Commentationes Mathematicae Universitatis Caroline

Karel Čuda; Blank Vojtášková
Monads in basic equivalences

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 3, 437--452

Persistent URL: http://dml.cz/dmlcz/106243

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

MONADS IN BASIC EQUIVALENCES

K. ČUDA, B. KUSSOVA

Abstract

In this paper we prove that all sets from the universe of sets can be defined from both any arbitrary proper Sd, class and a suitable monad in any equivalence of indiseernibility. We also show that there is a monad μ such that $D_{\mu} \neq \nabla$. These factis are further used for proving mome interesting ansertions concerning similaritiess e.g. it is shom here that some special cases of mimilarities have to be parta of identity.

Key worde: Alternative set theory, basic equivalence, mom nad, delinability, similarity, endomorphiam.

Clasmification: Primary 03E70
Secondary 54J05

There is a questions How large has to be the class of parameters X in order that one can define from it all ets from the universe of sets? More precisely, we ahall ask here how to choose X so that $\operatorname{Def}_{X}=V$ and X is as amall as possible at the same time.

By means of Peano arithmetic one can prove:
(1) For each proper class $X \in S . d_{V}$ there is a function FaSd such that $V=\operatorname{Fw}^{2}$ (and therefore $\mathrm{Def}_{X}=\nabla$). Unfortunately, auch a function F dopends on X.

Our question is whether it is posaible to go "lowern. If X is a semiset, then obviously $D e f_{X}+V$. That is why such a
olass I for which Def ${ }_{I}=F$ has to be very large.
In the first part of this paper (see Theorem 1) we prove that in the alternative set theory, the following statement holde:

There oixsts a function $F \in S d_{0}$ such that in any basic equivalence $\frac{\circ}{\left\{\frac{0}{\sigma}\right\}}$ there is a monad $\mu_{\{0\}}$ for which $V=F{ }^{n} \mu_{\{0\}}^{2}$.

This implies Def $_{\mu_{y_{0}}}=\nabla_{\text {. }}$
The main difficulty in proving such an assertion in nonstandard models of Peano arithmetic lies in the fact that it is not possible to define the relation \circ by internal means of the theory.

At the end of the first paragraph we show still one interesting property of the above mentioned monad $\mu_{\{c\}}$, its construction is not at all one-aimed.

In $[C$ CK 1$]$ we proved that there is no function $F \in S d_{\{0\}}$ and no monad μ in $\left\{\frac{\circ}{\circ}\right.$, such that $V=F^{n} \mu$ (see Theorem 5). We also showed there that it is not possible to immerse any proper class $\mathrm{X} \in \mathrm{Sd}_{\mathrm{y}}$ into any monad. Therefore, the further mentioned theorem 1 is not a consequence of the assertion (1) since one cannot proceed in such a way that he chooses a monad μ which contains a proper class $X \in S d_{V}$ and then creates μ^{2}.

The first section includes, moreover, a theorem which assures that there is a monad μ for which Def $\mu \neq \nabla$.

In the second paragraph we shall deal with several consequences of the theorem on identity from [č-K 1]. Results of $\S 1$ will be substantially applied here.

In the book [V], there are investigated similarities, endomorphisms and automorphisms. For proving the existence of
these objects there are used strong axioms of the altemative set theory (axiom of choice, axiom of cardinalities). Thia fact suggests that we have to treat with rather "delicate" objecte. This "delicacy" will be more closely apecified here. We show nom mely that such proper classes which are similaritias and mimaltancously "simpler" have to be identities. For the eriteria of simplicity we shall take set-definability, reality, eventually the property to be a π-class.

We also prove here that the conditions the investigated similarities are proper classes, is essential. In other worde,we give the example of an infinite set similarity which is not identical in any point.

Still two remarks:
When we speak about ordering on V we bear in mind the natural ordering on the class (see [V], ch. II, § 1).

Further, we remind the notion Def $_{X}$ (see [V 1]). The set y is said to be definable using parameters from the class X iff there is a set formula $\varphi(z)$ of the language FIX such that the formulas $(\exists \mid z) \varphi(z)$ and $\varphi(y)$ hold. We use the notation Def_{X} for the class of all sets definable using paremeters from the class $X_{\text {. }}$

The authors thank P. Vopěnka for discussions concerning the problems studied.
§ 1. The following theorem may remind us of the Leibniz ${ }^{\prime \prime}$ statement "... each created monad represents the whole universen.

