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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

24,3 (1983) 

MONADS IN BASIC EQUIVALENCES 
K. ČUDA, B. KUSSOVA 

Abstract: In this paper we pro TO that all sets from the 
uniTorse of sets can he defined from both any arbitrary proper 
Sdy class and a suitable monad in any equiTalenoe of indisoer-
niDility. We also show that there le a monad <c* such that 
Def^-^V. These facto are further ueed for proTing eome Inte
resting aesertions concerning similarities! e.g. it le shown 
here that eome special cases of eimilaritieo haTe to he parte 
of identity. 

Key wordot AlternatiYO set theory9 basic equivalence., 
nad, definability, olmllarity, endomorphlsm. 

Classification: Primary 03E70 
Secondary 54J05 

There le a question: How large has to he the olaso of pa

rameters X in order that one can define from it all eete from 

the uniTerse of eete? More precisely, we ehall ask here how to 

choose X 00 that Defg - T and X la as email as possible at the 

same time. 

By means of Peano arithmetic one can proTO: 

(1) for each proper class leSdy there is a function 

f «Sd 0 such that V • f"I (and therefore Defj - V). 

Unfortunately, such a function f depends on X. 

Our Question is whether It Is possible to so "lower*. If 

X is a semlset, then obTiouely Defj+V. That is why such a 
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class Z for which Def^ « f has to he very large. 

In the first part ef this paper (see Theorem 1) we prove 

that in the alternative set theory, the following statement 

holdsx 

There eixsts a function F € SdQ such that in any basic equi

valence .«•« there is a monad ^ < cj for which V » F« p?^ • 

This implies Def, « V. 

The main difficulty in proving such an assertion in non

standard models of Peano arithmetic lies in the fact that it is 

not possible to define the relation — by internal means of the 

theory. 

At the end of the first paragraph we show still one inte

resting property of the above mentioned monad <"{e| $ Its con

struction is not at all one-aimed. 

In [5-K 11 we proved that there Is no function Pc Sd-oJ and 

no monad ft i n . t & Bach that V » .F"(U, (see Theorem 5). We also 

showed there that it Is not possible to immerse any proper class 

IcSdy into any monad. Therefore f the further mentioned theorem 

1 is not a consequence of the assertion (1) since one cannot pro

ceed in such a way that he chooses a monad p> which contains 

a proper class X 6 Sdy and then creates (** . 

The fir at section includes, moreover, a theorem which as

sures that there is a monad (U- for which Def^+V. 

In the second paragraph we shall deal with several conse

quences of the theorem on identity from [C-K 1]. Results of § 1 

will be substantially applied here. 

In the book tVJ, there are investigated similarities, en-

domorphisms and automorphisms. For proving the existence of 
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these objects there are used strong axioms of the alternative 

set theory (axiom of choice, axiom of cardinalities). This fact 

suggests that we have to treat with rather "delicate" objects. 

This "delicacy" will he more closely specified here* We show na

mely that such proper classes which are similarities and simul

taneously "simpler" have to be identities. For the criteria of 

simplicity we shall take set-definability, reality, eventually 

the property to be a jr-class. 

We also prove here that the conditions the inveetigated 

similarities are proper classes, is eostntial. Xa other words,we 

give the example of an infinite set similarity which is not 1-

dentical in any point. 

Still two remarks: 

When we speak about ordering on V we bear in mind the na

tural ordering on the class (see [Vj, ch. II, § 1). 

Furthert we remind the notion Defj (see [V 1]). 

The set y is said to be definable using parameters from the 

class X iff there is a set formula y(z) of the language FLj 

such that the formulas (3 lz) <p(z) and <f (y) hold. We use the 

notation Defy for the class of all sets definable using para

meters from the class X* 

The authors thank P. Vopenka for discussions concerning 

the problems studied. 

§ 1. The following theorem may remind us of the Leibniz's 

statement "... each created monad represents the whole univer

se". 

Theorem 1. It is possible to define a function Od € Sd 

(so-called a coding function) ouch that 
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Piretly we prove the following assertion. 

