Commentationes Mathematicae Universitatis Carolinae

Maciej M. Sysło

Adjacency matrix equations and related problems: Research notes

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 2, 211--222
Persistent URL: http://dml.cz/dmlcz/106220

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 24,2(1983)

ADJACENCY MATRIX EQUATIONS AND RELATED PROBLEMS:RESEARCH NOTES

macied m. SYsto

Abstract

The purpose of this paper is to discuss some generalizations of the notion of regularity in graphs which are derived from matrix equations involving adjacency matrices.

Key words and phrases: Adjacency matrix of a graph, degree sequence, $\bar{\Gamma}$-degree sequence, matrix equation, regular and semi-regular graphs, spectral technique.

Classification: 05C50

Let $\mathcal{G}_{k}(k \geq 1)$ denote the class of all graphs such that $G \in \mathcal{G}_{k}$ if there exists an integer constant r for which $A^{k} \mathbb{N}=$ $=r \|$ holds, where A is the adjacency matrix of G and $\mathbb{\|}$ denotes the vector of $l^{\prime} s$. Evidently, $G \in \mathcal{C}_{1}$ if and only if G is regular and C_{2} consists of regular and semi-regular bipartite graphs. For $k \geq 3$, we have $\mathcal{G}_{k}=\mathcal{G}_{2}$ if k is even and $\mathcal{C}_{k}=$ $=G_{1}$ if k is odd.

In the class of directed graphs, only some paritial solutions of the equation $A^{k}\|=r\|$ are known.

Some other matrix equations are also studied.
Let $G=(V, E)$ be a graph and $d_{\Gamma}(v)=\sum_{\mu} \Gamma_{v} d(u)$, where Γv is the set of neighbours of $v ; d_{\Gamma}(v)$ is called a Γ-degree of v. Evidently, there exists an integer r such that $d_{p}(v)=r$ for every vertex V of G if and only if $G \in \mathcal{G}_{2}$. In the last
wetisn, we coneider a problem of finding when a sequenee of n integern forms $\& \Gamma$-iagree sequence of seme graph on n vertieef.

1. Equation $A^{k}=r^{\prime}$ in the class of aimple graphs

Let G be a simple graph (i.e., a symetrie graph without loops and multiple edges) and A denote its adjacency motrix. If $1^{T}=(1,1, \ldots, i)$ and $d^{T}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ denote reapeotively the vector of a cxes and the degree aequence of G then we have evismatiy $4 \| \mathrm{m}$.
 G, that is if $A 1=r 1$. A grtyme is called semiregular of degrees p, q if G La bipartite, onth vextex has degree p or q, and cach edge comecte a vertith of degree p with vertan of degree q.

PZonka [6] and Rema Chandran [B] have conaldered the following generalization of the regularity in graphy. Let

$$
a_{\Gamma}(v)=\sum_{v \in \Gamma_{V}} d(v),
$$

where $\Gamma \vee$ denotes the set of melchbours of V. Then a graph G i. Γ megular (PLonka) or PDs regular (Rama Chandran) if there exiets a positive integer r moh that $d_{T}(v)=r$ for every vertex v of G. They proved the following theorem

Theorem 1.1 ([6] and [8]). A graph G is Γ-regular of degree r if and only if every connected component of G is either \sqrt{r}-regular or semiregular of degrees p, q, where $p \cdot q=$ = r.

One can easily notice that G is Γ-regular of degree r if and only if $A^{2} \mathbb{\|}=\mathbf{N} \mathbb{\|}$, since $A \cdot A \mathbb{\|}=A \cdot d$.

The main prarpose of this section is to characterize eimple graphs which satiafy
(1) $A^{k}\|=r\|$ for some positive integer r, where $m \geq 3$.

Let $G_{k}(k \geq 1)$ denote the class of all graphe which an tiafy (i), Hence, \mathcal{C}_{2} is tha clans of all regular graphe and Y_{2} consists of Γ-regular graphs. In terms of graphs, G bom longe to \mathcal{G}_{k} if the number of pathe of length k outgoing from a vertex v in the mame for all verticen of a. One oan eatif check that $G_{2} \not \not \neq \mathcal{G}_{3}$ since $K_{2,3} \in \mathcal{G}_{2}$ and $K_{2,3} \notin \mathcal{G}_{3}$. Some relations between the classes $\mathcal{G}_{k}, k \geq 1$ can be obtained by simple matrix calculations.