Theorem 1. It is possible to define a function CdESd (so-called a coding function) such that

$$
(V e)\left(\exists \mu_{\{0\}}\right) \quad V=C d^{n} \mu_{\{\in\}}^{2}
$$

Firntly we prove the following assertion.

Lemas. There is a function 1 such that for every proper clams $\mathrm{X} \in \mathrm{Sd}_{\mathrm{fe}} \mathrm{s}$ the conditions
(1) $(\forall x)(x \in \operatorname{dom}(f) \rightarrow f(x)<x)$;

hold.
Proof. Let us onumerate all classes of $\mathrm{Sd}_{\{0\}}$ and let $\left\{x_{i} \in \mathcal{1} F \boldsymbol{F}\right\}$ denote auch an enumeration. Let further $\operatorname{Def}_{\{\in\}}=$ $=\left\{a_{i} ; i \in \mathrm{FH}\right\}$ 。

At first we shall construct a countable sequence of functions $\left.\left\{f_{i}\right\} i \in F N\right\}$ such that $\operatorname{dom}\left(f_{i}\right)$ are mutually disjoint, each f_{i} satisfies (1) and for each proper class $X \in S d_{\{c\}}$ the condition $\mathrm{f}_{1}^{\mathrm{nX}}=\left\{\mathrm{a}_{1}\right\}$ holds.

Functions f_{i} will be constructed by induction. For creating f_{1} we shall at first construct an auxiliary (countable) function F_{1}; then f_{1} will be obtained from F_{1} by a convenient prolongation.

The function F_{1} is defined as follows:
$F_{1}=\left\{\left\langle a_{1}, x_{1}\right\rangle ; x_{i}\right.$ is the smallest element in $X_{i}-\operatorname{Seg}\left\langle\left(a_{1}\right)\right\}$, where $X_{i} \in S d_{\{c\}}$. Let f_{1} be such a prolongation of F_{1} for which $\left(\forall x \in \operatorname{dom}\left(f_{1}\right)\right) \quad f_{1}(x)=a_{1}<x$.

We construct the function f_{n+1} analogously, only with the difference that we put $F_{n+1}=\left\{\left\langle a_{n+1}, x_{i}\right\rangle ; x_{i}\right.$ is the smallest element in

$$
\left.\left[\left(X_{i}-k U_{k+1} \operatorname{dom}\left(f_{k}\right)\right)-\operatorname{seg}^{<}\left(a_{n+1}\right)\right]\right\} .
$$

Now we prolong the sequence $\left\{\mathrm{f}_{\mathrm{i}} ; i \in \mathrm{FN}\right\}$ in such a way
that the condition on disjointness of domains and the property (I) are preserved. Let $\left\{f_{\gamma} ; \gamma^{\prime} \in \propto\right\}$ denote the prolonged sequence. Put further $f=U\left\{f_{\gamma} ; \gamma \in \propto\right\}$. The function f fulfils obviously both conditions (1) and (2).

Proof of Theoren 1. Let us define a function of two variables CdeSdo in this way: if $y(x)<x$, then $C d(x, y)=J(x)$; for $\bar{f}(x) Z x$ or y is not a function, the function $C d(x, y)$ is not defined. Let further f be the function from Lemma 1. We shall create the class $\mu_{\{c\}}^{2}(f)$ and prove that

$$
\nabla=c d^{n} \mu_{\{0\}}^{2}(f)
$$

For abbreviation, we write $C d^{m} \mu_{\{0\}}^{2}(f)=Y$.
At first we prove that Y is a figure in $\frac{\circ}{c}$? . In $[\check{c}-K$]] it is showh (see Theorem 3) that the image of a monad in any $\mathrm{Sd}_{\{c\}}$ relation is a closed figure in $\left\{\frac{0}{c}\right\}$. From this it follows that the image of each figure is a figure (in the invegtigated relation $\left\{\frac{0}{\bar{c}}\right\}$). Put $G\left(\left\langle z_{1}, z_{2}\right\rangle\right)=C d\left(z_{1}, z_{2}\right)$. Then $Y=$ $=G n \mu_{\{0\}}^{2}(f)$. Therefore it is enough to prove that $\mu_{\{\in\}}^{2}(f)$ is a figure in $\left\{\frac{0}{c}\right\}$. This assertion is the consequence of Theorem 2 from [ČM-K 1] which says that the domain and the range of a monad is a monad, too.