Lenta 1. There is a function f euoh that for every pro

per claao IcSd<0j the conditions 

(1) ( Vx) (xc do»(f) --> f (x)< x); 

(2) tef^^fi f-I 

hold. 

Proof. Let U0 enumerate all classes of S d ^ and let 

{Z^ilcPI} denote auch an enumeration. Let further D«f{C| " 

- {a^ilcPH}. 

At first we shall construct a countable sequence of func

tions -jf.*ifcPH? such that dom(fi) are mutually disjoint, eaoh 

f j, satisfies (1) and for eaoh proper class X C Sd^c» the condi

tion f JX * 'Câ i holds. 

Punctions f̂  will be constructed by induction. Por creat

ing f, we shall at first construct an auxiliary (countable) 

function F, | then f̂  will be obtained from P-̂  by a convenient 

prolongation. 

The function P, is defined as follows: 

P, m -Ka-,fx.j>| xA is the omalleet element in X ^ Seg^a-^J, 

where Xj€ Sd^ e | • Let f, be ouch a prolongation of P, for which 

( V x € d o m ( f 1 ) ) tx(x) **!<*. 

We construct the function fn+-i analogously, only with 

the difference that we put 
Pn+1 * ^ a n + l , 3 4 ? * x i i s * n e s m a l l e s * f c ®--«mei-* in 

Now we prolong the sequence {t^l& Plf] in such a way 
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that the condition on disjointness of domains and the proper

ty (1) are preserved. Let {f^ ; f € ec J denote the prolonged 

sequence. Put further f « U l f.% ̂ €ocl . The function f 

fulfils obviously both conditions (1) and (2). 

Proof of Theorem 1. Let us define a function of two va

riables CdcSd0 in this way: if y(x)< xf then Cd(xfy) - y(x)| 

for y(x)2x or y is not a function, the function Cd(xfy) is 

not defined. Let further f he the function from Lemma 1* We 

shall create the class <^\^\ (*) a n d prove ***** 

V - Cd« ^ j ( f ) . 

o 
For abbreviation, we write Cdw f^^G\ (*) " *• 

At f irs t we prove that Y i s a figure i n . A | . In [2-K U 

i t i s shown (see Theorem 3) that the image of a monad in any 

Sd{ e | relation i s a closed figure in^«g»j . Prom this i t fo l 

lows that the image of each figure i s a figure (in the inves

tigated r e l a t i o n a l )• Put G « a l f z 2 » » Cd(a- lfz2). Then Y » 

« Gw ^ c \ (f)» Therefore i t i s enough to prove that ( -^j (t) 

i s a figure in i A. • This assertion i s the consequence of The

orem 2 from C5-K 1] which says that the domain and the range 

of a monad i s a monadf too* 

Moreover, the class Y i s also a si - c lass . This fact fol 

lows from the following considerations Each monad i s a jr-class 

and i t s Cartesian square i s a 3f-class, too. In addition, we 

know that the image of a ^ -c lass under a set-definable map

ping (CdcSd ) i s also a ST -c lass . 

Thus Y i s a closed class (see tV2f ch. I l l , 5 2) contai

ning Defjc* which i s dense in V (see LVJf ch.v", § 1) and the

refore Vfi Y. The inclusion YS V i s obvious. This completes 
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the proof. 

Corollary. In each equivalence of indiscemibility *% 

there is a monad (U, such that 

Def x4 « V. 

Proof. In IV 13 f it io proved that for every equivalen

ce -|- there exiets c such that |»j is finer than *% . Thus 

it suffices to prove the assertion for {«§?$ • Por this we ta

ke the monad (*>&%* f*om the proof of Theorem 1 and realize 

that for each monad t̂ it is true that Def^, • Def ^ • 

fhere exists such a monad <u, in *== for which Bef^ + V. 

Before proving the assertion we shall recall several facts. 

