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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

24,3 (1983)

MONADS IN BASIC EQUIVALENCES
K. CUDA, B. KUSSOVA .

Abstract: In this paper we prove that all sets from the
universe of sets can be defined from both any arbitrary proper
Sd.% class and a suitable monad in any equivalence of indigeer-
nibility. We also show that there is a monad «¢ such that
Dofr,,* » These facts are further used for proving some inte-

resting assertions concerning similaritiesy e.g. it is showa
here that some special cases of similarities have to be parts
of identity.

Key words: Alternative set theory, basic egquivalence, mo-
nad, definability, similarity, endomorphism.

Classification: Primary O3E70
Secondary 54J05

There is a question: How large has to be the class of pa~
rameters X in order that one can define from it all sets from
the universe of sets? More precisely, we shall ask here how to
choose X so that Dcfx =V and X is as small as possible at the
same time.

By means of Peano arithmetic one can prove:

(1) Por each proper class Xe S.dv there is a function
P6S4, such that V = P'X? (and therefore Defy = .
Unfortunately, such a function F depends on X,

Our question is whether it is possible to go “lower®, If
X is a semiset, then obviously ne:x-l-v. That is why such &
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class X for which Defx = F has to be very large.

In the first part of this paper (see Theorem 1) we prove
that in the alternative set theory, the following statement
holds:

There eixsts a function F€ Sd, such that in any basic equi-
valence ., there is a monad (4,3 for which V = " 5‘{%1 .

This implies Def, =V,
P “ay

The main difficulty in proving such an assertion in non-
standard models of Peano arithmetic lies in the fact that it is
not possible to define the relation == by internal means of the
theory.

At the end of the first paragraph we show still one inte-
resting property of the above mentioned monad o3 , its con-
struction is not at all one-aimed.

In [8-K 1) we proved that there is no function Fe Sd,;,; and
no monad w in {_{-‘ such that V = F*w (see Theorem 5). We also
showed there that it is not possible to immerse any proper class
Xe Say into any monad. Therefore, the further mentioned theorem
1 is not a consequence of the assertion (1) since one cannot pro-
ceed in such a way that he chooses a monad w which contains
a proper class X6 de and then creates c&z.

The first section includes, moreover, a theorem which as-
sures that there is a monad & for which Defﬂ,# v.

In the second paregraph we shall deal with several conse-
quences of the theorem on identity from [(-K 1]. Results of § 1
will be substantially applied here.

In the book {V], there are investigated similarities, en-

domorphisms and automorphisms. For proving the existence of
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these ebjects there are used strong axioms of the alternative
set theory (axiom of choice, axiom of cardinalities). This fact
suggests that we have to treat with rather ®"delicate™ ebjects.
This "delicacy” will be more closely specified here. We show na~
mely that such proper classes which are similarities and simul-
taneously "simpler" have to be identities. For the criteris of .
simplicity we shall take set-definability, reality, eventually
the property to be a Jr-class.

We also prove here that the conditien: the investigated
similarities are proper classes, is essential. Im other words,we
give the example of an infinite set similarity which is not 4i-
dentical in any point.

Sti1l two remarks:

When we speak about ordering on V we bear in mind the na-
tural ordering on the class (see [V], ch. II, § 1).

Further, we remind the notion Defy (see [V 1]).

The set y is said to be definable using parameters from the

class X iff there is a set formula @(z) of the language FLy
such that the formules (3!z) ¢(z) and @ (y) hold. We use the
notation DerI for the class of all sets definable using pare~

meters from the cless X,

The authors thank P. Vopénka for discussions concerning
the problems studied.

§ 1. The following theorem may remind us of the Leibniz ‘s
statement "... each created monad represents the whole univer-

se",
Theorem l. It is possible to define a function Cde Sdo
(so-called a coding function) such that
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(Ve)(3w, ;) Y = cav («.{i,.

Firstly we prove the following assertion.

Jemma ]. There is a function f such that for every pro-
per class X¢ Sd ey the conditions
(1) (Vx) (x€ dom(f) =p £(x)< x)3
(2) Defy 4 2"X
hold.

Eroof. Let us enumerate all classes of Sd; 4 and let
{X ;316 TN} denote such an enumeration. Let further Def ,; =
= {a,31€ FN3.

At first we shall construct a sountable sequence of func-
tions {f 31 € PN} such that dom(f;) are mutually disjoint, each
f1 satisfies (1) and for each proper class I‘Sd{c; the condi-
tion 23X = {a,} holds.

