X\P) is ^-discrete in X. 

We became interested in the question whether a similar 

statement holds for oertain closed subsets of Cartesian pro­

ducts of zero-dimensional metric spaces. Plrst of all, it 

should be found out of what sort these subsets may be. It is 

dear that not any suits (otherwise each zero-dimensional com­

pact Hausdorff space, being homeomorphic to a subs pace of a 

oertain Cantor cube D , would be dyadic, which Is wrong)* On 

the other hand, if a closed subset of such a product has a 

countable type, then it is a retract of the product. Indeed, 

let X -n-tX^joGe k\f where all X^'s are zero-dimensional 

metric spaces, P is olosed in X and P • p£ PC(P) for some 

countable CcA. Since pc(P) is closed in the zero-dimensional 

metric space X^f by the Sierpinski-Stone theorem there exists 

a retraction r of XQ onto pc(P). Obviously, the mapping 

rxidw, where Z » %\c» *s a retraction of X onto P# 

By virtue of a theorem of R. Engelking [33 (a less gene­

ral formulation of it was given by B.A. Efimov 181), if X is 

a Cartesian product of spaces of a countable weight and Pc X 

is the closure of a union of J* -cubes, then P has a countab-
o F 

l e type in X» Therefore, i f X « Fl iX-s * oce A$, where every 

x) All subsets up to the end of the section are assumed to be 
non-empty. 
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X^ i s a metric space of a countable weight with dim X ^ - 0, 

and PcX i s the olosure of a union of K -cubes* then 9 i s a 

retract of X* In view of the l a s t assertion i t i s natural to 

put the questions i s the res tr ic t ion imposed in i t on the 

weight of the factors essential? Below, in sect ion I II f an ex­

ample i s presented which shows that the answer i s posit ive* 

Moreover., we establ ish that in the case when not a l l factors 

have a countable weight even a sequentially continuous mapping 

rtT—>P with riP • idy May not exist* 

S t i l l , for X being a Cartesian product of sere-dimensional 

metric spaces and PcX being the olosure of a union of -K -cu­

bes , the statement that generalizes the Sierpinski-Stone theo­

rem i s succeeded in proving* Por convenience s sake of i t s for­

mulation l e t us introduce f i r s t the notion of a c-mapping. 

Let X * r K X ^ i oce A] and YcX* By Jp (X) we sha l l deno­

te the se t of a l l convergent sequences of points of the space 

¥• A mapping fsX—> Z, where Z c x f w i l l be ca l l ed a c-mapping 

i f for each sequence S • *£yn-*
 e*P (Y) there ex i s t s a s e t 

A f ( S ) c A such that A \ A#(S) i s countable and p , (lim f (y„)) » A x <*- rn,-+GQ n 

« lim p^ f(y„) for oc e A#(S)# 
rn^co °^ n i 

Clearly, every sequentially continuous mapping of Y to Z 

i s a o-mapping* 
Theorem 2* Let X • PliX^ . o t e A] f where every X^ i s a 

zero-dimensional metric space* and l e t PcX be the olosure ot 

a union of -K -cubes. Then for each countable Ac A there ex i s t s o 
a c-mapping rsX—->P such that 

(a) AcA r (S) for a l l S e j f (X) f 

(b) riP « idp. 
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(o) r ( X \ p ) i s the union of a ^ -d i scre te family of e-

lementary j£ -cubes . 

Since the sequential continuity of a mapping i s equiva­

lent to the continuity when the domain i s a metric space, the 

Sierp inski-Stone theorem follows from Theorem 2 i f one takes 

one-element s e t s as A and X. Note that, by virtue of the co­

rol lary s tated above, the s e t ? indicated in Theorem 2 la a 

G^-eubset of X. 

I I • In the proof of Theorems 1 and 2 one common const­

ruction i s used. This construction i s similar to (and was sug­

gested by) that due to S.P. Gul'ko (see the proof of Theorem 

1 from C93). 

Let X be the Cartesian product of metric spaces X ^ , 

ocs e. A, QcX be the union of J^-cubes, and P « o~£ Q. We shal l 

assume that P4=Xf P-^0. *or every countable Be A f i x a metrio 

5&2 on the metrizable spaoe X« and define the pseu dome trio d-g 

on X by the formula &%(%,?) • ^^PgCxJtPgCy)). 

