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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

v 24,1(1983) 

A CHARACTERIZATION OF REALCOMPACTNESS IN TERMS 
OF THE TOPOLOGY OF POINTWISE CONVERGENCE ON THE 

FUNCTION SPACE 
V.V.USPENSKII 

Abstract: We prove a theorem of which the following two 
statements are immediate c o r o l l a r i e s : (1) i f C (X) and C (Y) 
are homeomorphic and X i s realcompact, then Y i s realcompact* 
(2) l e t k be a non-measurable cardinal and f :R —>R be such 
a function that i t s r e s t r i c t i o n to every countable subset of 

k R i s continuous, then f i s continuous* 

Key words: Realcompact spaces, function spaces . 

C l a s s i f i c a t i o n : 54A25. 54C35, 54D60 

When C (X) - the space of a l l realvalued continuous func

t ions defined on Xf with the topology of pointwlse convergence 

- i s realcompact? A s u f f i c i e n t condit ion was found by A.V* Ar-

hangelski i 11] : X i s normal, and every «£ -continuous func

t ion f :X—> R i s continuous. A function f :X—• Y i s ca l l ed k-

continuous i f i t s r e s t r i c t i o n to every subset AcX of power 

.6 k i s continuous* Chigogidze proved l a t e r that for a normal 

space X the above condition i s a lso necessary for C (X) to be 

realcompact* .finally, using a s l i g h t modification of the con

cept of k-cont inui ty , Arhangel'skii gave a complete answer to 

the posed question [ 2 ] * Call a function f iX—> R s t r i c t l y k-

continuous i f for every AcX with l A l ^ k there e x i s t s a cont i 

nuous function g:X—> R such that f j ^ « g)^# How for a Tycho-

noff space X the fol lowing two conditions are equivalents 

• 121 -



(1 ) C (X) i s realcompact| (2 ) every s t r i c t l y ^ -cont inuous 

function f :X—->R i s continuous ( for a normal X "s tr ic t ly" 

can be omitted), 123. In order to s ta t e this theorem more ge

nera l ly , consider the cardinal functions q, t , tm ("the Hewitt 

number", "the functional t ightness" and "the modified funct io

nal t ightness", respect ive ly) defined as follows, 12.] ( a l l spa

ces are Tychonqff)* 

q(X) * min -{k: for every x e (3X\X there e x i s t s a family 

t of open subsets of /JX such that x e O y c / S X M and lyl--s 

£ k l f 

t 0(X) • min-{ks every k-oontinuous function fiX—> R i s 

continuous] | 

tL^X) « min-Ckt every s t r i c t l y k-continuous function 

f tX—>R i s continuous j . 

Then q(X) • 4*. i f f X i s realcompact. The theorem of Ar-

hangel'skii a s ser t s that the equal i ty tm(X) • q(C (X)) ho lds . 

The aim of the present paper i s to prove the "dual" equality 

^ ( C (X)) - q(X). The inequal i ty " 2 " i s due to A.V. Arhan-

g e l s k i i 129 Corollary 63, but the opposite inequal i ty 

tm(Cp(X))J6q(X) i s new. 

Theorem 1 . For every Tychonof f X, 

y C p ( X ) ) . t 0(Cp(X)) • q(X) « q(Cp(Cp(X))) . 

Prooft X can be embedded as a closed subspace in 

Cp(Cp(X)), so q(X)^q(C p (C p (X)) ) . Applying the equality y x ) . 

« q(Cp(X)) to Cp(X) instead of X, we see that q(Cp(CQ(X))) -

* V C p ( X ) ) * L e t k " <*(X)* k* V C p ( X ) ) j £ t o ( C p ( X ) ) » i t i s 

enough to prove that t (C (X)) .£k . 

Lemma. Let cp sY—> 2 be a continuous sur jec t ion . I f 

tQ(Y)«£k, B i s a base of onen s e t s in Y and for every GeB 
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there e x i s t s an open subset HcZ such that <y(G)c H e U{X lAc 

cg>(G) and U U k ? ( # ) , then t Q ( Z ) ^ k . 

Proof: Let f:Z—>R be k-continuous. The mapping f © <p t 

:Y—> R i s continuous, for i t i s k-oontinuous and t (Y)-^k. Let 

z € Z and & >* 0 . Choose y Q €Y f and GeB so that 3»(y0) • s 0 t 

y 0 e G and f ©qp(G)c [ f ( z Q ) - e , f ( z Q ) + e ] . I f He Z s a t i s 

f i e s the condition ( * ) , then %Qe <j>(G)cH, and k-oontinuity 

of f implies f(H)c f( IHA:A c 9 ( G ) and | A U k $ ) c u Wik) tk £ 

c <3>(G) and | A | ^ k^ c t f ( z Q ) - & , f(s&0) + e ] , which means that 

f i s continuous. 

Instead of C (X) we s h a l l consider i t s subspaoe 2 « { f 6 

£ C (X) : f (X)c ( 0 , 1 ) J , which i s homeomorphic to C (X) . For f e Z 

denote by ? the extension of f to (iXf and put Y » \TtteZ} « 

- i g € C p ( ( 2 > X ) : 0 ^ g . ^ l and g~X(0)U g ^ Q ) c/3 X \ X j c Cp(/3 X) . The 

t ightness of C (|3X) i s countable, so t Q ( Y ) ^ t(Y).<& t(C (ftX)) » 

» & ^ k . Let (y :Y—-> Z be the r e s t r i c t i o n , 97(g) » gly for g e Y . 