Proposition 1.1. For every $k \geq 1, G \in \mathcal{C}_{\mathbf{k}} \cap \mathcal{G}_{\mathbf{k}+1}$ if and only if G is regular.

Proof. Let G be s-reguler, 1.e., AH $=s \|$. Therefore $A^{k}\left\|=A^{k-1} A=A^{k-1} s\right\|=A^{k-1}=\cdots=s^{k} \|$ and $A^{k+1}=$ $=s^{k+1}$. Otherwise, if $G \in \mathcal{G}_{k} \cap \mathcal{G}_{k+1}$ then there oxist two positive integers r_{1} and r_{2} euch that $A^{k}\left\|=r_{1}\right\|$ and $A^{k+1} 1_{1}=$ $=x_{2} \|$. Hence, $A^{k+1}\left\|=A \cdot A^{k}\right\|=A \cdot r_{1} \mathbb{N}=r_{1} A$ and $r_{2} \|=$ $=r_{1} A \mathbb{A}$. Since A is an integer matrix, we obtain $A=\frac{r_{2}}{r_{1}} \mathbb{1}$, where $\frac{r_{2}}{r_{1}}$ is a positive integer. Therefore $G \in G_{1}$.

By similar calculations one can prove the following properties of $G_{k}(k \geq 1)$.

Proposition 1.2. If $G \in \mathcal{G}_{k} \cap \mathcal{G}_{\ell}$ then $G \in \mathcal{G}_{k+\ell}$.
Proposition 1.3. $G_{\ell} \subset G_{k \ell}$ for every $k=2,3, \ldots$ and $\ell=2,3, \ldots$. \square

Proposition 1.4. $G \in \mathcal{G}_{k} \cap \mathcal{G R}$, if and only if $G \in \mathcal{G}_{m}$,
where $=\operatorname{GCD}(\mathbf{k}, \boldsymbol{\ell})$.
Proof. If $G \in G_{k} \cap \mathcal{G}_{\ell}$ then let us assume that $\ell \geqslant k$ and apply the Euclid algorithm to ℓ and $k\left(=k_{1}\right)$:

$$
\begin{aligned}
\ell & =m_{1} k_{1}+k_{2}, \text { where } k_{2}<k_{1}, \\
k_{1} & =m_{2} k_{2}+k_{3}, \text { where } k_{3}<k_{2}, \\
& \vdots \\
k_{p} & =m_{p+1} k_{p+1},
\end{aligned}
$$

$k_{p+1}=\operatorname{GCD}(k, \ell)$.
From the first equality, it follows that
 constant such that $A^{k_{1}} 1_{1}=r_{k_{1}} \|$. Hence, $A^{k_{2}} \|_{\|}=r / r_{k_{1}}^{m_{1}}$. and $r / r_{k_{1}}$ is the integer where $A^{\ell_{1}}=r \mathbb{1}$. Therefore $G \in \mathcal{G}_{k_{2}}$. Iterating this process we obtain $G \in \mathcal{G}_{k_{2}}, G \in \mathcal{G}_{k_{3}}, \ldots, G \in$ $\in \mathcal{C}_{\mathbf{k}_{\mathbf{p}+1}}=\mathcal{C}_{G C D}(k, \ell)$.

Otherwise, if $G \in G_{G C D}(k, \ell)$, then, by Proposition 1.3, $G \in \mathcal{G}_{k}$ and $G \in \mathcal{G}_{\ell}$, since there exist integers k^{\prime} and ℓ^{\prime} such that $k=\operatorname{GCD}(k, \ell) \cdot k^{\prime}$ and $\ell=\operatorname{GCD}(k, \ell) \cdot \ell^{\prime} \cdot \square$

Corollary 1.1. $G_{k} \subset \mathscr{C}_{l}$ if and only if $\mathcal{G}_{k}=$ $=\mathscr{G}_{\operatorname{GCD}(k, \ell)}$.

Notice that the corollary is not equivalent to say that $k=\operatorname{GCD}(k, \ell)$.