The Main Construction. Por an integer n » 0 f l f . . . l e t 

uo construct by induction the families &nf p>n and V n of 

subsets of X such that the following conditions CI - C8 hold: 

CI. <pn m Xn U(ttn U -p i s a family of open s e t s , both 

loca l ly f i n i t e and ^ - d i s c r e t e | 

02. member© of <pn have a countable type* 

03 . l e t U € 9 n i then V c a n i f ufl p * 0, U e p. i f 

U c p f Ufi v n i f 0HP4=0 and U M - M f 

04. S>0 - it\t for n > l «pQ ±B a cover of U >> . 

which refines v *-» n—i 
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C5. for each U e 3>n, n ? l , the fsmi.l:y £ (U) • <il e ^ n . x t 

s u n v ^ 0 } i s f i n i t e ; 

C6# to each U e ^ the points a(U), a*(U)eU and a coun­

table s e t B(U)c A are assigned such that Ptam)PBfTp(a(u)) c 

cUOP and % ( r j ) P B ( 0 ) ( a # ( u ) ) c U N P # 

C7« to each U e >>_, a countable s e t R(U)cA and a pseu-

dome tr ie a» onX are assigned such that 

(a) for n ^ l , R(U) - U-(R(V)tV £ f (U)l U B(U) and d-j -

« max^dg^-jv, max4dy.iV€ £(U)3$ > 

(b) dtJ(x>y) - 0 i f f P R ( U ) ( x ) • PR(U)^y)» a n d t h e m e t r l c 

on X^cu) * tna t naturally corresponds to d-j induees on Xgfrn t h e 

exis t ing topology, 

(o) i f U 'c )>n, t h e n U n u ' i s R(U)-distinguished* 

C8. to each Ue&nU~>>n r n Z l , the s e t k(U) e -P i« 

assigned such that 

(a) Uck(U), 

(b) if k(UJ - V, U B *n, then U is R(V)-dietinguished 

and the dy-di©meter of U is less than 1/n. 

The initial step of induction. Put %Q » (x*Q » i0}9 

i> m -ixl. Choose an arbitrary point a(X)cQ. Prom the defini­

tion of Q it follows that there is a countable C(X)cA suoh 

that PcfX)I>CfX)^a^X))c ̂ * Takill8 some a'(X)eX\Pt we find 

then, using the openess of Xs*P, a finite D(X)c A suoh that 

p5^x)PD(x)(a'(X))cX\P. Define B(X) as C(X)UD(X). Let t be 

some countable subset of A. Put R(X) • B(X)UX (the inclusion 

^cR(X) will be needed for the proof of Theorem 2) and d^ • 

• % ( ! ) • 

Assume that for all n.£m the construction has been carried 
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out 00 that conditions 01 - C8 are s a t i s f i e d . Let us f i x a 

U 6 i J and put ^(U) »{Uf .u ' sU*e ^m\* The family ^(U) i s 

l oca l ly f i n i t e and consists of R(U)-distinguished se t s (see 

C7(c))# Let cT'(U) be an open cover of X by R(U)-distinguish­

ed se ts each of which intersects at most a f i n i t e number of 

elements of ^ ( U ) # I t i s known that every open cover of a 

metric space has an open (covering) refinement which i s both 

loca l ly f i n i t e and S'-disorete. Using this fac t , one can r e ­

adily find an open refinement <-C(U) of cT(U) such that; 

1) cf'-jOO coneioto of R(U)-di0tingui0hed s e t s , io loca l ly f i ­

n i t e and <o-discrete, 2) d^-diameter of every member of 

cf^OJ) i s l e s s than l / (m+l ) . The family ^(U) »4Uf)U'4=0j 

*U'e <f^{Vl)\ i s l oca l ly f i n i t e , a'-dioorete, coneioto of open 

R(Undistinguished s e t s , and U^r(U) » U# One may assume that 

a l l members of }> are well-ordered somehow by a re lat ion <. . 
\ m * 

If V cjf(U), V v P + 0 and there is no U ^ U such that V e 
e T^)» then w* J*1* ^ v ) " u* 

Let T-n^i • U-C-x(U)sU € >>m3» Clearly, we have U<ymifl » 

- U>> . Since ->>m and each of the families #-(U) io locally 

finite and e'-discrete, so io <3>
m^im define ^ ,, ("m+l an^ 

i> - in accordance with C3« Let us observe that if ̂ m +i *ur-

ned out to be empty, there is no need in continuing inducti­

on, and the construction should be ended* For every U e v -

we have Uf)P4=0- therefore UOQ4 £0* Take an a(U)eU0Q. Aa U 

io open and Q is a union of ->^0-cubes, there exist a finite 

L(U)cl and a countable M(U)cA such that I^(0)Pil(rj)(
a(U))c U 

and % ( U ) % ( U ) ( a ( t J ) ) c Q # Thm - >C(U) I >C(U) ( m ( U ) ) c t , n Q , where 

C(U) » L(U)UM(U). Since U \ f io non-empty and open, there 
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are a point a'(U)sU\F and a finite set D(U)cA suoh that 

pD(*u) pD(u) ( a # ( 0 ) ) c U N f # B***«a*iar-' the *et BCU) - c(u)UD(U) 

satisfies C6. 