Punctions f, will be constructed by induction, For creat-
ing f, we shall at first construct an auxiliary (countable)
function !1; then fl will be obtained from F, by a convenient
prolongation.

The function P, 1s defined as follows:

P, = §<e;,x,73 x; is the smallest element in X;- Seg‘(al)},

where Iic dete'i . Let fl be such a prolongation of Fl for which
(Vxedom(f,)) 2,(x) = &< x.

We construct the function £n+1 analogously, only with
the difference that we put
Py =148 1,x73 x; is the smallest element in

[y = WY yadom(fy)) - Seg“(ay, )13

n+.

Now we prolong the sequence {f,31& FN] in such a way
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that the condition on disjointness of domains and the proper-
ty (1) are preserved. Let { sy e oc 3 denote the prolonged
sequence, Put further f = Ulif jy ¢ «% . The function £
fulfils obviously both conditions (1) and (2).

Proof of Theorem 1. Let us define a function of two va-

riebles Cd€ Sd  in this way: if y(x)< x, then Cd(x,y) = y(x);‘
for y(x)Z x or y is not a function, the fumction Cd(x,y) is
not defined. Let further f be the function from Lemma 1. We
shall create the class (a.gﬂ (f) and prove that

V = can w2 (1),
For ebbreviation, we write Ca" (A-‘_zcg () =Y,

At firet we prove that Y is & figure in,&; . In [C-K 1]
it is showh (see Theorem 3) that the image of a monad in any
Sd¢.; relation is a closed figure in {%; . Prom this it fol-
lows that the image of each figure is a figure (in the inves~
tigated relation {cé} )o Put G({2,,2,7) = Ca(z,,2,). Then Y =
= G" («'{23‘ (). Therefore it is enough to prove that ("'%al ()
is a figure in 'l%i » This assertion is the consequence of The-
orem 2 from [§-K 1) which says that the domain and the range
of a monad is a monad, too.

Moreover, the class Y is also a &' -class., This fact fol-
lows from the following consideration: Each monad is a i -~-class
and its Cartesian square is a o -class, too. In addition, we
know that the imege of a ¥ -class under a set-definable map-
ping (Cde Sdo) is also a & -class.

Thus Y is a closed class (see LV1, ch, III, § 2) contai-
ning Def; y which is dense in V (see LV], ch.V, § 1) and the-
refore V& Y. The inclusion Y&V is obvious. This completes

- 441 -



the proof.

Corollary. In each equivelence of indiscernibility F
there is a monad w such that
D.f& =V,

Proof. In LV 1), it is proved that for every equivalen-
ce == there exists ¢ such that {%} is finer than = . Thus

it suffices to prove the assertion for {%; « For this we ta~
ke the monad (b“f from the proof of Theorem 1 and realize
that for each monad @« it is true that Def(‘, = Do!ﬁz .

There exists such a monad w in £ for which Def p 5w V,
Before proving the assertion we shall recall several facts.

In [S-Ve 1], the notion of the class of indiscernibles
is introduced, Let us note here that the definition of "A class
X is the class of indiscernibles™ mentioned in the above paper
is equivalent with the statement : "For each n€ FN the claass
P (X) is the part of e monad in = ", where B (X) =
«{xpxsX&x Mott . If we denote by Ind the class of indiscer-

o

nibles which is a proper sr-class, then Ind is a monad in =
(for the proof see [3-K 11).

Theorem 2.  Defy, 4+ V.

Proof. Let ycneflnd. Then there is a function F& Sdo
and elements i, k such that x& P, (Ind) and F(x) = y. Thus each
element of Defy 4 belongs to the image of a class Pk(Ind). Sin-
ce there are only countably many classes Pk(Ind) and the same
is valid for functions of Sd, (F€Sd ) and since for each k¢ FN
the class Pk(Ind) is a monad (Pk(Ind) is the part of a monad
and a o’ -class without parameters), we obtaim that Def; . con-
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gists only from countably many monads. Hence Defrpg = Ve

In the preceding it was proved that for each ¢ there exists
a monad @ in 9y such that Def, = V. We shall show furiher
that for each proper class X& Sd;,; we have Defy = V. We shall
use this assertion substantially in the second paragraph.

Pirstly we prove the following statement.
Lemma 2, Let X e 3‘{45 be a proper class. Then ocDefx.