Let $\ell=6$, and $k=2,3$. The above propositions show that $\mathscr{G}_{1}, \mathscr{G}_{2}, \mathscr{G}_{3} \subset \mathscr{G}_{6}$ and $\mathscr{G}_{2} \cap \mathscr{G}_{3}=\mathscr{G}_{1}$. We know also that
$\mathscr{g}_{3} \neq \mathscr{g}_{6}$, since otherwise $\mathscr{g}_{2} \subset \mathscr{g}_{3}$ contradicting the observation that $K_{2,3} \in G_{2}-\mathcal{G}_{3}$. It suggests therefore that maybe $\mathscr{G}_{6}=\mathcal{G}_{2}$ and, in general, $\mathscr{G}_{2 \ell}=\mathscr{G}_{2}$, for $\ell \geq 2$.

Weties that if it holds, then, by the corollary, $\mathcal{F}_{\mathrm{k}}=\mathrm{G}_{1}$ for every odd integex k, ince $\mathcal{G}_{k} \subset \mathcal{G}_{2 k}=\mathcal{G}_{2}$.

Thi. conjecture was proved by Cvetkovié and Doob [I] by using spectral technique [2]. Notice that if for a symmetrie 0-1 meirix A, there saist integer constants k and r such that $A^{k}=r \|$ then r is an eigenvalue of A^{k} and $\|$ is an atgenveotor of A^{k} beloatging to the eigenvalue r.

财eorm 1.2. For $k \geq 1, G_{k}=G_{1}$ if $k i s$ odd, and $G_{k}=$. G_{2} if kis even. \square

It would be interesting to prove this theorem without using apectral technique, either by matrix calculations or by applying some graph-theoretic results.
2. Other matrix equations. Lam [3] has considered the following equation

$$
\begin{equation*}
A^{k}=\alpha I+\beta J \tag{2}
\end{equation*}
$$

where A is a $0,1-m a t r i x, ~ I ~ d e n o t e s ~ t h e ~ i d e n t i t y ~ m a t r i x, ~ J ~ d e-~$ notes the matrix with all entries equal to 1 and k, α, β are integers. He proved that if A satisifes (2) then it has constant row and column mums. Hence if A is the adjacency matrix of a simple graph G and satisfies (2), then G is regular. Therefore, the equation (2) with a symmetric matrix A produces only trivial solutions of (1).

$$
\text { Let } d_{\Gamma}^{+}(v)=d_{\Gamma}(v)+d(v) \text { and } d_{\Gamma}^{-}(v)=d_{\Gamma}(v)-d(v)
$$

A graph G is Γ^{+}-regular (Γ^{-}-regular) of degree r if $d_{\Gamma}^{+}(v)=$ $=r\left(d_{\Gamma}^{-}(v)=r\right.$, respectively) for every vertex v of G. PIonka [7] has proved that G is Γ^{+}-regular if and only if G is
regular. Howevor, for $\Gamma^{-}-$regular graphs, only some partial characterizations have been obtained [7] and degree sequences of arah graphs have been studied in [4].

Hotice that G is Γ^{+}-regular if there exists an integer r aroh that
(3)

$$
\left(A^{2}+A\right)=r \mathbb{1}
$$

holds, and G is Γ^{-}-regular if there exists an integer such that
(4)

$$
\left(\Lambda^{2}-\Lambda\right) \mathbb{1}=\mathbb{1}
$$

nold..
One may again generalize Γ^{+}-regular graphs and ask for graphs which satisfy the equation
(5) $\quad\left(A^{k}+A^{k-1}+\ldots+A\right) \mathbb{1}=r \mathbb{1}$
for some integer r. In terms of elements of graphs, G satisfies (5) if and only if the number of paths of length not greater than k outgoing from a vertex of G is the same for all vertices of G. We conjectured that only regular graphs satisfy (5) for every $k \geq 1$, and it has been settled in the affirmative by B. MeKay [5] using again spectral technique.
3. Equation $\Lambda^{k_{1}}=r 1$ in the class of digraphs. Let $D=$ $=(\boldsymbol{V}, \mathrm{F})$ be a digraph, where $\mathrm{E} \subset \mathrm{V} \times \mathrm{V}$. One may now ask for the wolation of the equations.(1),(3),(4) and (5) when A is an adjacency matrix of a digraph, that is, when A is an arbitrary 0-1 matrix.