Moreover, the class Y is also a r-class. This fact follows from the following consideration: Each monad is a π-class and its Cartesian square is a π-olass, too. In addition, we know that the image of a π-class under a set-definable mapping (CdGSd) is also a π-class.

Thus Y is a closed class (see [V], ch. III, § 2) containing $\operatorname{Def}_{\{c\}}$ which is dense in V (see [V], ch. $V, \S 1$) and therefore $V \subseteq Y$. The inclusion $Y \subseteq V$ is obvious. This completes
the proof.
Corollary. In each equivalence of indiscernibility $\overline{\boldsymbol{T}}$ there is a monad μ such that

$$
\operatorname{Def}_{\mu}=\mathrm{V}
$$

Proof. In [V 1], it is proved that for every equivalence 予 there exists c such that $\left\{\frac{0}{\bar{O}\}}\right.$ is finer than $\overline{3}$. Thus it suffices to prove the assertion for $\left\{\frac{0}{c}\right\}$. For this we toke the monad $\mu_{\text {te3 }} f$ from the proof of Theorem 1 and realize that for each monad μ it is true that $\operatorname{Def}_{\mu}=\operatorname{Def}_{\mu}{ }^{2}$.

There exists such a monad μ in $\xlongequal{\circ}$ for which Def $\mu \neq V$. Before proving the assertion we shall recall several facts.

In [s-Ve l], the notion of the class of indiscernibles is introduced. Let us note here that the definition of " A class X is the class of indiscernibles" mentioned in the above paper is equivalent with the statement : "For each $n \in \mathbb{F H}$ the class $P_{n}(X)$ is the part of a monad in $\circ n$, where $P_{\alpha}(X)=$ $=\{x ; x \leqq I \& x \hat{\approx} \boldsymbol{\alpha}\}$. If we denote by Ind the class of indiscernibles which is a proper π-clase, then Ind is a monad in $ㅇ$ (for the proof see [Č-K 1]).

Theorem 2. Def $_{\text {Ind }}+\nabla$.
Proof. Let $y \in D^{\prime} I_{\text {Ind }}$. Then there is a function $F \in S d_{0}$ and elements x, k such that $x \in P_{k}$ (Ind) and $F(x)=y$. Thus each element of Def Ind belongs to the image of a class P_{k} (Ind). Since there are only countably many classes P_{k} (Ind) and the same is valid for functions of Sd_{0} ($\mathrm{F} \in \mathrm{Sd}_{0}$) and since for each $k \in \mathrm{FN}$ the class P_{k} (Ind) is a monad (P_{k} (Ind) is the part of a monad and a π-class without parameters), we obtajp that Def Ind con-
siats only from countably many monads. Hence Defind $\neq \nabla$.
In the preceding it was proved that for each c there exists a monad μ in $\left\{\frac{0}{c}\right\}$ such that Def $_{\mu}=\nabla$. We shall show further that for each proper class I \& $\mathrm{Sd}_{\{0\}}$ we have Def $=\mathrm{V}$. We shall use this assertion substantially in the second paragraph.

Firstly we prove the following statement.
Lemma 2. Let $\mathrm{I} \in \mathrm{Sd}_{\{c\}}$ be a proper class. Then $0 \in \operatorname{Def}_{X^{\prime}}$
Proof. Since $X \in S d_{\{c\}}$, we can write $X=\left\{t_{;} \varphi(t, c)\right\}$. Pat $Y=\left\{\langle t, c\rangle_{;} \varphi(t, c)\right\}$. Then $Y \in S d_{0}$ and $X=Y$ \{ $\{c\}$. Obviously, $\mathbf{Y} \subseteq \mathbf{V} \times \mathrm{V}$ where the natural ordering is defined. Let us define (by induction) a function $\mathbf{F} \in \mathrm{Sd}_{0}$ by

$$
P(u)=\min \left(Y^{n}\{u\}-P^{n} S_{e g}\langle u) .\right.
$$

 - PnSeg ${ }^{<}$). The function F is a one-one partial function. There exists therefore the function F^{-1} and $F^{-1} \in S d_{0}$. Since $F(x) \in$ c X, we have $c=F^{-1}(P(c))$. Thus $c \in\left(F^{-1}\right) N X$ and hence $c \in \operatorname{Def}_{X}$.

