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COMMENTATIONES ПATHEИATICAE UNIVEKSÎTATU CAROLINAE 
24,2(1983) 

COMMON FIXED POINTS FOR NONEXPANSIVE AND ASYMPTOTICALLY 

NONEXPANSIVE MAPPINGS 

S.A.NAIMPALLYt>#K,L.SlN6H#J.H.M,NHITFIELD* 

The main aim of the present paper i s to prove the existence of common fixed 

points for nonexpansive and asymptotically nonexpansive mappings in convex metric 

spaces. Such spaces, introduced by Takahashi, include Banach spaces; and our 

results generalize those of Bahtin, De Marr, Goebel and Kirk, Hu, Kirk, and 

others. 

Key Words and Phrases. 

Convex metric space, nonexpansive and asymptotically nonexpansive mappings, 

fixed points. 

Classification. 47H10, 52H25. 

§0. Introduction. 

In 1970, Takahashi [14] introduced a notion of convexity in metric spaces 

(see Definition 0.1) and generalized some fixed-point theorems in Banach spaces. 

These authors' research was supported in part by grants from NSERC (Canada). 
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Subsequently, Machado [8], Tallman [15], and Naimpally and Singh [9], among 

others, have studied convex metric spaces and fixed-point theorems. This paper 

is a continuation of these investigations. 

In Section 1, we prove common fixed-point theorems for nonexpansive mappings. 

Section 2 deals with the existence of common fixed points for asymptotically 

nonexpansive mappings. All of these are in the setting of convex metric spaces 

and generalize or extend results In the Banach-space setting. 

We begin with some definitions. 

Definition 0.1. Let X be a metric space and I be the closed-unit interval. 

A continuous mapping W : X * X * I - » - X is said to be a convex structure on X 

if for all x,y € X and X € I, d(u,W(x,y,X)) < Xd(u,x) + (1 - X)d(u,y) for 

all u € X. X together with a convex structure is called a convex metric epace. 

Clearly, a Banach space, or any convex subset of it, is a convex metrix 

space with W(x,y,X) - Xx + (1 - X)y. More generally, if X is a linear space 

with a translation-invariant metric satisfying 

d(Xx + (1 - X)y,0) £ Xd(x,0) + (1 - X)d(y,0), then X is a convex metric space. 

There are many other examples, but we consider these as paradigmatic. 

Definition 0.2. Let X be a convex metric space. A nonemoty subset K Q X is 

convex if W(x,y,X) € K whenever x,y € K and X € I. 

Takahashi [lA] has shown that the open spheres, B(x,r) » {y € X: d(x,y) < r), 

and closed spheres, B[x,r] - {y € X: d(x,y) £ r>, are convex. Also, if 

{K :a € A> is a family of convex subsets of X, then 0 ( K -« € A) is 
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Definition 0.3. Let X be a convex metric space. The convex hull of A £ X, 

co(A), is the intersection of all convex sets containing A. The oloaed convex 

hully co (A), is the intersection of all closed convex sets containing A. 

The following result of Takahashi [14, Proposition 5] will be used 

frequently. 

Lemma 0.4. Let M be a nonempty compact subset of a convex metric space X, 

and let K - coM. If the diameter of M, 6(M), is positive, then there exists 

u € K such that sup{d(x,u) : x € M} < 6(M). 

§1. Families of Monexpansive Mappings. 

A common fixed point for a commutative family of nonexpansive mappings is 

found. Results of Bahtin [l] are generalized. 

Definition 1.1. Let X be a metric space. A mapping T : X -»• X is said to be 

dsmCoonpaat if every bounded sequence {x }, such that d(x ,Tx ) •+• 0 as n -• •% 
n n n 

contains a convergent subsequence. 

Lemma 1.2. Let X be a metric space, and let D be a closed, bounded subset of 

X. If T : D -• D is a continuous demicompact mapping, then F(T) « { x € D : T x » x } 

is compact. 

Proof. Let {x } be a sequence in F(T). Then, d(x ,Tx ) • 0 for each n. 
n n n 

Since T is demicompact and D is bounded, there exists a subsequence ix } 
n± 

of {x } such that x -*• x for some x € D. By the continuity of T, Tx - x. 
« n. 