In tS-Ve lJt the notion of the class of indiscernible© 

is introduced. Let us note here that the definition of "A class 

X is the class of indiscernibles" mentioned in the above paper 

is equivalent with the statement : "Por each ncPH the class 

P (X) is the part of a monad in £* »f where P^X) • 

-{xixfiX&x **o6$ . If we denote by Ind the class of indiscer

nible 0 which is a proper 5T-class, then Ind I0 a monad in A 

(for the proof see t5-K 1 .1). 

Theorem 2. Def I n d 4» V. 

Proof. Let y^Dsfina* Th*n *Wlere ia a function Pc SdQ 

and elemente x, k ouch that xcPk(Ind) and P(x) » y. Thus each 

element of DefInd belongs to the image of a class Pk(Ind). Sin

ce there are only oountably many classes P^(Ind) and the same 

io valid for function© of SdQ (PcSdQ) and oince for each kcPN 

the class P-^Ind) io a monad (P-^Ind) ia the part of a monad 

and a af -class without parameters), we obtain that ->«frn,i con-
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slats only from countably many monads. Hence D^ind *r V. 

In the preceding it was proTed that for each c there exists 

a monad (* in |«j such that Def^ « Y. We shall show further 

that for each proper class X* S d ^ we have Defg » V. We shall 

use this assertion substantially in the seoond paragraph. 

firstly we proTe the following statement. 

Lemma 2. Let X c Sd^d^ be a proper class* Then ocDefg. 

Proof. Since X a Sd^e^ 9 we can write X « i t | cp ( t , c ) } . 

Pat If » l < t 9 c > i 9 ( t 9 o ) l . Then Y€SdQ and X - Y" i o^.ObTiously, 

Y $ V x V where the natural ordering i s defined. Let us define 

(by Induction) a function f C SdQ by 

f(u) - min(YMu} - fSeg^ i ) . 

If Y"{ulis a proper class then there exists min(Y"«£uJ -

- f'Seg^). The function f is a one-one partial function. The

re exists therefore the function f""1 and f"*1* SdQ. Since f(x)« 

€ X9 we hare c - f""
1(f(o)). Thus c€(f"'1)«,X and hence c€Defx. 

We shall still proTe that in the case that X c S d ^ j is a 

set9 the preTious assertion is not generally Talid. 

Theorem 3. (3 a) a e) Defa. 

Proof, from Theorem 2 we know that D«£inQ * V. This imp

lies that there exists x for which x 4 D^ind* S i n o t I n d i s * 

proper class9 it contains sets of any great cardinalities. Let 

a be such a part of Ind for which card(a) » *^ • where eC is 

the number of x in the natural ordering. 

Suppose a€Def . Then oc « Def.. from aSlnd it follows 

a a 
Defa&DefInd. Thus o&e DefInd. But cC i s the number of x and 
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therefore also xcDef-^. This is a contradiction with our as

sumption x 4 De*ind# H e n c e * 4 Dt*a
# 

How we come to the theorem promised above. 

Theorem 4. Let Xe Sdy he a proper class, then 

Defx - V«, 

Proof. Since XcSdy, there exists c such that Xe Sd^c| 

(in the formula which defines Y there appears only a finite num

ber of parameters)• According to Lemma 2 we have c € Defy. Buc 

then there is a function Pa s d . t c? which Is a one-one mapping 

of X onto V. Prom Pc Sd^ej it follows that there is a formula 

q>(y,x,c) which describes P. Thus one can define each y* V from 

xcX and the parameter c. But oeDefg. Therefore Defy * V. 

Further, we shall use the monad (tc -(f) constructed in 

the proof of Theorem 1 for solving the problem formulated by 

A. Venoovska. 

At first we recall a notion. 

Definition. A class X£.Y is homogeneous for a partition T 

on P2(Y) iff there is Ze T such that P2(X)£Z. Especially, a 

class X i& homogeneous for an equivalence A iff there is a 

monad (*> in .», such that P2(X) c p, „ 

We prove now that there is a monad in -̂Si- containing a 

triple of elements which is not homogeneous for this equivalen

ce and that, in addition, one of the elements of the triple can 

be chosen quite arbitrarily. 

