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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAt 

24,1 (1983) 

TRANSDUCER, GENERALIZED RELAYS AND THEIR 
CHARACTERIZATION 

Jaromir SISKA 

Abstract. In the present paper, a definition of a transducer 
is given, and then a special type of a transducer - a gene
ralized relay is investigated. It is proved that a generalized 
relay is continuous in LCC-topology, and a characterization 
of transducers which art gtntralized relays is given. 

Key words: Transducer, relay, LCC-topology. 

Classification: Primary 93A05, 93A10; Stcondary 54C35 

Introduction* Various sptcial mttbods art used to overcoat di

fficulties that arise in describing processes and systems con

taining elements with hysteresis. One of thtst methods(used 

by Krasnosetskij tt al. in [1,2] for a dtscription of hystt-

resis tfftcts appearing if plasticity and elasticity of bodies 

is studied)is based on a conception of a transducer. 

Let sets X, Y be given. Roughly speaking, a transducer is 

a mapping attaching to a pair * a time-dependent variable 

x(t)6X and a point yc Y - a time-dependent variable y(t)fiY. Here 

the definition of a transducer is given and tht conctptions of 

a transductr and of a dynamical system are compared. Stvtral 

examples of transducers are prtstnttd and two of th#m - a rtlay 

and a generalized relay art studitd more in detail. We shall 

give two equivalent definitions of relays and gtntraliztd relays, 

one of them purely topological, and prove the continuity of a 

generalized relay in the LCC-topology. The main result of this 

paper is a complete characterization of gtntraliztd rtlays that 
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1s, according to tht terminology of KrasnoseCski j f2j the iden

tification probttm of relays and generalized relays 1s solved. 

X uould U k e to thank to N. Katitov for catling my atten

tion to these problems and for his patient http during tht pre

paration of this work. 

1. Notations and definition of a transduetr 

1.1. Ltt f bt a sapping from a stt X into a stt Y. Tht domain 

of tht map f will bt dtnottd by D(f) and its image by Im f. 

We shall say that a sap f is on X iff X is its domain and that 

it is onto Y iff Y is its range. A map f on X into Y nil! bt 

dtnottd by f; X—i-Y. 

Ltt X and Y bt topological spacts and f bt a map from X 

into Y. Than f is a continuous nap if it is continuous with 

rtsptct to tht rtlativt topology of its domain. 

1.2. Ltt (T,**) bt a chain i.e. a linearly ordtrtd stt. A substt I 

of T Mill bt called an interval if for any a #b«X, b-x«-a implies 

x *X. The stt of all left-closed intervals (an interval X is a 

left-closed interval if inf X exists and inf I-f I ) will bt de-

nottd by «9. For an interval X ltt l(x) * inf X, r(X) * sup X. 

Let T be a chain and let X be an arbitrary set. A substt 3£ 

of tht stt of all mappings from T into X will bt called a full 

set of trajtctorlts into X, if it meets the following two con

ditions: 

i) if f *M, then t(f)« jT# 

M ) if fs H # X a 30 xc a(f), thtn f t It*. 

í8 -



1„3. I f J « ( j j is a set and {xA 1s a family of s t ts indaxad by 

J# t h t i r d is jo in t union is dtnottd by j i - j X. « .^ . ( j * X . ) # 

Tht topolog ical sun of an indtxtd c o t l t c t i o n of topological spa

ces { x j . , i s the d is jo in t union -A X . # equipped with the 

f inest topology in which each inclusion 1 . : x.-----»rt-j X. # 

1 . : x i—>( i ,x ) , xcX.# i s continuous* 

61ven a l e f t - c l o s e d In te rva l I # the set { f « * | 0 ( f ) • i j 

w i l l be denoted by3(( l ) . The stt X nay be considered e i ther as 

a d is jo in t union of the fani ly ( # ( O J j c j or# i f X ( l ) are topolo

gical spaces, as a topological sun of th is f a a i t y * 

* • * • £S l i 0 i l 2G* L e t T b e • c h a * n * n d l t t x# Y D e * * t s # possibly 

endowed with a structure and l e t It, %> be f u l l sets of t r a j e c t o 

r ies into X and into Y# respect ive ly . A Mapping W: S—e-txp^ni l I 

be ca l led a transducer i f i t s a t i s f i e s the fol lowing condit ions: 