Proof. Since X & Sd;.3 , we can write X = { t; @ (t,c)d.
Pat Y ={<{t,0% @(t,0)}. Then Y€8d end X = Y"{ c}.Obviously,
Y © V% V where the natural ordering is defined. Let us define
(by induction) a function P € 8a, by

P(u) = min(¥Y"{u} - Prseg<u).

If Y"{ulis a proper class then there exists min(¥"{u} -

- r-a.;‘u). The function F is & one-one partial function., The-
re exists therefore the function ¥"1 and ¥ l& 8d,. Since F(x)€
¢ X, we have ¢ = P 1(#(c)). Thus ¢ & (F~1)"X and hence ¢ € Defy.

We shall still prove that in the case that X¢ Sdgey 18 a
set, the previous assertion is not generally valid.

Theorem 3. (3a) adDef,.

Proof. From Theorem 2 we know that Defy,4 % V. This imp-
lies that there exists x for which x ¢ Defy 4. Since Ind is a
proper class, it contains sets of any great cardinalities, Let
a be such a part of Ind for which card(a) = ¢ , where o is
the number of x in the natural ordering.

Suppose a€Def . Then « e Def,. From aGInd it follows
Defas Defy a* Thus o & Defy .. But o is the number of x and
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therefore also x¢ DefInd' This is a contradiction with our as-
sunption x ¢ Defy .. Hence a ¢ Def,.

Now we come to the theorem promised above.

Theorem 4. Let Xe de be a proper class, then
Dﬂfx = Ve

Proof. Since X &84y, there exists ¢ such that Xe Sdgei
(in the formule which defines V there appears only a finite mum-
ber of parameters). According to Lemme 2 we have c € Defy. Bui
then there is a function Pe Sd{“ which is a one-one mapping
of X onto V. Prom Fe¢ Sd¢,3 it follows that there is a formula
g(y,x,c) which describes P, Thus one can define each y€V from
x6X and the parameter c, But ceDefx. Therefore De:tx =V,

Purther, we shall use the monad («,.(f) constructed in
the proof of Theorem 1 for solving the problem formulated by
A, Vencovskd,

At first we recall a notion.

Definition. A class X&Y is homogeneous for a partition T
on PZ(Y) iff there is Ze T such that Pa(I)QZ. Especially, a
class X is homogeneous for an equivalence {-;-; iff there is a
monad @ 1in {%! such that Pr(X)c w . -

We pmvt'e now that there is a monad in {%} containing a
triple of elements which is not homogeneous for this equivalen-
ce and that, in addition, one of the elements of the triple can

be chosen quite arbitrarily.

Theorem 5. For each ¢ there is a monad *4e3 (in )

such that

=
{c3
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(Vx aqy)(dy e (w{“& y+x)(Vz e C"{oi& shx&zpy)
{x,%2} 18 not homogeneous for {::-:3 .

Proof. Let Cd be the function from Theorem 1 and le% (“fe}
denote the monad ‘wm(f) from the proof of this theorem.

Define a function H:

H({t,ul) = ca(t,u) for t<u.

Theorem 1 implies that

(Vy)(3itule Pr( @eey)) ¥ = H(it,ud).

The unordered pair {t,ut is called a code of y. For such
t, u, y the following inequality
(2) (Vzey) z<y<t<cu
holds since from z€y we obtain z<y and the remaining inequa-
lities follow from our construction.

Let further x be a non-empty set such that x € ©ge} and let
{t;,u;} be & code of x; i.e. H({¥;,13) = x,

Denote t, the smallest element of x and choose u, in such
a wey that {t,,u,} 3 f4,,u,}; this choice is possible (see
{6-K 1), Theorem 5). We show that {¥5,u,3 18 just the element
which prevents homogeneity; i.e. we prove that the pair
4%, ,u,3,{t,,u,}} cennot be enlarged to a homogeneous triple.

Assume that one can extend the above pair homogeneously in-
to a triple. Then there is an element {t3,u3} guch that the tri-
ple Htl,uli o 1%, ,uz}.{tB,u33} is homogeneous, We should investi-
gate now several cases (from the point of view of the natural
ordering).

Let for example H:B,u33 < ftul < {tl,uli. Then fron
homogeneity it follows that

< {t3,u3§ ,ﬁtl,tli > 2 <4 00ty 6y ,u 82

- 445 -



because they belong to the same monad., Since t, is the small-
est element in x = H({tl.uli), the element t3 is the smallest
one in x, too. Therefore t; = t,. Similarly (from homogeneity)
we have t; = t,. But (2) implies that

tl = t2< H({tl’“l} )< tlo
which is a contradiction. Analogously, we eliminate all other

casges.