Theorem 1.3. Let X be a convex metric space, and let C be a nonempty, 
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closed, bounded, and convex subset of X. Let G : C -*• C be a famiiy of commuting 

nonexpansive mappings with nonempty fixed-point set. Suppose there ia at least 

one mapping In G, which is demicompact; then, the family G has a common 

fixed point. 

Proof. Let D •» {B £ C : B is nonempty, closed, and convex, and T(B) Q B for 

•ach T € Gh Clearly, D is nonempty, since C belongs to D. Partially 

order D by set inclusion, and let {B : a € A} be a chain in D. 
a 

A - (\{M : a € A) is closed, convex, and Invariant under each T t G. Let 
(B 

T € G be a demicompact mapping, and let F - {x € B :Tx*-x}. Each F 
o r rr ° a a o a 

la nonempty and compact; therefore, F - (\{¥ : a € A} is a nonempty subset of 

A. Thus, A € D; and, by Zora'a Lemma, there exists a minimal nomemptv, closed 

convex sat B C C such that T(B ) C B for each T c G. 
o o * o 

Let H « {x € B : T x » x). Then, H is a nonempty, compact subset of 
o o 

B . From Tx • TT x » T Tx for any x € H and T € G, it follows that 
o o o ' 

T(H) £ H for each T € G. Again, by Zorn's Lemma, there is a minimal, 

nonempty, compact set M Q C such that T(M) C M for each T € G. Clearly, 

M £ B , and the minimality of M in H implies T(M) » M for each T € G. 

Suppose M consists of more than one element. Then, by Lemma 0.4, we 

conclude that there is u € co(M) such that p * sup{d(x,u) : x € M} < 6(M). 

Since B is convex and M C B , it follows that u belongs to B . For each 
o o o 

x € M, u € B[x,p]. Let N * f \ B[x,p] and P = N fl B . Then, P 
x€M ° 

closed and convex. Also, T(P) C P for each T € G. To see this, since 

T(B ) C B for each T € G, it suffices to show that T(N) C N for each o o --* 

T g G. Let z € N and T € G. Then, d(z,x) <_ p for each x € M. Since 
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T(M) - M, there is a y € M such that Ty - x; hence, 

d(T*,x) » d(Te,Tjr) £ d(z,y) ± p for each x € M. Thus, T* 6 Bfx.p] for each 

x G M; that is, T(N) C N for each T 6 G. Thus, P belongs to D; and by 

the minimality of B in D, we have P • B 
o c 

Since T is continuous and M is compact, there are elements x,y in M 

awch that d(x,y) - 6(M). The element y does not belong to B[x,p], and, 

consequently, y does not belong to B , which is a contradiction. Thus, 

M - {x} for some x in C, and Tx - x for each T in G. 

Before stating our next result, we need to recall the following. 

Definition 1.4 [7]. Let X be a metric space and D be a bounded subset of X. 

The moBWPe of nonconpaotness of D, denoted by -, (D), is defined as follows; 

Y(D) • inf{e > 0 : D can be covered by a finite nunber of subsets of diameter < e}. 

Y(D) has the following properties: 

(1) 0 < Y(D) 1<5(D). 

(2) Y(D) " 0 i f and only i f D i s precompact ( i . e . , D i s compact). 

(3) Y(D) - Y(D). 

(4) ү(C Џ D) - max{ү(C), ү(D)}. 
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(5) C C D implies Y ( C ) < Y ( D ) -

(6) y(S(B,r)) <_ Y(B) + 2r, where S(B,r) - {x £ X: d(x,B) < r>. 

If X is a Banach space, then in addition we have: 

(7) Y ( C + D) £ Y(C) + Y(D), where C + D - {c + d : c Q C, d € D}. 

(8) Y(<*(D)) •» |a|Y(D), where a is any real number. 

Closely related to the notion of measure of noncompactness is the concept of 

k-set contraction. 

Definition 1.5. Let X be a metric space. A continuous mapping T : X -t- X is 

said to be a k-8et contraction if for any bounded subset D of X we have 

Y(T(D)) £kY(D). T is said to be densifying if for any bounded subset D of X 

such that Y(D) * 0, Y(T(D)) < Y ( D ) . 

An elegant discussion of measure of noncompactntss and densifying mappings 

may be found in [10] and [12]. 