From the construction of ^ m + 1 it follows that the family 

£(U) is finite, and hence, taking into account the correspon­

ding inductive assumptions, R(U) is countable (the definitions 

of | (U) and R(U) see in C5 and C7(a) resp.). Finally, let us 

define the pseudometrio d-j as indicated in C7(a). This comple­

tes the construction for n « m+1. It is not hard to dee that 

CI - C8 are satisfied for this n. Thus, the induction is car­

ried out. 

One easily verifies that for n ^l 

(1) if U eS>n and V e f (U), then k(V) c f (k(U)). 

Indeed, Y e ̂  (U) means that u n v + 0 f and since Vc k(V) and 

Uck(U) (see C8(a))f then k(V)0 k(U)4=0f i.e., k(V) € £ (k(U)). 

Proof of Theorem 1 . We sha l l begin with the proof of ( i ) . 

Put X** OiXnm>l}. By virtue of C3f U.7L*c X \ F . We shal l 

show that U^J* * X \ F . I»etf on the contrary, a point x c X \ F 

be not covered by X* • Then, by C4 and C3f for each n there 

ex i s t s a s e t U 6 >>n such that x e U & . Let B^ » R(k(Un)) and 

dn « d-^-j y (n -T l ) . Clearly, Un e f (u*n+1)» whence, by virtue 

of (1) and C7(a) we have 

(2) \ c V l ^ V ^ n + r 

Since W g + 0 and U n + 2 c k(U n + 2 ) , U f ie f (k (U n + 2 ) ) . 

Hence, by C7(a)# R(Un)c R^^^ Condition C7(a) y ie lds also that 

R c R(U ) . The l a s t two inclus ions , along with the inclusion in 

( 2 ) , imply* that U«(R(Un) msrly » U-CR^m^lT. Denote this u-

nion by R. For eaoh n^ri l e t us define the point x^e X from 
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the conditions i Po6(xn) - P ^ U C ^ ) )
 if ^ e Rt|InJf poC(3Sa> * 

- p^(x) if oG€ ANR(|Jn)# As B(Un)cR(Un), so ^ e p - ^ } 

Pg(0 )(a(^n))f
 and aenee -*fcetfnft* (»•• C6). Then from C8(b) 

and (2) we infer that lim ^ ( P D (x)f PP ( X Q ) ) * ° *
or eacn 

• >1« Therefore, by C7(b)f p-, (x) » lim p^ (x n) t and thus 

pR(x) " ^ a ^ % ( * * ) • s l n 0« P ^ V " *<*(*) * ° r <** A X R f *• 

have x * lim x^. As all i^ B belong to P and P is closed, xeF. 
This contradicts the assumption x e X N P . 

Eaoh space X ^ being metric, there is a ^-discrete base 

in X ^ . Applying this fact, one readily shows that an open sub­

set of X having a countable type is a union of a 6"-discrete 

family of open f-oubes. 3y virtue of C2f every TJ e X* has a 

countable type, so that for it there exists a €f-disorete fa­

mily y(U) of open f-oubes such that UifOJ) « U# Condition 

CI implies that the family Jl* is open and £-discrete. Since 

U a * « X\P f we oonolude that .A- Uiy(TJ)JU e Si*} is the fa­

mily sought for* 

Let us prove (ii). Put (U,* « U<i(U> :n£lj# Let us check 

that (J^*- Int P, The inclusion U p * c Int P follows from 

C3» Take an xeP \ U/u,* . To prove the desired equality, we 

must show that x is an accumulation point of X\ P. It is rea­

dily seen that for eaoh n there exists a set u*n e 3>n which 

contains x. Conducting further reasonings similar to those in 

the proof of (i), one can find a sequence-{x^c x\ P converg­

ing to x (the only difference from the former reasonings is 

that now the points a '(U) are used in place of a (U )>, Arguing 

as in the proof of (i) (see the transition from ft* to A ), 

one can construct a 6-discrete family AA, of open f-cubes such 
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that \J(A, m \J(A*~ „ This ends the proof of ( i i ) . 