i ) S c * * Y # ( f , y ) g s = » w [ f # y ] i i, 

11) 1f g * w j f # y j and 0 ( f ) « I # then 0(g) « I and g ( l ( l ) ) « y, 

i i i>) causa l i ty : i f (%y)$ S# ( f 2 #y)e* S# l ( o ( f t ) j « l ( 0 ( f 2 ) ) 

and I f there exists an in te rva l l c D ( f J / 7 o(f.j) such that 

I ( I ) « t ( 0 ( f t ) ) and i^t I « i2t I, than {g t I I g e 

W&1#y3i- i9tl\ g«w[f 2 #y] i„ 

Tht transducer W w i l t bt cal led determin ist ic i f W [ f # y j is 

a one-element set for each pair ( f # y ) * S . Tht st t Y w i l t bt ca l led 

as a state s t t of th t transductr W# i t s elements - as s t a t e s , 

t r a j ec to r i es from £ - as input functions or inputs; an input fron 

a pair ( f # y ) * S w i l t bt ca l led an admissible input with r tsp tc t to 

th t i n i t i a l s tate y, and t r a j e c t o r i e s f r o « 7 v 1 l l be ca l led out

comes or outcome functions of th t tranductr W„ 
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Let W: S-*txpjf bt a transducer. This transducer will bt 

catttd full 1f for tvtry pair (f,y)€S, tvtry left-closed in

terval IcD(f) and tvtry output gcw[f#yj, tht pair (fM,g(t(I$) 

is atso an element of S. 

For a full transducer, another ustfut notion vitl bt intro-

duced. Wt shatl say that a futt transductr W is compositive (or 

has tht composition property), if for tvtry pa1r(f,y)«$, for 

tvtry ttft-ctostd subinttrvat I of D(f,), and for tach g€ W[f,y3 

tht tquality w[ffl, g(t(l))] • f h f* 11 hcw[f,y3, h(l(l))» g(t(l))J 

is valid. 

1.5. Tht definition of a transducer 1s similar to that of a dy

namical system. Differences between those conctpts art small and 

a transductr coutd bt considtrtd to bt a generalized dynamical 

system. Tht main rtason for using this difftrtnt ttrm - a trans

ductr - Is to avoid confusion. 

Let us conctntratt on deterministic transducers onty and 

compare their definition with the definition of dynamical systems 

as it 1s stated 1n dtfinition 1.1, in Chapttr I of tht book of 

Katman, Falb and Arbib [3]. 

Tht stts X, Y from tht dtfinition of a transductr may bt 

idtntifitd with tht stts U and X from tht dtfinition of a dyna

mical system;respectively. As for the time sets T, thtrt apptars 

a slight generalization in tht dtfinition of tht transductr. 

Anothtr difftrtnct which should bt mentioned is in defining 

tht infcut stts JL and 3t. Tht domains of mappings from-ft art sup

posed to bt tht whole stt T and for two inputs fromXl, their 

concatenation is atso an input fromJft.. ($tt(c)2) from tht dt

finition of a dynamical system.) Tht domain of an input from £ 
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it suppottd to bt a ttft-ctosed subinttrvat of T and thtre 

Is no demand concerning concatenation of inputs* 

In tht dtflnltlon of a tpansductp thtpt %r9 no stts coppts-

ponding to tht stts Hand Y, But this dlfftPtnct 1s not substan

tial - because, as it 1s well known, an tqulvaltnt definition of 

a dynamical system can bt given, in which stts Y andfare not ex

plicitly Involved* These apt implicitly included in tht set of 

inntp statts of this dynamical system and in tht stt of time 

evolutions of inntp statt of this. Tht advantage of this tqul

valtnt dtflnltlon is that only ont mapping - sometimes a bit 

more complicated - may bt studied. This was also tht reason for 

Itaving out an output valut stt and an readout map in tht defi

nition of a transducer. 

Tht state-transition function approximately corresponds to 

tht mapping W. Tht most important difference is that U is not 

gtntralty dtfintd on tht whole product *xY. Another difference 

is that a transducer dots not havt bt compositive. 

1*6* Examples* It follows from tht previous paragraphs that an 

automaton could bt treated as a compositive deterministic tpans

ductp with T • N. 