Let \mathscr{D}_{k} denote the class of all digraphs such that $D \in \mathscr{D}_{k}$ if ite adjacenty matrix setisfies (1). There are many different
types of digraphs in \mathscr{D}_{k} and a complete characterization of D_{k} seems to be very difficult.
B. McKey [5] found the complete solution of (1) in the class of etrongly conneoted digraphs. A digraph D is regular oyclically r-partite if V can be decomposed $\nabla=\nabla_{1} \cup \nabla_{2} \cup \ldots$ $\ldots \cup \nabla_{r}$, where $\nabla_{i} \cap \nabla_{j}=\varnothing, \nabla_{i} \neq \varnothing(1, j=1,2, \ldots, r)$, and there exist integers $m_{1}, m_{2}, \ldots, m_{r}$ such that for every $v \in V_{i}$ and $1=1,2, \ldots, r$ we have

$$
\left|E \cap\left(\{v\} \times \nabla_{j}\right)\right|=\left\{\begin{array}{l}
m_{1}, \text { if } j \equiv 1+1(\bmod r) \\
0, \text { otherwise. }
\end{array}\right.
$$

Every regular digraph is regular cyclically l-partite and regular oyclically 2 -partite digraphs are exaotly semiregular bipartite.

Theorem 3.1 (B. MCKay). If D is strongly connected then $D \in D_{k}$ if and only if D is regular cyclically r-partite for some $r \mid k$.

Fig. 1
Figure 1 shows a digraph D_{n} which is not strongly connected and $A^{2} \|=(n-2)$ for every $n \geq 3$. Every strongly connected member of \mathscr{D}_{k} can be used for a similar construction.
4. 「-graphteal sequences. It is one of the classical problems in the graph theory to ask when a sequence of n intagers $d=\left(d_{1}, d_{2}, \ldots . d_{n}\right)$ is graphical, i.e., constitutes the sequence of vertex degrees of a graph, which is usually assumed to be from a restricted family of graphs.

In a similar way, we say that $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$ is Γ graphical if there exists a simple graph G such that d^{\prime} is the sequence of Γ-degrees of G. The problem of finding when a sequence of n integers is Γ-graphical seems to be very hard. We present here only some comments.

$$
\begin{aligned}
& \text { First notice that if du' is } \Gamma \text {-graphical then } \\
& i \sum_{i=1}^{n} d_{i}^{\prime}=\sum_{i=1}^{n} d_{i}^{2}=\left(\sum_{i=1}^{n} d_{i}\right)^{2}-2 \sum_{i<j} d_{i} d_{j}
\end{aligned}
$$

where oll $=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the degree sequence of a graph having Γ-degree sequence $d l^{\prime}$.

Therefore, if al' is Γ-graphical then it has the following properties:
(a) $R=\sum_{i=1}^{n} d_{i}^{\prime}$ is even,
(b) R can be decomposed into n squares of integers d_{1}, d_{2}, \ldots, d_{n},
(c) $\quad d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphical.

It is not dipficult to find a non Γ-graphical sequence d^{\prime} which satisfies (a) - (c). For instance, let $d^{\circ}=(4,2,2,2)$. In this case $R=10$ and there is only one decomposition of 10 into 4 squares, namely $10=2^{2}+2^{2}+1^{2}+1^{2}$. The sequence $(2,2,1,1)$ is the degree sequence of P_{4} which however has the Γ-degree sequence ($3,3,2,2$), different from the sequence we started with. Notice that in the class of multigraphs with loops, the sequence $(2,2,1,1)$ has a realization (consisting
of P_{3} and a loop) with the given Γ-degree sequence.
Therefore we have to add the following, requirement
(d) the sequence d has a realization with Γ-degree sequence d^{\prime}.
Notice that for every even integer R there exists a Γ graphical sequence $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$ such that $\sum_{i=1}^{n} d_{i}^{\prime}=R$. It is sufficient to take $n=R$ and $d_{i}^{\prime}=1$ for every $i=1,2$, ..., n; ol' corresponds to the graph on n vertices and $n / 2$ separate edges. One may ask now which even integers have connected realizations. For instance if $R=8$ then we have

$$
\begin{aligned}
& R=1^{2}+1^{2}+1^{2}+1^{2}+1^{2}+1^{2}+1^{2}+1^{2} \\
& R=2^{2}+2^{2}, \\
& R=2^{2}+1^{2}+1^{2}+1^{2}+1^{2},
\end{aligned}
$$

and only the first decomposition corresponds to a graph. Therefore, 8 has no connected realization.

It can be easily proved that if d° is Γ-graphical then the number of l^{\prime} 's in d^{\prime} is even and they can be removed from $d l^{\prime}$, since $d l^{\prime}$ is Γ-graphical if and only if d^{\prime} without an even number of $I^{\prime} \mathrm{m}$ is Γ-graphical.