How l e t a l l X^ 's be zero-dimensional. Then ( see , e . g . , 

t l 0 3 ) f 1) every open cover of X has a olopen ( • olosed-and-

open) discrete refinement, 2) i f Cc A i s countable, then 

din XQ * 0 . Making use of these properties* the construction 

in the ease of zero-dimensional TidCf 's can be carried out in 

such a way that the following strengthening of condition CI 

holdss 

Cl0* opn • JLn U £cn U T>n i s a discrete family of o lo ­

pen sets* 

Therefore in the present oase one can consider a l l mem­

bers of Xn (and thus, of &* ) to be olopen* Since a eero-di-

mensional me tr io space has a 6 -d isorete base consist ing of 

olopen s e t s , the members of y ( U ) , 0 e X* f can be assumed 

to be olopen. Then X also consis ts of olopen se t s* The ana­

logous statement oonoerning ^ i s proved similarly* Thus, ( i i i ) 

i s established* 

Proof of Theorem 2* We use the main construction eg sin* 
One can suppose that i t has been carried out so that condit i ­
ons CI and C2 - C8 are sat i s f ied* 

o 

Pix a n n 2 1 and a se t TJne X^ Adopt the notation Vn » 

« k(Un) f Q(Vn) - p]£v j p g ^ ) (a (V n ) ) . Por every point x e U n 

l e t us define the point y x e X from the conditions} poC;(yx) * 

- P c c C a ( V ) i f ° ^ e R ( V » Po6^ x ) • Poo<x) i f <*<£ A \ R ( V n ) . 

By virtue of C7(a) and C6f R(Vn)3B(Vn) and Q(Vn)cVnHP f so 

that 

(3) y x ^ v n n p * 
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Put r(x) • x ±f xeF and r(x) • y x ±f x € X \ F. Let us show 

that the mapp±ng r ±s defined on X\ F correotly. Hote that 

l)A m is disjoint from ^ ^ n *or m-=J=n. Indeed, iff for inst-

ancef m>n f by C4 we have ^^m
 c ^ "^n* whereas U S>n is 

disjoint from U/A-. *» addition, the families &n oonsist of 

disjoint sets and - as it was established when proving Theorem 

l(i) - in total cover X\F. 

Clearly, r(u*n) ±s the elementary ^0-cube Q(V n). As Q(Vn)c 
c V n € Vn-1 an^ ^n-1 i0 #-d±sorete, we get that the family 

© * * Q( vn)* Vn 6 ^n-1* n * ^••••J is 6"-discrete as well. It 

is readily seen that r(X\ F) • U ® f which proves (c). 

Let us verify that r is a c-mapping. Let S « -Cx̂ J €)P(Z) 

and x • lim x * We shall consider the case when xeF f £x„} c-
fti+oo i- *-

c X\F (other cases either are trivial or come to this one). 

For every point x^ there exists a (unique) member of X* 

which contains it. Let it be a set VJ « X* . Put Ŵ . « k(u*., ) . 
*n *n n xn 

The points x^ and r ( . 0 being contained in Wn (see C8(a) and 

(3))f it follows from C8(b) that d-^* )(xnfr(xn))<l/(in- 1) 

for i >1. According to the cons true tiont for every tJ € T> f 

m ? 0 , we have R(X)c R(U) and &%-% (R(X) and d^ were defined 

at the initial step of induction). Taking k(Wn) as Ufwe conc­

lude that dx(xnfr(xn))<:l/(in-l). The condition x • 11a x^ 

implies that the sequence O^s increases unboundedly, whence 

liM^ dJ(xnfr(xn)) - 0. Therefore, by C7(b)f PR( X)(X) * 

• l±n PR(x)(3Cil)* Since AcR(X), we infer that P£(x) » 
• 11m pr(-0. Let R be the union of all the sets R(WVI). Since oa-̂ oo -*-n n 

each R(W ) is countable, then so is R. From the definition of 

r it follows that PA\R(*a) * P A N R ^ toT each n # ^ ^ A
r(

s) • 
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• t U ( A \ R ) . I t i s elaar then that P ^ r U ) « p o 0 (x) -

• lim P^J^x,,) for occ A„(S). We also havet ! A \ A (S) | « 

• l R \ A l ^ l R l ^ J ^ 0 . The theorem i s proved. 