A difftptntial aquation with parameters, can serve, as 

anothtp txamplt of tht transducer. Let F: R x Rn x R*-*Rn bt a 

mapping such that tht difftptntial aquation dx/dt = F(t,x,a) 

with a paramtter a*R* has a unique solution* We wilt denote 

a solution of this aquation with an initial condition (t*,yj 

by x(t*,y,a;t). in this example, let T « R and let** bt tht stt 

of all C -mappings from R Into R* defined on Itft-clostd Inttp-
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v a i t . I f W: r t "xR n - * r t n 1s such a Mapping that 0(«) • S » 

~[(»,y) * A * » Rn l*Ca) 1s a domain of th t maximal solution of 

the above equation for the i n i t i a l condition ( i ( o ( a ) , y ) and 

the evolution of the parameter a « a ( t ) } and w f a , y j ( 0 * 

« x ( l ( o ( a ) ^ y#a(t^> t), then W is a determinist ic transducer 

possessing the copposition property. 

More examples are presented in £2 ] . 

2 . Relay and generalized relay 

2 . 1 . In the rest of th is paper we shal l study determinist ic 

transducers with rea l time only . I . e . with T « R, and with t h t 

two s t a t t set Y « { 0 , l l . Furthermore, we shal l suppose that 

X » R. Inputs w i l l bt th t continuous maps. Thus^in th t r t s t 

of th is paptr we shal l denote b y ^ t h e set of a l l continuous maps 

from R into R, the domain of which i s a l e f t - c losed I n t e r v a l . 

From now on, the set of a l l t r a j e c t o r i e s from R into {0 ,1} w i l l 

be denoted by f. 

The simplest n o n - t r i v i a l txamplt of such a transductr I s 

a r t l a y - r (< ,$ (see also \X\)9 for «c,£ **,<4fim Tht s t t S of 

adm1ss1blt Inputs of r(-c,/8)is { ( f , l ) 6 * * { o , l ) I f ( l (0( f ) ) )«« =•> 1 + 0 

and f ( l ( t > ( f ) | « * * > 1 4 l i . Lt t us dtnott t^ « 1nf { t * t>(i)\* ( t ) » 

• * \ tA « 1 n f { t e 0 ( f ) | f ( t ) « ^ i and t t « sup { r * t I f tr)* (*,/i\\ for 

t e o ( f ) and t * m1n(t<,t<a!s. 

We define r (< * , / 3 ) ( f , 03 l t ) « o i f t < t « , 

. r ( ^ , / > ) f f , l ] ( t ) » 1 I f t t t a , 

r (<*,*)tf,lKt) « 0 i f t « m i n { t < , t # i a n d f ( t t ) « «, 

r («*,*) C f , 1 ) ( t ) « 1 1f t * m1n{t^ , t^and f ( r t ) « 4 . 
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It it eaty to cheek that • retay it • transducer with the co»-

potition property. 

2.2. for each relay r(*,/-0, there exittt the •ininal topology 

t on the tet R x {0,1} tuch that the following statement hotdt 

for the tpace R(•*.,*)»(R*{0,1.y,li 

Statement ($t): For each pair (f,i)*S there it exactly one 

continuout aap F: 1->*(<,#), X « D<f)cR, tuch that 

*> F(t(0Cf)»- (f(KHfW , 1) , 

i O ir% «F » f,(W1: R X{Q,1)-~»R it a projection , 

iii) 5?*2 * F i s • right~side continuout sapping, 

(ST2: Rx{0,l)-»{0,1} it a projection). 

Moreover, «F2 • F * r(«>,8) ff,0. 

Thut, the corretpondence [f,i]—.•'3C # F induced by the tpace 

R(<*,0), it the napping r (•<,#*): S —*»Jr. 

Let ut detcribe the topology v. The points(-c,0) and (0,\) 

are itolated. The local base of the point (*c,l) is(u</V|U is a 

euclidean neighborhood of (*,1) in R*{1) and V it a euclidean 

nieghborhood of(<,0) in R*{o) without this point]. The local 

bate of(/3,0) it defined analogically and local basis of the 

other points, (x,i)c R *{0,1), are the sets {U|U is a euclidean 

neighborhood of (x,i) in R *{ij) . It is sinple to verify that 

this is the topology which the statenent cSt) does hold for. 