We shall still prove that in the case that $X \in S_{f c}$ is a set, the previous assertion is not generally valid.

Theorem 3. (ヨa) a $\boldsymbol{D D F}_{\mathrm{a}}$.
Proof. From Theorem 2 we know that Def Ind $\neq \nabla$. This implies that there exists x for which $x \neq$ Def $_{\text {Ind }}$. Since Ind is a proper class, it contains sets of any great cardinalities. Let a be such a part of Ind for which $\operatorname{card}(a)=\alpha$, where α is the number of x in the natural ordering.

Suppose $a \in \operatorname{Def}_{a}$. Then $\propto \in \operatorname{Def}_{a}$. From $a \in$ Ind it follows $\operatorname{Def}_{\mathrm{a}} \leqslant \mathrm{Def}_{\text {Ind. }}$. Thus $\propto \in \operatorname{Def}_{\text {Ind. }}$ But \propto is the number of x and
therefore also $x \in \operatorname{Def}_{\text {Ind }}$ This is a contradiction with our assumption $\times \$$ Def Ind . Hence $a \notin \operatorname{Def}_{a}$ 。

How we come to the theorem promised above.

Theorem 4. Let $I \in S d_{V}$ be a proper class, then

$$
\operatorname{Def}_{\mathbf{X}}=\mathbf{v}
$$

Proof. Since $X \in S d_{V}$, there exists c such that $X \in S d_{\{c\}}$ (in the formala which defines V there appears only a finite mmber of parameters). According to Lemma 2 we have $c \in D_{X} f_{X}$ Buic then there is a function $F \in S_{\{a\}}$ which is a one-one mapping of X onto V . From $\mathrm{Fe} \in \mathrm{Sd}_{\{c\}}$ it follows that there is a formula $\varphi(y, x, c)$ which describes F. Thus one can define each $y \in V$ from $X 6 I$ and the parameter c. But $c \in \operatorname{Def}_{X}$. Therefore Def $=V$.

Further, we shall use the monad $\mu_{i c 3}(f)$ constructed in the proof of Theorem 1 for solving the problem formulated by A. Vencovaká.

At first we recall a notion.
Definition. A class $X \subset Y$ is homogeneous for a partition T on $P_{2}(Y)$ iff there is $Z \in T$ such that $P_{2}(X) \leq Z$. Especially, a class X is homogeneous for an equivalence $\left\{_{\{c}^{0}\right.$ iff there is a monad μ in $\{\stackrel{\rightharpoonup}{c}\}$ such that $P_{2}(X) \subseteq \mu$.

We prove now that there is a monad in $\left\{\frac{0}{c}\right\}$ containing a triple of elements which is not homogeneous for this equivalence and that, in addition, one of the elements of the triple can be chosen quite arbitrarily.

Theorem 5. For each c there is a monad $\mu_{\{c\}}$ (in $\left\{\begin{array}{c}0 \\ \{0\end{array}\right)$ such that
$\left(\forall x \in \mu_{\{c\}}\right)\left(\exists y \in \mu_{\{c\}} \& y+x\right)\left(\forall z \in \mu_{\{c\}} \& \& \neq x \& z \neq 5\right)$ $\{x, y, z\}$ is not homogeneous for $\left\{\frac{0}{c}\right\}$.
Proof. Let Cd be the function from Theorem 1 and let Mic\} denote the monad $\mu_{\{c\}}(f)$ from the proof of this theorem.

Define a function $H:$
$H(\{t, u\})=C d(t, u) \quad$ for $t<u$.
Theorem 1 implies that
$(\forall y)\left(\exists\{t, u\} \in P_{2}\left(\mu_{\{c\}}\right)\right) \quad y=H(\{t, u\})$.
The unordered pair $\{t, u\}$ is called a code of y. For such t, u, y the following inequality
(2)
$(\forall z \in y) \quad z<y<t<u$ holds since from $z \in Y$ we obtain $z<y$ and the remaining inequalities follow from our construction.