Elements of d"equal 2 may occur in two configuration: shown in Fig. 2, which however cannot be recognized from a Γ-degree sequence. If G is assumed to be connected and has at least four vertices, then only $2(b)$ may occur, that is, every vertex of Γ-degree 2 is pendant and adjacent to a vertex w such that $d(w)=2$ and $d^{\prime}(w) \geqq 3$.

(a)
(b)

Fig. 2

We have been aile to emmerate all graphs with Γ-degree sequence $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$ satisfying $d_{i}^{\prime} \leqslant 5(i=1,2$, $\ldots, n)$. For ingtance, if $d_{i} \leqslant 4(i=1,2, \ldots, n)$ then every component of a graph with Γ^{\prime}-degree sequence $d^{\prime \prime}$ is one of the graphs: a simple path, a simple cycle, $K_{1,4}$, and P_{4} with an edge attached to a non-pendant vertex of P_{4}.

Let us return to the conditions (a) - (d). The first of them can be trivially checked. The second one, however, is not trivial at all. Pirst, some integers, usually of small value, cannot be decomposed into a fixed number of squares of integers. For instanca, no sequence of five integers with the sum equal to 18 is Γ-graphical since 18 cannot be decomposed into 5 squares of integers. There are several such results in the number theory (see for inatance [9]), which can be used to eliminate some sequences of integers as non Γ graphical. Secondiy, if the sum R is decomposable into squares then the number of decompositions can be very large. In this case we have to find whether among the decompositions there exiats at least one which gives a graphical sequence compatible with the given Γ-degree sequence. However, neither in the number theory nor in the theory of graphs there exists a result dealing simultaneously with the decomposition of an even integer into squares of integers and graphical ralizations of the sequence of these integers.

We have not succeeded (even restricting our attention to trees) in finding for Γ-degree sequences counterparts of d-invariant operations which can be applied to degree sequences or to graphs, for instance, the removal of a vertex of maximum degree (as in the theorem of Havel and Hakimi)
and switching two mutually non-adjacent edges (see for instance [10]).

Figure 3 shows that non-isomorphic trees can have the same Γ-degree sequence.

Fig. 3.
It is known that if $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right), d_{i} \geq 1(1=1,2$, \ldots, n) and $\sum_{i=1}^{\infty} d_{i}=2(n-1)$ then every realization of d in the class of connected simple graphs is a tree. It does not hold however for Γ-degree sequences. Por instance, the sequence of five 4 's corresponds to $K_{1,4}$ and to C_{5}. We conjecture that if a Γ-degree sequence $d l^{\prime}$ has a tree realization then each such a realization of $d{ }^{\prime \prime}$ has the same number of pendant vertices. It is easy to check that this is not true for disconnected realizations of Γ-degree sequences.

References
[1] D.M. CVETKOVIĆ and M. DOOB: Personal Communication, May 1980.
[2] D.M. CVETKOVIĆ, M. DOOB, and H. SACHS: Spectra of Graphs, VEB, Berlin 1980.
[3] C.W.H. LAM: On some solutions of $A^{k}=d I+\lambda J$, J. Combinatorial Theory 23A(1977), 140-147.
[4] Z. MAJCHER: On sequences representable by Γ-regular graphs, in: M. Borowiecki, J.W. Kennedy, and M.M. SysZo (eds.), Graphs in the Memory of K_{5} and $K_{3,3}$, Springer-Verlag, Berlin 1983.
[5] B.MoKay: Pereonal Commaicationa, September 1980 and July 1981.
[6] J. PLoiki: on Γ-regular graphe, Colloquium Math. 46(1982), 131-134.
[7] J. PHONKA: On some regulaxities of graphs I, Časopis pro pěst. matematiky 107(1982), 231-240.
[8] S. RAMA CHAFDRAN: Nearly regular graphs and their reconstruction, Graph Theory Hewaletter 8(1978), Ko. 3.
[9] M. SIERPIÉSKI: Number Theory (in Polish), Vol. 2, 1959.
[10 M.M. SYSIO: On tree and unicyclic realizations of degree sequences, Demonstratio Mathematica 15(1982), in press.

Institute of Computer Soience, University of Wroclaw, ul. Przemyckiego 20, 51151 WrocXaw, Poland
(Oblatum 2.2. 1983)