2.3. The idea of relay can be generalized in a natural way. Let 

A, B be two disjoint, closed subsets of R. Let the local batit 

of the points (a,i), a*A, resp.(b,i), b* B, resp.(x,i), 

x ̂  A o 8, be the sane as the local batis of the points(«,i), 

resp.(/3,i), resp. (x,i). The space with this topology will be 

denoted by R{'A, B). If the set S » {(f ,i)«rt x{0,lj I f (I (D(f)#€ A*»i I1 

f 0 and f(l(t>(f)))s B-»i 4 ^ then the statement (St) hotdt alto 
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for the space RfA, B) and thus the correspondence Cf#i3-*55r2 *
 F 

induces the mapping r(A, B):S~>:f. This mapping will be called 

a genepallied pelay. A generalized relay is a deterministic 

transducer with the composition pi operty. 

2 #4. FOP the sake of completeness we shall ppesent a definition 

of the generalized pelay formulated analogously as the former 

definition of a relay. Similarly to the previous^ we shall denote 

tA • Inf {t « D(fj!fCOcA}, tB » inf ft* DCf) lf(t)« B) and 

T * sup{r-» tlf(t>A</Bj for t * 0(f) and t * ml n {t A, tgi and 

define rCA, B) tf#°Kt) • 0 if t <tft, 

r(A, B)Cf^l](t) » 1 if t < tB, 

p(A, B)Cf#iJ(t) * 0 if t * min{tA, tgj and f(t*t)<&A, 

p(A, B)[f,0(t) • 1 if t -* min{tA, tg} and f(*t)«B. 

It is quite easy to see that the outcomes of a generalized 

pelay defined in this paragraph are right-side continuous, too. 

It is simple to verify that both the definitions are equivalent^ 

therefore we need not present it. 

2.5. It is natural to consider two outcomes with the same domain 

to be close if the total time of their different states (in 

which they are in different states) is short. Let f * / C l ) . The 

local base of an outcome f is defined to be the family 

U(£,K)(f)l i > 0, K « I , K is a compact set J, U C€ ,K)(f) b«1ng 

the set fg</(IJ I /lf(t) - g(t) I dt < £ and r(l)« I**f (rCD) « g(r(l)» 
K 

The topology on /is defined, as was said in the paragraph 1, to be 

the topological sum of/Cl) over the family #. 
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Convention. 

Speaking about a topological spact f, we shall ntan tht 

set /endowed with tht topology dtfintd above. 

2.6. Proposition. Let P bt tht stt of all right-side continuous 

naps fron /• Than P with tht rtlativt topology is a Hausdorff 

spact. 

Proof. Denoting by P(l) tht stt of all right-side continuous Map

pings froayui- w* stt that P *-&rKl) •"<- *o it is sufficitnt 

to provt that P(l) is a Hausdorff spact. 

Let us choost u, v€ P(l), u f* v. It nay bt suppostd that 

thtrt txists t€ I for which u(t) « 0 and v(t) « 1. Tht proof is 

conplttt if t - r(I). Let us suppose this is not tht cast. Thtn 

wt can find a positive real nunbtr such that tht closurt of tht 

interval J « {t,t+<0 is included in I and uf J i 0 and vfj i 1. 

Let Kcl bt a conpact stt and JcK. We choost ntighborhoods 

UiJ » U(</73,K)(") and U-» * U(«T/3,K)(V) and suppost that thtrt is 

a napping w btlonging to thtn both. It inplits tht Lebesgue nea-

surt of tach of tht stts £r< J lw(r)« u(r>^ {r«Jlw(r)» v(r)}is at 

Itast 2/3cT> this is an obvious contradiction with tht size of 

tht inttrval J. Thus tht ntighborhoods U*, Up must bt disjoint 

and tht proof is completed. 

2.7. A gtntraliztd rtlay r(A,B) is a tint-covariant transductr, 

i.t. r(A,B) [fof,i3(t)« r(A,B) [f,i](f(t)) for any which naps 

D(f*rtonto D(f)continuously and preserves tht orientation of 

tht real-line. In fact, wt shall need a wtaktr proptrty of tht 

transductr in tht following part. 
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A dtttr»1n1st1c trantductr U: S —*¥, $<A*t 1s stld to bt 

Hn t t r l y t1«t-covar1ant 1f for tach (f,y) * S# f ( t ) » at • b, 

• 0 0 tht following conditions hold: 

1) thtr t t x l t t i • pair (g,y) 1n S such that 0(g) « ! • f and 

g(t) • t I f i ) 0 •*<* g( t ) » - t I f « « 0 , 

11) for t * 0(f) tht tquaUty W[f,y] ( t ) « w[g,y.3 ( i t • b ) 

holds. 