Theorem A [lO. 11, 13], Let X be a Banach space and C be a closed, bounded, 

convex subset of X. Let T:C + C be a densifying mapping. Then, T has at 

least one fixed point in C. 

Lemma 1.6. Let X be a metric space and D be a nonempty, closed, bounded 

subset of X. Let T : D -*• D . be a densifying mapping. Then, T is demicompact. 
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Proof. Let {x } be a bounded sequence In 0 such that d(x ,Tx ) -• 0. We 
• •• n n n 

need to show that {x } has a convergent subsequence, or, equivalently, it ia 
n 

•aouRh to show that y{x } - 0. Let M - {x ), so T(M) - {T(x )}. Since 
n n n 

d(x ,Tx ) -• 0, it follows that for any e > 0, B(T(M),e) - U(B(y,c) : y £ T(M)} 
n n 

contains all but a finite number of elements of M. Thus, 

Y(M) £ Y(B(T(M),e)) < Y ( T ( M ) ) + 2e. Hence, Y(M) £ Y ( T ( M ) ) ; and, since f ia 

tfenslfying, Y(M) » 0. 

The following result of Bahtin [l] follows as a special case of Theorem 1.3. 

Corollary 1.7 [l, Theorem l]. Let X be a real Banach space. Let C be a 

nonempty, bounded, closed convex subset of X. Let F be a commutative family 

of nonexpansive mappings of C into itself. Let there be at least one densifyin 

mapping in F. Then, the operators T in F have a common fixed point. 

Proof. It follows from Theorem A that F(T), the fixe4-points set of T in C, 

is nonempty for each T in F. An appeal of Lemma 1.6 establishes the 

demicompactness of T. 

The converse of Lemma 1.6 is not true, as can be seen from the following 

examples. 

Example 1.7. Let X •» [0,l] with the usual metric. Define T ; X -*• X, ats 

Tx « x/2 if x i 0 and T(0) • 1. Then T is not densifying, due t» the lack 

of continuity of T. However, T is demicompact. Indeed, if {x ) is any 

bounded sequence in X such that x - T x -+-0 as n -** ~; then, from the 

n n 
Bolzano-Weierstrass theorem, it follows that {x } has a convergent subsequence. 

- 293 



E x a m p l e l . 8 . Let B1-{e1,e.,...,e,...} be the usual orthonormal basis for i z, n 
2 

i . Define T: B •*• B by T(e ) - e .. Then, T is continuous (in fact, an 

isometry), but not densifying. However, T is demicompact. Indeed, if 

{e.}. . is a bounded sequence in B such that e. - Te. converges, then 

{e.li(i, must be finite. 

Definition 1.9. A convex metric space X is said to be atriotty convex if for 

any x,y 6 X and A(0 <_ A <_ 1), there exists a unique element z C X such 

that Ad(x,y) - d(z,y) and (1 - A)d(x,y) - d(x,z). 

1.10. Let X be a strictly convex metric space and K be a nonempty 

convex subset of X. If T : K -*- K is nonexpansive, then F(T) » {x €L K: Tx • x) 

is convex. 

Proof. Let x,y 6 F(T). Since K is convex, it follows that W(x,y,A) € K. 

We need to show that T(W(x,y,X)) » W(x,y,X). Now, 

d(x,T(W(x,y,A))) « d(Tx,T(W(x,y,A))) £ d(x,W(x,y,X)) <_ (1 - X)d(x,y) and 

d(y,T(W(x,y,X))) £ Xd(x,y). 

Thus, 

d(x,y) * d(Tx,Ty) < d(Tx,T(W(x,y,A))) + d(T(W(x,y,X)),Ty) < (1 - A)d(x,y) + Ad(x,y) 

• d(x,W(x,y,A)) + d(W(x,y,A),y) - d(x,y). 

By the strict convexity of the space, it follows that W(x,y,A) - T(W(x,y,»A)). 

Theorem 1.11. Let X be a strictly convex metric space. Let F : X ••• X be a 

family of commuting nonexpansive mappings with the properties: (a) at least one 

of the mappings T € F is demicompact, (b) mapping T has at least one fixed 
o o 

point, and (c) there are no fixed points of the mapping T outside 
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S - {y € X : d(x,y) <_ r>. Than, th« family r has a eoancra tixea pome. 