Let further x be a non-empty set such that $x \subseteq \mu_{\{c\}}$ and let $\left\{t_{1}, u_{1}\right\}$ be a code of x i.e. $H\left(\left\{t_{1}, u_{1}\right\}\right)=x$.

Denote t_{2} the smallest element of x and choose u_{2} in such a way that $\left\{t_{2}, u_{2}\right\}\left\{\frac{0}{c}\right\}\left\{t_{1}, u_{1}\right\}$; this choice is possible (see [Č-K 1], Theorem 5). We show that $\left\{t_{2}, u_{2}\right\}$ is just the element which prevents homogeneity; i.e. we prove that the pair $\left\{\left\{t_{1}, u_{1}\right\},\left\{t_{2}, u_{2}\right\}\right\}$ cannot be enlarged to a homogeneous triple.

Assume that one can extend the above pair homogeneously into a triple. Then there is an element $\left\{t_{3}, u_{3}\right\}$ such that the triple $\left\{\left\{t_{1}, u_{1}\right\},\left\{t_{2}, u_{2}\right\},\left\{t_{3}, u_{3}\right\}\right\}$ is homogeneous. We ahould investigate now several cases (from the point of view of the natural ordering).

Let for example $\left\{t_{3}, u_{3}\right\}<\left\{t_{2}, u_{2}\right\}<\left\{t_{1}, u_{1}\right\}$. Then from homogeneity it follows that

$$
\left\langle\left\{t_{3}, u_{3}\right\},\left\{t_{1}, t_{1}\right\}\right\rangle\left\{\frac{o}{c}\right\}\left\langle\left\{t_{2}, u_{2}\right\},\left\{t_{1}, u_{1}\right\}\right\rangle
$$

because they belong to the same monad. Since t_{2} is the mallest element in $x=H\left(\left\{t_{1}, u_{1}\right\}\right)$, the element t_{3} is the smallest one in x, too. Therefore $t_{3}=t_{2}$. Similarly (from homogeneity) we have $t_{3}=t_{1}$. But (2) implies that

$$
t_{1}=t_{2}<H\left(\left\{t_{1}, u_{1}\right\}\right)<t_{1}
$$

which is a contradiction. Analogously, we eliminate all other cases.

How, putting $\mu_{\{c\}}=\mu_{\{c\}}\left(\left\{t_{1}, u_{1}\right\}\right) ; x=\left\{t_{1}, u_{1}\right\}, y=$ $=\left\{t_{2}, u_{2}\right\} ; z=\left\{t_{3}, u_{3}\right\}$ in the text of the proved theorem, the proof is complete.

Remarix. The number of monads with properties mentioned in Theorem 5 is not too mall. It is not difficult to show that the re are uncountably many monads like these. We can even prove tha there is a set-definable function G (without parameters) such that $\operatorname{rag}(G)=N-\{0\}$ and for each $\alpha \in \operatorname{Ing}(G)$ there is a monad ν of the above mentioned properties for which $G^{N / \nu}=\mu(\infty)$. We define the function G as follows:

$$
G(v)=\operatorname{card}(H(v)),
$$

where H is the function from the proof of Theorem 5.
Considering that it is possible to transform the universal class $\overline{\text { by }}$ a one-one mapping (which is set-definable) onto N -- \{0\} (see [V], ch. II, \& 1) we proved in fact that we can claim rag $(G)=V$. If we realize now what properties have the monads
$\mu_{\left\{{ }^{\prime}\right\}}(f)$ from the proof of Theorem 1 and recall the fact that there is a set-definable function which is a one-one mapping between V and $\mathbb{N}-\{0,1\}$, we can improve our result in this sense: For each a $\in V$ there are uncountably many monads with properties
desoribed in Theorem 5.