* • * • £SliDi«i2DS* We shall call • continuous function f td lp l tc t -

wlst Untar 1f th t r t txlsts a f l n l t t stt Sf such that for tach 

s€*(f .)^Sf • neighborhood of x can bt found on which tht fun* 

•t lon f 1s Untar. 

A function ft 4 wil l bt calltd standard 1f t l th t r 

f » ( t id • consta)f 0 ( f ) , • f * , or f « const§f 0 ( f ) , • * R, 

SStfSfiiSiSS* L t t U5$~**V S«-rt*(0,tl bt • dtttr«1n1st1c trans

put or # whoso outeo»ts *r* rlgh-sldt continuous. Ltt tht 

following conditions bt sat lsf l td: 

1) for any x€ R, thtr t txlst (1^, k j ) , (f.,# k-,) t S such that 

f t « (1d • const^)** D(f.,), f2 « (-1d • const b ) f * ( f 2 ) , 

• ( f j )# 0 ( f 2 ) # art nondtgtntrattd Int t rvt ls and f t ( I (0(itJfc)« 

» f2ClC»ff2-*V* *, 

H ) 1f (M)#Cg#k>S, f and g art standard, t € 0 ( f ) , T f Dfg), 

f ( t ) » g(r)# and w*ff#l} 1s discontinuous at t , thtn wTg,kXt)» 

«vff^oco; 
Thtn thtr t txlst disjoint clostd stts A c R, B4R such that 

tht r t t t r lcHont of W tnd r(k, B) to Sj • {0,i)c S I f 1s 

standard} colncldt* 

I f , In addition, II 1s • cowposltlvt Unt t r l y t l a t covarlant 

tr«nsductr and S. « ((f,1)€ S I f Is • pitctwlst Untar aap } , 
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than W and r (A , B) coincide on S 2 . 

Proof. Let us d t f i n t t h t s t ts A and 8* 

A * { x t R l i f < U , 1 ) c s 1 # t € K u ) and u ( t ) * x than w t u , l ] ( t ) « 1 , 

B » tx«Rl 1f (u,1) * $ 1 # t t O ( u ) and u ( t ) • x than W|LU,lJ(t)» 0 . 

Tht s t ts A, B ar t c lostd . Let us suppost for example that th is 

is not true for th t stt A. Thtn t h t r t exists x*7 \ .A and a saa>ua~ 

net {x } n ^ | c A convtrglng to x . Tht f i r s t condition and x 

not being in A Imply that t h t r t exist ( f 1 0 ) , ( f 2 , O j « S , f.. • 

* C1d • const a ) r ffCi^) , f2 « (-1d->constb-> t &( f 2 ^, a ,b« ft, t h t 

domains of f,, and f 2 a r t nontriviaL i n t t r v a l s and f 1 ( t ( 0 ( f 1 X t f • 

* f2(l(->(f.p) .) * x . At I t a s t for ont of th ts t asps, say for 

f 1 # a stqutnet { t ^ i ^ i c D ( f < | ) , t k "* l ( D ( f 1 ) ) / can bt chosan 

such that £*jCtj-JJi-aj * s * subsaqutnet of f * n J n « j « B u t t i l ls 

contradicts th t r i g h t - s i d e cont inui ty of w[f, . ,o] as t ^ I (S(f ^ 

and W t f 1 # 0 ) ( t k ) • 1 . 

Th t disjointness of th t s t ts A and B 1s evident. Th t s t ts 

A and B determine t h t relay r ( A , B)0 I t is an easy observation 

that S.| is included In th t domain of r (A , B)m I t follows d i 

rect ly from tht d e f i n i t i o n of th t s t ts A, B. 

Nov lo t us show that th t res t r i c t ions of W and of r (A , B) 

to S1 coincide. Lt t F bt th t st t { t € 0 ( f ) I W [ f , O C O j | 

f r (A , B) [ f # l ] ( t ) ) f o r a pa1rCf#1>€S1 and l t t us suppost that 

F 1s a non-void s t t . Put t » 1nf F. Tht r i g h t - s i d t continuity 

of outcomes implies t * F. From that i t follows that just ont 

of th t outcomes r ( A , B ) [ f , l J , W £ f , l J i s discontinuous at t 0 

in th t tuc l id tan topology. On th t othtr hand, th t d t f i n i t i o n 

of th t st ts A, B, th t assumptions of th t proposition and tha 
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ftct that tQ » 1nf F gutrtnttt that tht outcos.es Wff,iJ and 
r(A* -O [*#0 *r* «t t either both continuous, or both dis

continuous* Thus F « 0 and W T S . - r(A, B) f S«. 