Theorem 5. Por each c there is a monad (*. - (in -». ) 

such that 
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-£x f yt* l i s not homogeneous for ^ • 

Proof. Let Cd he the function from Theorem 1 and l e t (+{c} 

denote the monad ^ ( f ) from the proof of th i s theorem. 

Define a function Hs 

H(-it fuD m Cd(t fu) for t < u . 

Theorem 1 implies that 

( V y ) ( 3 4t f uScI» 2 ( t 54 C c | ) ) y - H ( i t f u l ) . 

The unordered pair -{ttuj i s ca l led a code of y« l o r siioh 

t f u f y the following inequality 

(2) ( V z € y ) z < y < t < u 

holds since from z e y we obtain z < y and the remaining inequa

l i t i e s follow from our construction. 

Let further x be a non-empty se t such that x & (*nc% *&d l e t 

•tt-j^u,]; be a code of x* i . e . H ( f t l f u , 5 ) • x . 

Denote t 2 the smallest element of x and choose u^ i n such 

a way that < t 2 f u 2 i ^ 3 C t ^ u ^ * t h i s choice i s possible (see 

tS~K 1) f Theorem 5 ) . We show that **2>u2^ i s 3 u r t ***• element 

which prevents homogeneity* i . e . we prove that the pair 

{It-, fu,$ f ^tpi-UgH cannot be enlarged to a homogeneous t r i p l e . 

Assume that one can extend the above pair homogeneously i n 

to a t r i p l e . Then there i s an element 0 3 f u 3 ! such that the t r i 

ple l^t-j^u^ ^tgjUgJ, {t^u-JJ i s homogeneous. We should i n v e s t i 

gate now several cases (from the point of view of the natural 

ordering). 

Let for example \t-t\Xj\ < f t ^ U g } < *f *i#u iJ* T h e n from. 

homogeneity i t fol lows that 

<it3 fu3i f^t l ft1$> if1 <ct2>u2^fttlfu1i> 
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because they belong to the same monad. Since t 2 i s the small

es t element in x » H({t^ fu-jJ) f the element t.* i s the smallest 

one in x f too. Therefore t^ • t2« Similarly (from homogeneity) 

we have t^ » t , . But (2) implies that 

t x » t 2 < H ( l t l f u 1 1 ) < t l f 

which i s a contradiction. Analogously, we eliminate a l l other 

oases. 

How, putting (.4-icj - f i e l ^ i ' i i i ) * x " ^ ^ t 1 1 ! ^ v " 

* 4t2 fU2^| -- « *Ct3fUoJ in the text of the proved theorem, the 

proof i s complete. 

Remark. The number of monads with properties mentioned in 

Theorem 5 i s not too small. I t i s not d i f f i c u l t to show that the

re are uncountable many monads l i k e these. We can even prove tha 

there i s a set-def inable function G (without parameters) such 

that rng(G) * H - -COJ and for each oce rng(G) there i s a monad 

•)) of the above mentioned properties for which G"V » f*-(o&). 

We define the function G as follows: 

G ( v ) - card(H(v)) f 

where H i s the function from the proof of Theorem 5* 

Considering that i t i s possible to transform the universal 

c las s V by a one-one mapping (which i s set-definable) onto H -

- \0\ ( see IV3, oh. I I , § 1) we proved i n fact that we can claim 

rng(G) * V. Xf we rea l i z e now what properties have the monads 

^u*.e|(f) from the proof of Theorem 1 and reca l l the fact that 

there i s a set-def inable function which i s a one-one mapping be

tween V and H - iO f l^ f we can improve our r e s u l t i n t h i s sense: 

For each a€V there are unoountably many monads with properties 
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described in Theorem 5» 

$ 2* Im this section we shall formulate at f i r s t several 

assertions which follow from the theorem on identity (see 

tS-K 13» Th. 1) . For the reader's convenience we shall repeat 

i t here explicitlyt 

(3) Let Fc Sd^c| f F be a function, fhen 

(Vx)tF(x) 4 |^ x - ^ (JX€Sd < e ? ) (F /X - Id /X | t l ^ c l ( x ) s X 3 -

Theorem 6. Let F be a similarity, asdom(F), acFin. Then 

F«asD«fa «+ F/ a - Id/ a. 