8 2. In this section we shall formulate at first several assertions which follow from the theorem on identity (see [C-K 1]. Th. 1). For the reader's convenience we whall repeat it here explieitly:
(3) Let $P \in S d_{\text {\{c }\}}, F$ be a function. then

$$
(\forall x)\left[F(x) \underset{\{\circ\}}{ } x \rightarrow\left(\exists X \in S d_{\{c\}}\right)\left(F \wedge X=I d \wedge X \& \mu_{\{\in\}}(x) \subseteq X\right]\right. \text {. }
$$

Theorem 6. Let F be a imilarity, asdom(F), acPin. Then

$$
F^{w_{a}} c_{a} D_{a} \rightarrow F^{\wedge} a=I A^{\wedge} a_{0}
$$

Proof. Let card a $=\mathrm{n} \in \mathrm{FH}$. At first we shall investigate the case $n=1$. Then there is b such that $a=\{b\}$. Since F is a similarity and $b \in d o m(F)$, we have $F(b) \neq b$ (see [V], ch. V, fi). According to the assumption, $F(b) \in D \in f_{\left\{b_{\}}\right\}}$holds. TherePore there oximta a function $G \in S d_{0}$ for whioh $G(b)=F(b)$. Hen00 alme $G(b): b$. From the above mentioned theorem (3), it then follows $G(b)=b$.

Let further $n>1$. Let u oreate an ordered n-tuple $\left\langle b_{1}, \ldots, b_{n}\right\rangle, b_{1} \in a, 1=1, \ldots, n$ according to the natural ordering. The function F will be enlarged on $\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and the firat step of this proof will be applied. We perform the onlarcement of I in this way: If $x \in D_{\text {ef }}{ }_{\text {dom }}(F)$, then there are a function $G \in S d_{0}$ and elements $t_{1}, \ldots, t_{n} \in \operatorname{dom}(F)$ such that $G\left(t_{1}, \ldots\right.$ $\left.\ldots, t_{n}\right)=$. Since F is a mimilarity, there is a function F_{1} :

$$
F_{1}(x)=G\left(F\left(t_{1}\right), \ldots, F\left(t_{n}\right)\right)
$$

which enlarges F in the required manner and is a similarity, too (see [Ve 2]). Thus $\left\langle b_{1}, \ldots, b_{n}\right\rangle \in \operatorname{dom}\left(F_{1}\right)$. But then
$F_{1}\left(\left\langle b_{1}, \ldots, b_{n}\right\rangle\right) \in \operatorname{Def} \mathcal{A}_{\mathrm{ajm}}\left(F_{1}\right)$, since according to the assumption, the condition $P\left(b_{1}\right) \in \operatorname{Def}{ }_{d o m}(F), i=1, \ldots, n$ holds. From the first part of this proof it follows $F_{1}\left(\left\langle b_{1}, \ldots, b_{n}\right\rangle\right)=$ $=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and aince F_{1} is a similarity, we obtain $F_{1}\left(b_{i}\right)=$ $=b_{i}$ for each $i=1, \ldots, n$. Hence the function F_{1} is identical.

Lemma 3. Let a function F be a monad in $\left\{\frac{0}{\{c\}}\right.$. Then there is a function $G \in S d_{\{0\}}$ such that $F \in G$.

Proof. Since F is a monad, there is a descending sequence of classes $X_{n} \subset S d_{i c\}}$ such that $F=\cap\left\{X_{n} ; n \in \mathbb{F N}\right\}$.

We prove that there is $k \in \mathbb{F N}$ such that X_{k} is a function. Assume that for every $n \in F N$ there is $x_{n} \in \operatorname{dom}\left(X_{n}\right)$ such that $X_{n}^{n}\left\{x_{n}\right\}$ has at least two elements. We prolong the sequence $\left\{x_{n} ; n \in F N\right\}$ by the axiom of prolongation. Let α_{i} be the largest element such that for each $\beta, 1<\beta \leq \propto_{1}$ the class $X_{1}\left\{x_{\beta}\right\}$ has at least two elements. Evidently $\propto_{i} \supset$ FN for each $1 \in F N$. The sequence $\left\{\alpha_{i}\right\}$ is a descending one. Therefore, there exists γ such that for each ic FN we have i $\epsilon \gamma \in \propto_{i}$. By a consequence of the axiom of prolongation, the class ($\cap\left\{X_{i} ; i \in\right.$ $\in \mathbb{F N}\}) \mathcal{\{} \mathrm{x}_{\boldsymbol{r}}{ }^{\}}$has at least two elements, too. At the same time, however, $\cap\left\{X_{i} ; i \in F N\right\} \subseteq F$ and F is a function - e contradiction.