Ltt us prove tht stcond part of tht proposition* In tht 

first sttp wt choost a pair (f,i)*$2, tht input of which is 

t linear function. W bting t Hntarly t1at-covtr1 ant trans

ducer iaplits tht txlsttnct of ( g , O c S . . such that thtrt holds: 

r(A, B)£f,i3(t) « r(A, B ) [g,0 ( f(tj) • W fg #0 ( fit)) « 

• W ff,0 (t). Btctust of this equality and btcaust r(A, B) 

»nd W art coapositivt transducers, r(A, B)t $2 * W T S 2 . 

2.9. Tht proposition 2.7 givts us an inforattion about 

ntccssary conditions und^r which tht transductr W is tqual 

to a gtntraHztd relay on tht stt of p1eccw1se linear Inputs. 

This rises tht qutstion, undtr which conditions,this tquaHty 

can bt txttnded to a larger set. 

Let us suppose a topology for the set ft *£o,1} is given, in 

which generalized relays are continuous and the set L *{(f,1) If 

is a piecewise linear function} is a dense subset ofrt*(0,1). 

Let r(A, B ) : $-~*»ybe a generalized relay and W: $~*jrbt a conti

nuous transducer identical with r(A, B) on the set S A L. Using 

the well-known thtorea about extending Identities we can 

deduce the identity of W tnd r(A, B) on tht wholt stt S. Thus, 

providing tht rtquired topology does exist, we have proved 

the following theoreo. 

Theorea. Ltt r(A, B ) : S-*Tbe a generalized relay and W: S —+jr 

bt a transductr continuous on S. Tht necessary and sufficient 

condition for r(A, B) and W to bt tqutl is their equality on 

the set S o L . 
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2.10. Suttarizing tht paragraphs 2.8 and 2.9 ve obtain 

a characterization of a generalized r t lay . 

Thtortau A transductr W: S«-*,T1s a gtntrallztd rtlay i f f 

0 $ * { ( f , 1>^x{0 , l l I 1f thtr t txlst tfg,k)€S and r«0(g) 

such that g 1s standard, gr»* f ( I (0(f))) and w[g,k](f)» 1 

11) W 1s deterministic, co«pos1t1vt and l intar ly t1«t-

-Invarlant, 

111) w[ f , l ] 1s r1gh-s1dt continuous for tach ( f , i ) c S , 

iv) for any x € R, thtr t txlst ( f 1^k1> , ( f 2 , k 2 ) , iy » ( id • 

• consta) f 0 ( f t ) , f2 « (-1d • const^f 0 ( f 2 ) , a ,b€R, 

-*(f.|), °^2^ t r t nondtgtntrattd inttrvals and f ̂  {JL (o(f1)D • 

« f2( l(0Cf2)» » x, 

v) I f (M)# (9#k) *S , f and g art standard, t * 0(f ) , *«0(g} , 

f(t>- g(r) and w[f,1] 1s discontinuous at t , than W[g,k](t) 

* W[f,1](f), 

1v) W is LCC-continuous. 

3. Continuity of a generalized rtlay 

3.1. To bt ablt to consider continuity of a gtntrallztd rtlay 

vt hava to topologiztd tht stt£«{0,l]» If vt takt tht topo-

logits usual for function spacts, a gtntrallztd rtlay is not 

continuous. Because of that, a new suitable topology for 

thtst purposts was defined. It is calltd a Itvtl topology of 

coMpact convtrgtnct and anothtr paptr [4] is dtvottd to tht 

study of its properties, in this paptr, only a brief dtfinltlon 

of this topology will bt given and tht continuity of tht gtnt-
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rallied relay will be demonstrated, provided the donain 

of a generalized relay is thus topotogized. 

3.2. Let X and Y be topological space and Y be the set of 

discontinuous raappings on X into Y. We shall define the 

level topology on Y specifying the local base at each 

point of YX. Let us denote U({V(xi)lias1Xf)
s £9***1 * 1 « 

» 1#...#n9x
)
i e V(xit) such that f(xi) » g(xi)}. The local 

base at f 1s forned by the sets u({v(xi>Jim1)( f) for finite 

sequences { x . | ] i m 1 end for all neighborhoods of their 

elements. 