Remarks. 1 . The main oonstruetion described above i s 

applicable not only to the whole Cartesian product but also to 

I t s appropriate subsets . This enables us to obtain a generali­

sation of Theorem 2 . To s ta te i t , we shal l need the following 

Def ini t ion. Let X • fl -C X^ toe € A}. A s e t YcX i s said 

to be ^ -convex, provided that for any points y l t ) y 2
e Y and any 

Be A suoh that .B\ -£jt the point x e l which i s defined from o 
the conditional Pg(x) » PB(y1)§ P^\B^X^ " ?A\B^y2* b e l o n » l t o *• 

Bxamples of «tf0-eonvex subsets of a Cartesian produot are 

2^-produotB for a l l t? e *&Q9 a #-product, and defined in 

the ease of metric factors a .2^-product (the def ini t ions see , 

e . g . , in [ 9 , 1 1 ] ) . 

Let X and f be the same as in Theorem 2 . The statement of 

th is theorem w i l l remain true i f one replaoes in i t X by any 

i t s j£0-convex subset Yf f - by fy • fOY4 s 0 f and item (o) -

by the followingt r ( Y \ f y ) i s the union of a 6*-discrete fami­

ly each member of which i s the intersect ion of an elementary 

•£0-eube with Y. 

The proof of this resu l t i s actually the same as of Theo­

rem 2 . Let us show where in the proof the ^ 0 -eonvexi ty of Y 

i s employed. F i r s t , when proving Theorem 2, we used the equali­

ty UA* • X \ f f which ensures that the retraction i s defined 

on the whole X. I t was established in the proof of Theorem 

l ( i ) . Proving the analogous equality for YNfyt we need the 

i* -convexity of Y to obtain that the points x^ (introduced in 

779 



the course of proving Theorem 1(1)) belong to Y. Besides, de­

fining the mapping r on Y„ we need all the points y x (i.e., 

the range of r) to be contained in Y. This Is also guaranteed 

by the ^-convexity of Y. 

2. The family (L indicated in Theorem l(il) gives an in­

ner approximation of the set 9. Another approximation of that 

kind is expressed by 

Theorem 3. Let X be a Cartesian product of metrio spaces 

and P » eX Uy , where t 10 a family of -tf0-eube* in X. Then 

there exists a 6 -discrete subfamily <f of f such that P • 

- e£ Llcf. 

Theorem 3 can be established by applying a known construc­

tion due to A.M. Gleason (of. the proof of Theorem 1 of 12)). 

In the proof only the existence of a 6 -discrete network in 

factors of X is used. 

3. Suppose that in Theorems 1 and 3 all factors of X ha­

ve the weight & -xf (tr 2: J£ ) • Then the families Oi t (U and r̂ 

have cardinality & x • This follows immediately from the fact 

that every discrete family of non-empty or-cubes in a Cartesi­

an product of spaces of the weight £ X has cardinality ^ tf 

(see [3J, Th. 3). 

III. Let X be a Cartesian product of zero-dimensional me­

tric spaces and f a closed Q^ -subset of X. We shall present 

now an example which shows that there may not exist a sequen­

tially continuous mapping nX—•i> P such that rlt • idp. 

Por every integer n*ri fix a certain set J11 of real num­

bers such that I Jnl m tf^ and l/(n+l)< x<l/n for each x e A 
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OB the eet J • \0} U l M J ^ t n ^ l S , introduce the metrio g> by 

l e t t i n g cp (x ,y) • x + y i f x + y and f> (x 9x) » 0 . The metric 

space (J9tp ) denote by J . Clearly, a l l points of J except s e -

ro are i so lated , and the neighbourhoods of zero in J are the 

same as in the Euclidean topology. 

Let D x m I l i D ^ toc< 4>ji9 where each D^ i s the two-point 
A ^ i 

discrete space {0^ t l ^ x • Put X -» J x D • Obyiouely, a l l the 

factors of X are zero-dimensional metrio spaoes. Let s^ % 

tD x—> D^ , p, tX—> J and PgtX—> D x be project ions . Let us 

number the points of each Jn by countable ordinals f J11 ** 

• ^ 3 A * r 3 ^ **!*• * o r / 3 < cd% s e t S^ - - f a e D Xt ^ ( a ) - 0^ 

for a l l o 6 ^ | 3 i and P* - -fxeXtp1(x) - j ^ 9 p 2 (x )eS j B } . Let 

F » pJ1(0)UU-fPn m r i 9 p < ^ 1 . I t io not hard to see that 

P i s a closed cy- -subset of X. 