Proof. It follows from tne continuity of T and Lemma 1.10 that 

D - { x € . X : T x « x } is bounded, closed, and convex. Also, for any T € F, 

T(D) c D. Indeed, Tx - TT x - T Tx for any x G ->; that is, Tx C D. 
o o 

Therefore, T(D) C D. The existence of a common fixed point now follows from 

the properties of the set D and Theorem 1.3. 

As a coroxlary of Theorem 1.11, we have the following. 

Corollary 1.12 [l, Theorem 2]. If X is a strictly convex Banach space and if 

in the commutative set F of nonexpansive operators on X there exists at least 

one densifying operator A with the properties (a) operator A has at least 

one fixed point and (b) outside a ball j|xj| <_ r, there are no fixed points of 

operator AQ. then, the operators A ez F have a common fixed point. 

§2. Asymptotically Nonexpansive Mappings. 

In this section, we find a common fixed point for a commuting family of 

asymptotically nonexpansive mappings on certain subsets of a convex metric space. 

These results extend those of Goebel, Kirk and Thele [4], Hu [5], Kirk [6], and 

DeMarr [2], 

Definition 1.2. Let X be a metric space", and let T : X -*- X be- a mapping. A 

subset K of X is said to be sequentially closed under T if for each x € K, 

every subsequential limit point of {T x} lies in K. 

- 295 



Theorem. 2.2. Let K be a compact convex subset of a convex metric space x . 

Let f be a comuuu-wive family or continuous mappings of K into itself, 

satisfying the following condition: for all x £ % and T £ F» 

(() lim »up{ sup d(T x,T y) - d(x,y)) < 0* Then, F has a common fixed point. 
*•- y * K 

Proof. Applying Zorn's Lemma, we obtain a set L £ K, which is minimal with 

respect to being nonempty, compact, convex, and sequentially closed under each 

T 6 F. Again, by Zorn's Lemma, there is a set M £ L much that M is minimal 

with respect to being nonempty, compact, and sequentially closed under each 

T € F. Fix S € F, and let N - H 0 S(M). 

By the continuity of S, N is compact. To show that W is nonempty, let 
n i 

x € M. Then, {Snx) £ X and there exists a subsequence {S x> and w £ K 

ai 
such that S x -*• w. Since x £ M and M is sequentially closed under S, 

w € M. Consequently, Sw £ S(M). Also, continuity of S implies that 

°i ni+l 
S(w) - S(lim S x) «• lim S * x; and, since rf is sequentially closed under 

i-t-» i-*» 

S, S(w) € M. Hence, S(w) £ M 11 S(M) - N. 

Finally, N is sequentially closed under each T £ y. Let x £ N and 
ni 

x - lim T x. Since x £ M end M is sequentially closed under T, x £ M. 
±+» 

Also, x € S(M) Implies x - Sy for some y £ M. Hence, 
n n n n 

S(T y) •» T (Sy) » T x + * »« 1 •* •-> Since L is compact {T y} has a 

ni Di 
convergent subsequence {T fy}9 and there is v € L such that T **y •* v as 

j ->• ». From the fact that y € M and M Is sequentlaL1-y closed under T, 

D I J 
v 6 M. The continuity of S Implies that S(T Jy) •*• s(v) as j + «•>; consequently, 

S(v) - s; i.e., z £ S(M). Hence, z £ N and N is sequentially closed 

under each T £ F. 
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Thus, we see that N is a nonempty, compact subset of M, which is 

sequentially closed under each T C. F. Hence, by the minimality of M, N - M; 

and, thus, M £ S(M). Since S 6 F was arbitrary, M £ S(M) for all S £ F. 

If <5(M) - 0, ve are finished. Assume that 5(M) > 0. Then, by Lemma 0.4, 

there exists x € L such that 0 < r » sup{d(x ,y) : y € M} < 6(M). Define 
o o 

D * ( O Bl.y»r3) n L. Clearly, D is convex and compact. Also, D r ?, 
y€M 

since x £ D- Since M is compact, there exist points x.,x « M with 

d(x ,x2) » d(M) > r. Hence, x2 j£ B[x.,r] and x. d D. On the other hand, 

x2 € M -» L» and» thus, D is properly contained in L. 