Now, putting o3 = ge3(it1,uyP); x = $4;,u.d, v =
- “2 '“2’" z = {tj,u33 in the text of the proved theorem, the

preof is complete.

Remark, The number of monads with propertiies mentioned in
Theorem 5 is not too smell, It is not difficult to show that the.
re are uncountably many monads like these., We can even prove tha
there is & set-definable function G (without parameters) such
that rng(G) = N - {0} and for each o e rng(G) there is a monad
2 of the above mentioned properties for which G"» = m (o).
We define the function G as follows:

G(v) = card(H(v)),

where H is the function from the proof of Theorem 5.
Considering thet it is possible to transform the universal

class V by & one-one mapping (which is set-definable) onto N -
- {0} (mee If], ch, II, § 1) we proved in fact that we can claim
rng(G) = V., If we realize now what properties have the monads

(«-m(r) from the proof of Theorem 1 and recall the fact that
there is a set-definable function which is a one-one mapping be-
tween V and N - {0,1%, we can improve our result in this sense:

Por each a €V there are uncountably many monads with properties
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described in Theorem 5.

§ 2, In this section we shall formulate at first several
asgertions which follow from the theorem on identity (see
[8-X 1], Th. 1). Por the reader s convenience we shall repeat
it here expliecitly:

3 Let Pe Sdc ; , ¥ be a function. Then

(VOIRF(x), 2 xmp (ITE8A;,; ) (FAX = TAAX & (44 (x)S XD -

Theorem 6. Let F be a similarity, as dom(P), a € Fin. Then
FracDef, =p FAa = Id a,

Proof. Let card a = n€FN. At first we shall investigate
the case n = 1, Then there is b such that a = {b}. Since ¥ is
s similarity and b¢ dom(?), we have F(b) 2 b (see LV], ch. V,
$ 1). According to the assumption, P(b) «Defey, holds. There-
fore there exists a function G € Sd, for whioh G(b) = F(b). Hen-
oe also G(b) & b, FProm the above mentioned theorem (3), it then
follows G(b) = b,

Let further n>1. Let us oreate an ordered n-tuple
(bl....,bn). bjea, i = 1,...,n according to the natural order-
ing. The function P will be enlarged on (bl,... +b,> end the
first step of this proof will be applied. We perform the enlar-
goment of P in this way: If “D“‘aon(r)' then there are a func-
tion G€ 54, and elements t),...,%, € dom(P) such that G(t,...
eeesty) = x. Since P is a similarity, there is a function Py

rl(x) - G(P(tl).....?(tn)).

which enlarges F in the required manner and is a similarity,too
(see [ Ve 2]). Thus {by,e..,b,? e dom(F,). But then
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FI« bysees ,bn))e De!dom(rl) » Bince according to the assumption,

the condition F(b,)é D“dom(p)' i =1,..0,n holds. From the
first part of this proof it £o11ows Po{by,ee0,b)) =
={by,...,b,7 and since P, is a similarity, we obtain P (by)=
= by for each 1 = 1,...,n. Hence the function F, 1s identicel.

Lemma 3. Let a function F be & monad in {%l « Then there
is a function G& Sdg 3 such that Pca.

Proof. Since P is a monad, there is a descending sequence
of classes X € Sd; . such thet F = NiX ;nefNi.

We prove that there is k € FN such that X, is a function.
Assume that for every ne FN there is x € dom(X,) such that
x;'l {xnl hag at least two elements, We prolong the sequence
{x,3neFN} by the axiom of prolongation. Let «; be the largest
element such that for each 8 , 1 & f£ e« the class X} -fxpf
has at least two elements. Evidently eci.'.)FN for each 1€& FN,
The sequence {oci} is a descending one. Therefore, there ex-
ists o such that for each 1€ FN we have 1 6 ¥ € «¢;. By a con-
sequence of the axiom of prolongation, the class (N -txi; ie
€ FN})ATx,3 hes at least two elements, too. At the same time,
however, N{X;31€FN3CP and F ig a function - & contradiction.

Put now G = X, ; this completes the proof.

Theorem 7. Let F be a similarity which is & monad in {%1
and let ce¢ Defdom(F)' Then F& Id.