Proof. Let card a « n€FH. At first we shall investigate 

the ease n - 1. Then there is b such that a « { b}. Slnoe F is 

a similarity and bcdom(F)f we have F(b) A b (see tTJf oh. Vf 

5 1). According to the assumption, F(b) c Bef ̂ j holds. There-

fere there exists a function GcSdQ for whloh G(b) - F(b). Hen-

ee also G(b) & b. From the above mentioned theorem (3)» It then 

follows G(b) « b. 

Let further n>l. Let us oreate an ordered n-tuple 

<blf...fbn>f b^c af 1 m lf...,n acoording to the natural order

ing* The function F will be enlarged on <blf...,bn> and the 

first step of this proof will be applied. We perform the enlar

gement of F in this ways If xcD**aom(p)» then there are a func

tion Gc Sd0 and elements tlf... ft&€ dom(F) such that G(t-.f... 

• ••ftn) * x. Since F is a similarityf there is a function F-̂  

F^x) - G(F(t1)f...fF(tn))f 

which enlarges F in the required manner and is a similarity,too 

(seeCVe 23). Thus <blf... fbn> € dom(F1). But then 
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F,«blt... tbI1>)€ Def^0ni(F )» since according to the assumptiont 

the condition Hh±)* Defdo m^p) f ± , lf...,n holds. From the 

first part of this proof it follows F1(<h1,... tb n» . 

- <blt...tbn> and since ^ ±B a Bimilarity, we obtain F-L(bi)* 

• b^ for each i « lt»..tn. Hence the function F-̂  is identical. 

Lemma r3. Let a function F be a monad in ̂ j . Then there 

is a function GcSd^i such that FS.G. 

Proof. Since F is a monad, there is a descending sequence 

of classes X nc Sd.e, such that F « A i X^ncFHf. 

We prove that there is kcFH such that L is a function. 

Assume that for every n€FH there is xn€dom(Xn) such that 

Xn«(xnl has at least two elements. We prolong the sequence 

ix incFN? by the axiom of prolongation. Let cC^ be the largest 

element such that for each ft t i 4 $ £ ec ^ the class XJ«fx^I 

has at least two elements. Evidently o C ^ F N for each icFN. 

The sequence •Cotil is a descending one. Therefore, there ex

ists *y such that for each i€ FN we have i e y c o * ^ . B y a con

sequence* of the axiom of prolongation, the class (fi-CX.,! i 6 

cFHj)/*CxyS has at least two elements, too. At the same time, 

however, A K X^ift FNj S.F and P is a function - a contradiction. 

Put now G « Xk; this completes the proof. 

Theorem 7. Let P be a similarity which is a monad in Jk. 
T© J 

and l e t c c Def d o m ( P ) . Then Ff i ld . 

Proof. Prom c «Def d o m , j . ) i t follows that there e x i s t s 

afidom(P), a € P i n such that oc Defft. Let G c S d | c j be such a 

function for which PcG (the existence of G follows from the 

previous lemma). Since Gc S d j e | aad cCDef&, we have GwafiDef&. 
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Considering further P«a » G«a, we obtain P»ac.Def . Theorem 6 

implies then P/ a • Id/a. 

We have to prove that Pfild. Since P is a monad in *-»» t 

dom(P) is also a monad in this equivalence (see £C-K II). Let 

us denote T » { t;G(t) • tl* then T€ Sd ê-| (since G e S d ^ j ). 

Further, the result P/a « G/a implies G/a « Id/a. Hence 

for each u € a we have G(u) • u. Thus u « T and therefore 

^ { ^ ( u ) c T , Hence G / p><eiM is an identity. But G / (^cit
u)" 

« P and consequently PSld. 