Finally, to show that D is sequentially closed under each T G F; let 
n1 z 6 D, suppose lim T J(z) « v, and shov that v 6 D. Let e > 0 be given. 

Since lim sup{ sup [d(T z,T x) - d(z,x)]} <_ 0, there is an integer H such that 
!•*> x(SK . . ~ n 

if i >_ N, sup (d(T z,T x) - d(z,x)} < e. Also, since T z -> v as i + «, 
x6K n 

there is n > N such that d(v,T Jz) < e. Since T(M) C M for each T € F, 
ni nl 

M £ T J(M). Let y S M C T J (tf). Then, there exists a u 6 M such that 
n n n n n ..n 
T J(u) - y and d(v,y) <_ d(v,T Jz) + d(T 3z,y) < d(v,T •'z) + d(T Jz,T 2u) 

< e + d(z,u) + e « 2e + d(z,u) £ 2e + r. Since e vas arbitrary, 

d(v,y) <_ r,v 6 B[y,r]. Thus, w e fl B[y,r]. On the other hand, since 
y€M n£ 

z £ D C L and L is sequentially closed under F, w - lim T z € L. Thus, 
"* i-H» 

w €: ( O BCy»r3) fl L » D, shoving D is sequentially closed under each 
y£M 

T € F. Thus, ve see that D is a nonempty, compact, convex proper subset of L 

and that It Is sequentially closed under each T € F. This contradicts the 

minimality of L. Thus, M consists of a single point, which must be a fixed 

point of F. ' 
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Definition 2.3. Let X be a metric space and K be a nonempty subset of X. A 

mapping T 8 K • K la called aeymptotioally nonexpansive if for each x,y f£. K, 

4(T x»T y) <.ktd(ic,y); i - 1,2,..., where {k±} is a fixed sequence of positive 

real numbers such that k. •*- I as !-*-». 

Corollary 2.4. Let K be a nonempty, compact, convex subset or a convex metric 

apace X. If F: K -*• K Is a commutative family of continuous, asymptotically 

nonexpansive mappings, then there is x e K such that Tx » x for all T G F. 

Proof. It follows analogously to Kirk's result [61 for Banach spaces that if T 

is asymptotically nonexpansive, then T satisfies condition (K) in Theorem 2.2. 

The result now follows. 

Example 2.5 [3]. Let B denote the unit ball in the Hilbert space I , and let 

2 
T be defined as follows: T(x »x ,x ,...) •+• (0,x ,A?x ,A x , . . . ) , where A 

is a sequence of numbers such that 0 < A. < 1 and 

j | A - 1/2 (for example, A may be taken as 1 x). Then, T is 
i«2 * 1 r 
asymptotically nonexpansive; however, T is not nonexpansive. Thus, the class 

of asymptotically nonexpansive mappings is wider than the class of nonexpansive 

mappings. 

Example 2.6. Let X » [0,l], with the usual metric. Define T : X -*• X by 

Tx • ^/x. Then, ^ x -*• 0 uniformly as n -> «; so, T satisfies condition (K), 

but T is not asymptotically nonexpansive. In fact, T does not satisfy a 

Lipschltz condition. 

The following results of Goebel, Kirk, and Thele [4], Hu [5], and DeMarr [2] 

ate special cases of Theorem 2.2 and Corollary 2.4. 
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Corollary 2.7 [4, Theorem 3.1]. Let K be a nonempty, compact, convex subset of 

a Banach .pace X, and let F be a commutative semigroup of asymptotically 

nonexpansive mappings of K into K. Then, there exists a point x £ K such 

that Tx » x for each T f£ F. 

Corollary 2»8 [5]. Let X be a Banach space and M be a compact, convex subset 

of X. If F is a nonempty commuting family of continuous mappings of X into 

itself, satisfying the condition that for each x € X and f € ** 

lim sup{ sup [||f x - f y|| - ||x - y||]} £ 0; then, F has a common fixed point 
i-*» y € X 
in X. 

Corollary 2.9 [2]. Let X be a Banach space, and let M be a nonempty, compact, 

convex subset of X. If F is a nonempty commuting family of nonexpansive 

mappings of X into itself, the family F has a common fixed point in X. 
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