Put now $G=X_{k}$; this completes the proof.
Theorem 7. Let F be a similarity which is a monad in $\left\{\frac{0}{\{\bar{C}\}}\right.$ and let $c \in \operatorname{Def}$ dom(F). Then $F \leqslant I d$.

Proof. From cGDef ${ }_{\text {dom (F) }}$ it follows that there exists $a \in \operatorname{dom}(F), a \in \operatorname{Fin}$ such that $c \in \operatorname{Def}_{a}$. Let $G \in S d_{\{c\}}$ be such a function for which $P G G$ (the existence of G follows from the previous lemma). Since $G \in S d_{\{c\}}$ and $c \in \operatorname{Def}_{a}$, we have $G " a \leq \operatorname{Def}_{a}$.

Considering further $\mathrm{FHa}_{\mathrm{a}}=\mathrm{GM}^{\prime \prime} \mathrm{a}$, we obtain $\mathrm{Fr}_{\mathrm{a}} \subseteq$ Def $_{\mathrm{a}}$. Theorem 6 implies then $\mathrm{F}^{\prime} \mathrm{a}=\mathrm{Id} / \mathrm{a}$ 。

We have to prove that $F \subseteq I d$. Since F is a monad in $\left\{\frac{\circ}{6}\right\}$, $\operatorname{dom}(F)$ is also a monad in this equivalence (see [č-K 11). Let us denote $T=\{t ; G(t)=t\}$; then $T \in S d_{\{c\}}$ (since $G \in S d_{\{c\}}$). Further, the result $F \wedge a=G \wedge a$ implies $G \wedge a=I d \wedge a$. Hence for each $u \in a$ we have $G(u)=u$. Thus $u \in T$ and therefore $\mu_{\{c\}}(u) \subseteq T$. Hence $G \wedge \mu_{\{c\}}(u)$ is an identity. But $G \wedge \mu_{t c\}}(u)=$ $=F$ and consequently $\mathrm{F} \subseteq I d$.

Corollary. Each similarity which is a π-class without parameters is a part of an identity.

Proof. Let the similarity F satisfy the assumptions. Then Fis a figure in 0 (since each set-definable without parameters class is a figure in ㅇ. and the intersection of such figures is a figure in ㅇ. , too - see [V]). Let further G be a monad in $\xlongequal[=]{\circ} G \subseteq F$. Then G is also a similarity. Therefore, the assumptions of Theorem 7 are satisfied for $c=0$. Hence $G \subseteq I d$ and also $F \subseteq I d$.

Theorem 8. Every real endomorphism resp. automorphism is an identity.

Proof. Let F be a real endomorphism or automorphism. Then (from reality) F is a figure in an equivalence $\left\{\frac{\circ}{\bar{c}\}}\right.$ (see LČ-v]).

In the first section we proved that there is a monad μ for which $\operatorname{Def}_{\mu}=V$. Take such a monad μ and put $G=F \wedge \mu$. Then G is a similarity (since F is a similarity). Further $c \in \operatorname{Def}_{\mu}$ Applying now Theorem 7 to the function G, we obtain G SId. Since on $\operatorname{Def}_{\text {dom }}(G)$ the function G enlarges canonically (see [Ve 2])
and mince $\operatorname{Def}_{\text {dom }}(G)=\nabla$, we obtain from here that $F=I d$.
Theorem 9. Each similarity which is a proper $S d_{V}$ class is an identity.

Proof. Let F be a similarity which is a proper $S d_{V}$ class. Then also dom(F) is a proper class from Sd_{T}. By Theorem 4 we know that $\operatorname{Def}_{\text {dom }}(F)=\nabla$. Let us enlarge F canonically on Def dom(F) denote F_{1} such an enlargement. From [Ve 2] it follows that F_{1} is a similarity which is a σ-class. Therefore F_{1} is a real class (see $[X-V]$). Purther, since $\operatorname{dom}\left(F_{1}\right)=V$, the aimilarity F_{1} is a real endomorphian and from Theorem 8 it follows that F_{1} is an identity.

Corollarye Each endomorphism resp. automorphism which contains a proper $S d_{V}$ class is an identity.