Proof. TFrom c&Def, (p) it follows that there exists
a€ dom(F), a& Fin such that ce Def,, Let G& Sdg,; be such a
function for which P& G (the existence of G follows from the

previous lemma), Since Ge¢ Sdge} end c €Def_, we have G'a S Defa.
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Considering further F"a = G"a, we obtain Frg SDef,. Theorem 6

implies then FAa = Id/a,

We have to prove that FcId., Since F is & monad in 2, ,
dom(P) is also & monad in this equivalence (see [-K 11). Let
us denote T = { t3G(t) = t3; then T€ Sdg,q (since G€Sdyey e
Further, the result FAa = GAe implies G4 a = Id/a, Hence
for each u€a we have G(u) = us Thus ué T and therefore

ge3(w) €T. Hence G A ,3(u) is an identity, But G / (u{d(u)-
= F and consequently FcId.

Corollery. Each similarity which is a gr-class without pa~
rameters is a part of an identity.

Proof. Let the similarity F satisfy the assumptions. Then
F is & figure in £ (since each set-definable without parame-
ters class is a figure in = and the intersection of such figu-
res is a figure in & , too - gee LV]), Let further G be a mo-
nad in & , GeF, Then G is also a similarity. Therefore, the
assumptions of Theorem 7 are satisfied for ¢ = O, Hence G&Id

and also F&Id.

Theorem 8, Every real endomorphism resp. automorphism is

an identity.

Proof. Let F be a real endomorphism or sutomorphism, Then

(from reality) F is a figure in an equivalence i%'i (see LE-V1).

In the first section we proved that there is a monad w for
which Defe~= V. Take such & monad w and put G = F /A « . Then
G is a similarity (since F is a similarity). Further ceDer(‘ .
Applying now Theorem 7 to the function G, we obtain G cId, Sin-

ce on De’fdom((;) the function G enlarges canonically (see [Ve 2])
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and since n“dom(a) = V, we obtain from here that P = Id.

Theorem 9, Each similarity which is a proper Sd.v class
is an identity.

Proof. Let F be a similarity which is a proper Sdy class.
Then also dom(F) is a proper class from Sdy. By Theorem 4 we
know that D“dom(l‘) = V, Let us enlarge P canonically on
Dord“(r); denote ¥, such an enlargement. From [Ve 2] it fol-
lows that F, is a similarity which is a 6'-class. Therefore M
is a real class (see [ (-V1). Purther, since dom(P,) = V, the
similarity P, is a real endomorphimm and from Theorem 8 it fol-
lows that !1 is an identity.

Corollary, Each endomorphism resp. automorphism which con-
tains a proper de class is an identity.

Proof, The assertion follows directly from Theorem 9.

Pinally, we show that the condition "being a proper class"

- claimed in the previous theorems - is essential.

Theorem 10, There is an infinite similarity £ such that
dom(£)n rng(f) = @.

Proof, It is shown in [V]1, ch. 5, § 2 that there is an
endomorphic universe which is a semiget -~ let us denote it A,

Let P be such an endomorphism that F:V «—» A, Let further
X be a countable class for which X&V - A, Then F; = FAX is &
countable function which is a similarity (since F is a simile-
rity) and dom(P,) A rng(P,) = &

Let us enumerate F, by numbers from FN; denote the enume-

ration by G, Then G:FN «—> 1‘1. Since there is only a countable
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amount of all formulas of the language FL, we cen enumerate them
by FN, too.

From the definition of similarity it follows:

(Vxl,...,xks dom(?l)) ?1(11'.“’xk) = 91(21(11),... ,Pl(zk))
for each ¢, < FL.

Let g be & prolongation of G and let «c€ N - FN be such an
element that dom(g"o¢ )N rng(g"ec) = @.

Denote
\f’iﬁ - [(Vxl,... .ka- dom(H)) Qi(xl.... ’xk) = qi(n(xl) goos

vee pH(xK))Jo
Put further o, = max {@ € c¢} %, (g"3)i. Then since for

each n¢ FN the formule v,(g"n) holds (g"n is a similerity), we
obtain that o, ¢ FN. If we put

g =mex {fecty +1;9,,(e"B)3,

then also ofy,q ¢ FN,

Hence 4 4-13 16FN is a descending sequence of elements which
do not belong to FN. This implies that there is o such that
R & PHend T4y, 1eFN.

Put now £ = g"s¢ ., The function £ is obviously the requi-
red similarity.
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