Let us prove that there i s no sequentially continuous map­

ping rtX—> P such that r | f • i d * . Let, on the oontrary, suoh 

an r e x i a t . Put Y - -fxeXtKoC e k% ^ J ^ * ^ 0 * * ; * ' - X*# H o t * 

that Y i s olosed in X. Since Y i s contained i n the . £ -product 

of metrio spaoes J and D^ 9 cC < co^ t whioh i s a Preohet space 

(see 1103 9 Ex. 3.10 .D), Y i s also a Preohet space. Henoe, r|Y 

- being a sequentially continuous mapping of a Pre*ohet spaoe * 

i s continuous. Let <J)P » P? H Y. The se t $ ? io open i n 

POY, because j ? i s an iaolated point of J, and -?($£ ) * 

• $ 5 . Hence, by the continuity of r.Y, each point y c cj)̂ 1 

has a neighbourhood Oy in Y such that p^(Oy) • 4 j n } and 

r(0y) c ^ n . One can suppose that Oy has the form 0*yO¥t 

where 0*y i s open in X9 P1(0*y) • 4 j a } and the eet K(y) » 

--(a&e kt JroCp2(0
,|<y)-tsDd^l i s f i n i t e . The eet j j l ( j j )t homao^ 

morphio to S.̂  , i s oompaot, and 00 i s i t a closed subspaoe $ ** # 
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Choose from the open ooTer -SOyty e <J>̂ *$ of §£ a finite 

subeoTer i|/| and put 0* « Uy£ t KJ£ « LHK(y)tOy s ^ } . 

The flet K^ is finite. We haTet 1) p^O^ ) « *3n? , 2) 

P2(0? ) is the intersection of a certain K? -distinguished 

set with Y, 3) r(0^ ) « §£ . This implies that for yeY we 

haTe 

(*) if p1(y) - j» and ^P2(y) » 0^ for allocs K* t 

then r(y) e. § % . 

For (h < O^ pur R^ « -Joe t c* -< /3J\ K* . 

Lemma. There exist sequences n,<n2<... of natural num­

bers and /3^9 P2«... of countable ordinals suoh that 

n-tRA
1ti>i3+0. 

Suppose that the lemma has been already pro Ted. Let 

»i *1 
ye R* for all i>l. Define the point teD x from the eondi-

Pi 
tionst ^(t) » 0^ if cC 4* T t ̂ ( t ) « 1^ • Let us consider 
the following points of Yt z « (O.t) and m± » (j^.t). ±£l# n± 
ObTiously. z « lim z4. Sinoe nr&. KA , the definition of t 

i >CD X "i 
% 

implies that ^P 2(» i) • ^(t) « 0^ for each cte K *# Thenf 

acoording to (*), H\) & w* • As T ^ / 3 ! a n d *>2pW6S/3 » 

by the definition of S« we haTe ^V^i^±) » 0^ . On the 

other hand, mTp2r(z) • 3iL.,p2(z) • ̂ ( t ) « 1^. Sinoe the se­

quence -imA converges to z, we infer that ^p^lY, and henoe 

rlY too, cannot be continuous at the point z. The contradicti­

on obtained completes the proof. 

It remains to proTe the lemma. Suppose that it does not 

hold. Then for eTery f -< co^ there exists a natural number 
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n ( # ) such that ^ <£ R£ for a l l .a^nC^r) and/3-< c ^ . This 

implies that -ye K̂  whenever n > n ( ^ ) and <#*< t3 . A s 

i f f y < &>-̂  i s uncountable9 there e x i s t s an m suoh that the 

s e t If • \tf %*$< CJ^niy) - m3 i s uncountable. Take en LcM 

with |L) • ytQ and a <f e. M suoh that tf^cffor a l l r̂<s L. 

Clearly, -y e i j - for each j £ L. This contradicts the f i~ 

n i t en ess of K?Jl • The lemma i s proved. 

In conclusion we take tho opportunity of indicat ing that 

the mapping r in Theorem 1 of C13 i s a c-mapping - n o t sequen­

t i a l l y continuous as i t was s t a t e d . Theorem 2 of £13 , which 

bases I t s e l f on that theorem, does not hold. To exclude these 

incorrect statements, changes were made at our request in Eng­

l i s h translation of [13 (Soviet Math. Dokl. 21(1980), 303-306). 
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