Proof. The assertion follows directly from Theorem 9.

Pinally, we show that the condition "being a proper class" - claimed in the previous theorems - is essential.

Theorem 10. There is an infinite similarity f such that $\operatorname{dom}(f) \cap \operatorname{rng}(f)=\varnothing$.

Proof. It is shown in [V], ch. 5, 82 that there is an endomorphic universe which is a semiset - let us denote it A.

Let F be such an endomorphism that $F: V \longleftrightarrow A$. Let further X be a countable class for which $X \subseteq V-A$. Then $F_{1}=F A X$ is a countable function which is a similarity (since F is a simila rity) and $\operatorname{dom}\left(F_{1}\right) \cap \operatorname{rng}\left(F_{1}\right)=\varnothing$.

Let us enumerate F_{1} by numbers from $F H$; denote the enumeration by G_{0} : Then $G: F N \longleftrightarrow P_{1}$. Since there is only a countable
amount of all formulas of the language FI, we can enumerate them by FH, too.

From the definition of similarity it follows:
$\left(\forall x_{1}, \ldots, x_{k} \in \operatorname{dom}\left(F_{1}\right)\right) \varphi_{1}\left(x_{1}, \ldots, x_{k}\right) \varphi_{1}\left(F_{1}\left(x_{1}\right), \ldots, F_{1}\left(x_{k}\right)\right)$ for each $\Phi_{1} \in F I$.

Let g be a prolongation of G and let $\alpha \in N$ - FN be such an element that $\operatorname{dom}\left(g^{n} \alpha\right) \cap \operatorname{mg}\left(g^{n} \alpha\right)=\emptyset$.

Denote

$$
\begin{array}{r}
\psi_{1} H=\left[\left(\forall x_{1}, \ldots, x_{k} \in \operatorname{dom}(H)\right) \varphi_{i}\left(x_{1}, \ldots, x_{k}\right)=\varphi_{1}\left(H\left(x_{1}\right), \ldots\right.\right. \\
\left.\left.\ldots, H\left(x_{k}\right)\right)\right] .
\end{array}
$$

Put further $\alpha_{1}=\max \left\{\beta \in \alpha ; \psi_{1}\left(g^{\prime \prime} \beta\right)\right\}$. Then since for each $n \in F N$ the formula $\psi_{1}\left(g^{n} n\right)$ holds ($g^{n} n$ is a similarity), we obtain that $\alpha_{1} \phi$ FN. If we put

$$
\alpha_{i+1}=\max \left\{\beta \in \alpha_{i}+1 ; \psi_{i+1}\left(g^{n} \beta\right)\right\},
$$

then also $\alpha_{i+1} \& F N$.
Hence $\left\{\alpha_{1}\right\}_{i \in F H}$ is a descending sequence of elements which do not belong to FW. This implies that there is $\bar{\infty}$ such that $\not \subset$ FN and $\bar{\alpha} \leqslant \alpha_{1}$, 1GFN.

Put now $\mathbf{f}=g^{n} \bar{\infty}$. The function 1 is obriously the required similarity.

References
[V] P. VOPENKA: Mathematics in the Alternative Set Theory, Teubner-Texte, Leipzis 1979.
[Č-K 1] K. C̛UDA and B. KUSSOVÁ: Basic equivalences in the alternative set theory, Comment. Math. Univ. Carolinae 23(1982), 629-644.
[V 1] P. VOPĚNKA: The lattice of indiacernibility equivalences,

Comment. Math. Univ. Carolinae 20(1979), 631-638.
[Č-V] K. ČUDA and P. VOPĚNKA: Real and imaginary classes in the alternative set theory, Comment. Math. Univ. Carolinae 20(1979), 639-653.
[S-Ve 1] A. SOCHOR and A. VENCOVSKÁ: Indiscernibles in the alternative set theory, Comment. Math. Univ. Carolinae 22(1981), 785-798.
[Ve 2] A. VENCOVSKÁ: Constructions of endomorphic universes and similarities, Comment. Math. Univ. Carolinae 23(1982), 557-577.

Matematický ústav, Univerzita Karlova, Sokolovská 83, 18600 Praha 8, Czechoslovakia
(Oblatum 22.6. 1983)