The level topology of compact convergence is the topo

logy projectlvely generated by the topology of compact 

convergence and the level topology* We shall abbreviate Its 

name to LCC-topotogy. 

3.3. Let the sets tffl) be topotogized by LCC-topotogy. In 

accordance with the paragraph 1.3.we shall considerrtto be 

the topological sum of these spaces. The set f0,lj wilt be 

supposed to be a discrete space end<#x(o,l] will be conside

red with the product topology. 

Theorem., Let r(A,B): S—*/be a generalized relay. If we 

suppose the topology on the set Sis the topology induced 

by the Inclusion of S into* *{0,1$, then r(A,B) is a con

tinuous map* 

Proof. Let us danote 8(1,0 * sn#(l)x [ij), 1 • 0,1, I * J. 

Then S *(AL$(IrO$>lL ( //s(I.l)) . To prove the continuity of 

r(A,B) 1t 1s sufficient to prove the continuity of 

r(A,B)f S(I,1): 8(.,0—*/<!). 
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Ltt us introduct th t fol lowing syabols: for u e $ ( I , i ) 

wt d t f i n t t » inf { t l u ( t > € A U B l j for an a rb i t ra ry t € l , 

t > t u wt d t f i n t r t « t u p { r e C t u # t ) | u(r)eAUB}, F i n a l l y , wt 

d t f i n t \ * [t * f t u , ••©)/>II t « t u or u ( t ) *A and u ( r t ) e B 

or u ( r ) *B and u(7^)€A^-

We ar t going to provt th t fol lowing I taaa for th t s t t 

V 
Ltaaa. Ltt KcR bt a conntcttd, eoapact stt. Thtn H ft K is 

a finitt stt. 

Proof. Wt shall suppost that M n K is not a finitt stt and 

dtduct a contradiction. Ltt thtrt txist a one-to-one stqutnct 

{t } .^4 c « n K. Wt aay suppost that it convtrgts to a point 

t »nd that ( u W l ^ c A , It follows that thtrt aust bt 

anothtr stqutnct{tpi ^ ^ " u " K , u c h t h a t ^u^tii^«»1c B 

and {tM *®.. convtrgts to t, too. In aort detail: for tvtry 

Z^r,€«||,r<t
,such that u(r), u(r!)«A, thtrt txistsfe«y such 

that u(6>B and C<r«t^ Thus, at Itast ont point t^€ n^n K lits 
A 

in tach 1/»-neighborhood of tht point t. It iaplits u(t)<At)B 

and this is tht contradiction. 

Ltt us coat back to tht proof of continuity of r(A,B)f S(l,0« 

« r. Ltt u*$(I,i) and ltt U « u( f,K*Xr(u)) bt a ntighborhood 

of tht tvolution r(u). Ltt us choost a eoapact stt K « 

* £<-(!)# t]c I such that K'CK, Ltt us add tht point l(l) to tht 

stt Mun K and nuabtr tht tltatnts of tht stt crtattd in this 

way, kttping tht natural ordtr givtn by thtir positions on 

tht rtal lint - {f0,...,tkl. Ltt us takt 0 </</?/2 (k*l) and 

for tach i*1,...,k dtfint ^ in tht following way: if u(r^) 

is an tltaent of A, thtn ii » inf (|u(t)- Bllt^Otj, r -^Ji 
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•fid analogously for u(rJ being an tlement of B. For 1 * 0 

Itt us stt fc0 » inf {|u(t) - (A i/B)| | ttf [ tQ, V^ -/]$. Ltt 

£» min {*,••., £.i. Tht paraatttrs £, K and tht sequence 

of /*- neighborhoods of tht points tr.,..., TV determine tht 

neighborhood of tht Input u In tht spact S(I,1) such that 

for tvtry Input v fro* this ntighborhood thtrt 1s r(v)£U. 

3.4. Having provtd tht LCC-topology Is a suitable topology 

as concerns tht continuity of a gtntraUttd rtlay, we may 

turn our attention to tht question of tht dtnsity of tht 

stt L. In tht paptr on LCC-topology [4] wi havt provtd that 

tht stt L(I) »(f€lt(l) I f 1s a piectwist lintar function} 

1s a dtnst substt of4(1). An obvious implication of that 1s 

tht following proposition. 

Proposition. Tht stt L i s a dtnst substt of#txÍO,1i 
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