By the lemma, the proof w i l l be complete when we check the con

di t ion ( # ) • Let B be the standard base in Y9 i . e . elements of B 

are the s e t s G « fl{M(x,0 ) : X G E | , where E i s a f i n i t e subset of 

[J X, - [ 0 x s x 6 E ^ i s a family of nonempty open subsets of the c l o 

sed interval L0,1] and M(x,Ox) • { g e Y:g(x)€ 0 X ? . We claim that 

i f GcB i s as above, then for H ** { f e Z : f ( x ) e O x for every x € 

€ EHX^« g> (n-iM(x,Ox):x€EriX?) the condition (.* ) i s s a t i s 

f i ed . The inc lus ion <j>(G)cH i s obvious. I t remains to show that 

for every f e H there e x i s t s a s e t Ac G such that |Al-ak and f € 

G <y(A). To th is end, put E-ĵ  * EHX, Eg * E f H / . i X \ X ) f and choo

se a family y of open subsets of (3 X such that B« c H y c ftX\X 

and l^j-l £ k. This i s poss ible by the de f in i t ion of q(X). We may 

suppose that y i s c losed under f i n i t e in tersec t ions and 
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( U - y ) n B 1 • 0 . For each U e T l e t % * / 3 X - * [ 0 , 1 ] be a func

t ion such t h a t £ . g ( p X \ T O c £ 0 l and g-j(B2)c-£l?. Choose a func

t ion t e G which does not assume values 0 and 1, and define h-j * 

- ^-(1-gg) + t-g-jS C ( £ X ) . Clearly h-j6Y. Moreover, h-j6 Gs s i n 

ce h - j j ^ - f |E i and h g | B « t j ^ , we have hT J(x)eOx for each 

x 6 B^Eg « E. Let A - i h-j tU « ^ i . Then A c G and IA| -6 I <f I <S k. 

For every f i n i t e subset F c X there e x i s t s a s e t U € X which 

has an empty in tersec t ion with F. The corresponding function lv-

coincides with f on the s e t ?• Consequently, f e if (A). The the

orem i s proved. 

Corollary 1« X i s realcompaot i f f CO ( I ) i s realcompact. 

Corollary 2» Suppose C (X) and C (Y) are homeomorphic• I f 

X i s realcompact, then Y i s realcompact. 

The same conclusion was known to he true under the assump

t ion that C (X) and C (Y) are Isomorphic as topological vector 

spaoes . 

Corollary 3 . I f a cardinal k i s nonmeasurable, then t (R )« 
v 

" -#o* i n other words, every j * -continuous function f $R —>• R 

i s continuous. 

Proof * Let D(k) he a d i scre te space of power k. When k 

i s nonmeasurable, D(k) i s realcompact. Apply the theorem to X * 

• D(k) and note that Rk « C (D(k) ) . 

I f k i s a measurable cardinal , there e x i s t s a discontinu-

k 

ous function f iR —*> R which i s n-continuous for every nonmeasu

rable cardinal n . To construct such a function, choose a non-

t r i v i a l two-valued measure m on D(k). Every gcC(D (k)) co inc i 

des with a constant almost everywhere r e l a t i v e to m. Let f (g ) 

he t h i s constant* 
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Corollary 3 so lves a problem posed in Li , ch« 4# 5 2]« 

I t can be generalized as fo l lows: 

Theorem 2 . Let -CX^ : oC 6 A? be a family of f i r s t countab

l e spaces and X • TT-C X^. : oc € A j . I f 1 A1 i s nonmeasureable, 

then every ^ - c o n t i n u o u s function f :X—> R i s continuous. 

Proof. Let 9) » Q ( 2 ) . Arguing as above and applying the 
k lemma to the natural continuous b i sec t ion C (/3 3? (k ) f S))—*-S) $ 

one shows that t ( £ D ) • & for every nonmeasurable card inal k. 

Our theorem now follows by Theorems 1.1 and 2.4 of [3J« 

Theorem 2 should be compared with the Noble's resu l t [ 3 , 

Theorem 5*11: i f -[X^ : oc s A? i s a family of f i r s t countable 

spaces , X » TTHX^: <* € A$ and the card inal (Al i s not sequenti

a l , then every sequent ia l ly continuous function f :X—> R i s con

tinuous. A card inal k i s sequential i f f there e x i s t s a sequenti

le 

a l l y continuous function f: 2) —* R which i s not continuous. 

The f i r s t sequential card inal i s regular l imi t t A2 and does not 

exceed the f i r s t real-valued measurable card inal . Under the Mar

t i n ' s Axiom MA a card inal k i s sequential i f f i t i s real-valued 

measurable i f f i t i s Ulam measurable 15, 6 ] . So i f MA i s added 

to the assumptions of Theorem 2, i t s conclusion can be refined 

by writ ing "sequentially continuous" instead of w & -continu

ous. 

The author wishes to thank Professor A.V. Arhangelskii for 

help ful suggest ions . 
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