Corollary. Each similarity which is a 9Y -class without pa

rameters is a part of an identity. 

Proof. Let the similarity P satisfy the assumptions. Then 

P is a figure in « (since each set-definable without parame

ters class is a figure in -» and the intersection of such figu

res is a figure in ~ , too - see £VJ). Let further G be a mo

nad in « , GsP. Then G is also a similarity. Therefore, the 

assumptions of Theorem 7 are satisfied for c * 0. Hence G S.Id 

and also P £.Id. 

Theorem 8. Every real endomorphism resp. automorphism is 

an identity. 

Proof. Let P be a real endomorphism or automorphism. Then 

(from reality) P is a figure in an equivalence -̂|-- (see iS-Vl). 

In the first section we proved that there is a monad (U, for 

which Def ̂ = V. Take such a monad <u, and put G » P / ^ • Then 

G is a similarity (since P is a similarity). Further ccDef^ . 

Applying now Theorem 7 to the function G, we obtain G S^Id. Sin

ce on D e f d o m( G) the function G enlarges canonically (see LVe 2]) 
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and since Vet* / Q \ - Vf we obtain from here that P » Id. 

Theorem 9. Each similarity which is a proper SO-, class 

is an identity* 

Proof. Let P be a similarity whloh is a proper Sdy class. 

Then also dom(P) is a proper class from Sdy. By Theorem 4 we 

know that D e f a o m(y) * V. Let UA enlarge P canonic ally on 
De*doii(P)* deno*# *i ea^1 a n •nlargement. Prom tVe 2J it fol-

lows that P, is a similarity which is a tf-claeo. Therefore P-. 

±0 a real class (see [5-V3). Purther, since dom(P1) » V, the 

similarity P 1 is a real endomorphiai and from Theorem 8 it fol

lows that P-ĵ  is an identity. 

Corollary* Each endomorphism resp. automorphism which con

tains a proper Sdy class is an identity. 

Proof. The assertion follows directly from Theorem 9* 

Pinally, we show that the condition "being a proper class" 

- claimed in the previous theorems - is essential. 

Theorem 10. There is an infinite eimilarity f such that 

dom(f)n rng(f) « 0. 

Proof. It is ohown in IV3, ch. 5f § 2 that there is an 

endomorphic universe which is a semi set - let us denote it A. 

Let P be ouch an endomorphism that PiV <—+ A. Let further 

I be a countable class for which X S.V - A. Then ^ a P r l i s a 

countable function which is a similarity (since P is a simila

rity) and dom(P-L) A rng(P1) • 0. 

Let us enumerate P-, by numbers from FN-, denote the enume

ration by G. Then G:PH<—> P-,. Since there is only a countable 
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amount of all formulas of the language fLf we can enumerate them 

"by fHf too. 

from the definition of similarity it follows: 

( Vxlf...fxk€ dom(f1)) 9i(x19««.9xk) m 91(f1(x]L)f.ff1(xk)) 

for each o^cPL. 

Let g be a prolongation of G and l e t cte H - fH he such an 

element that dom(gwo.On rng(g"e6) • 0. 

Denote 

f 1 H a M V x 1 , . . . , x k f t d o i ( H ) ) <y 1 (x l f . . . fxk) m Gp^Hte-j),... 

. . . fH(xK))J. 

Put further o ^ * max -C/3 € <ac \ f^gTfi )?. Then since for 

each n£PB the formula y1(g
,fn) holds (gwn is a similarity), we 

obtain that **i$ fH. If we put 

^i+l " m a x < £ « °*i + 1| Tt+l^g"A ^ » 

then also oGi+x 4* *H« 

Hence "£ ct̂ J ±€m is a descending sequence of elements which 

do not belong to fH. This implies that there is 06 such that 

Zt 4- fH and o£ .£ o$if lafH. 

Put now f * g"S5 • The function f is obviously the requi

red similarity* 
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