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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

24,3 (1983) x 

ON CONGRUENCES IN DIRECT SUMS OF ALGEBRAS 
Pavol ZLATOS 

Abstract: Some results concerning congruences on direct 
products of finitely many universal algebras not extending to 
products of infinitely many factors are generalized to direct 
sums of algebras. 
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ect sum, congruence relation-
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When Fraser and Horn [A ] and Hu [4] established a Mal'cev 

type characterization of varieties V of universal algebras in 

which every congruence on the direct product A * B £ V is of 

form otx/3 for some «6 & Con A, /3t Con B solving a problem 

from GrStzer [3J, they noticed that their result does not gener­

alize to arbitrary direct products (i.e. of infinitely many fac­

tors), because of the congruences induced by nonprincipal filters 

on the index sets which are always skew. The attempt by Nelson 

[5j to include the filtered products of congruences led primarily 

to negative results, as well. 

We will show that in order to generalize the above mentioned 

result to infinitely many factors the notion of the direct sum 

(called also weak direct product) is much more fitting than that 

of the direct product. Phe generalization runs quite smoothly in 

the expected way and "everything preserved by finite direct prod­

ucts is preserved by direct sums". 
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1. Preliminaries. For unexplained symbols and notions the 

reader should consult GrStzer [3]* 

N = to, 1, 2, ...| is the set of all natural numbers. 

For an algebra A Con A denotes its congruence lattice with 

the least element 0. « 0 and the largest element 1. = 1. If A. 

is a subalgebra of an algebra B and fa£ Con B then k\fb = A A/J 

€ Con A denotes the restriction of fy to A. 

Given a subalgebra A of the direct product TT(B-: j & J) 

and X £ J 

A/^X = (aAX; a 6 Aj 

is the subalgebra of the direct product TT(B-: j 6 X) formed by 

the restrictions a/*X of the functions from A to X. The kernel 

of the natural projection A — • A/^X is a congruence on A denot­

ed by 5tx. If du € Con A is a congruence on A, its image under 

this projection generates a congruence on AA X denoted by ok/*X. 

For X = ^ j } we write -frx = &\ and cx^X =- o£(j). If /} £ 

Con B. (j € J) then TT(^4- J € J) denotes the congruence on 
J J 

TT(B.t: j € J) defined, as usual, componentwise. 

For a,b € TT(B.: j € J) we put 
J 

la = bj = {i£ J: a(j) = b(j)} 

and [a / b] = J - |a = b| . A subalgebra A 6 TT(B.: j € J) is 

called a direct sum of the algebras B- (j € J) provided for each 
J 

a € A and each b £ TT(B-: j € J) holds b € A iff [a ?- bl 

is finite. Obviously, every direct sum is a subdirect product of 

the system of algebras in mind, and for finite systems the notions 

of direct sum and direct product coincide. Let us remark that the 

direct sum of an arbitrary system of algebras needs neither to 
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exist (meaning to be nonempty) nor to be uniquely determined as a 

subalgebra of the direct product. 

We state without proof the following two easy lemmas: 

LEMMA 1. Let A be a subalgebra of the direct product TT(B-; 
J 

j € J) and o6,/3 fe Con A. Then oC c ft i f f for each ^a,b> £ <* 
holds 

LEMMA 2. Let A be a direct sum of a system of algebras (B.; 
J 

j 6 J) and let X c j be finite. Then there is a natural iso­

morphism 

A = TT(B.: j € X) X A/* J - X . 
J 

2. Results. Let V be a variety of algebras and n € N. A fun­

ction F with domain V such that for each A € V* F. = F is a n« 

ary operation on Con A is called a (n-ary) congruence operation 

on V. A congruence operation F is preserved by (finite) direct 

products iff for any (finite) system (B«: j € J) of algebras 
J 

from V and all ^ e Con B. (j £ J, U U n) holds 
J J 

F(TT(otl: j € J),...,TT(o(,*j: j € J)) 

= Ш H ^ , . . . , * ^ ) : j ̂  J) 

F is preserved by direct sums iff for any direct sum A of the al-

k 
gebras B. and congruences <& ̂  € Con B- as above holds 

j J J 

F ( A A T T ( O G \ : j * J),...,AATT(oO^: j € J)) 
J J 

= AATT(F(oC,l,... ,«,*?): j €, J) . 

THEOREM 1. Let F be an n-ary congruence operation on the var-
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iety V. The following conditions are equivalent: 

(i) F is preserved by direct products of two factors; 

(ii) F is preserved by finite direct products; 

(iii) F i s preserved by direct sums. 

PROOF, (i) => (ii) follows directly by induction, (iii) => 

(i) is trivial. It is enough to prove (i) k (ii) =-> (iii). For 

notational convenience we assume that F(o0,/5 ) = ** •/$ = ccfi 

is a binary congruence operation on V. The general case can be 

treated similarly. Let # . , A . € Con B . (j € J) and A is a direct 
J J 0 

sum of the algebras B- from V. According to Lemma 1 we wi l l be 
«J 

over i f we show that for each f i n i t e X £ J holds 

(*) A M T ( * . J : i * J)-k\VHfiy j U ) A # J - X 

= k\W^5fiy i e J) A ^ x 

Identifying the isomorphic algebras from Lemma 2 we obtain 

AATRoCj: i C J ) - A M T ( / S J : U < J ) A ^ J - X = 

(TT(c<,.: i € x) x ufiJ-x)\Ttt«t>v i* J - x))-

(TK/S^: j U ) x ( A r J - - O M T < / J J : J « J ~ X)) A # J _ X 

= TT(*.,: j € x).TT(/3jJ j e x) x f 

(A A J - x ^ T U * ^ : d « J - XWA^J - X ^ T H / S j - j ^ J - x) 

A ftj„x = TT(OCJ: i 6 X ) - T T ( / 3 J : j « X ) x O / j - X , 

and 

AMT(ot , j / f j : j * J) A ftj_x « 

T T ( ^ j / 3 j : J £ X) X ( A / J - X ^ T ^ * , , / ^ : 0 6 J - X) A » j . x 
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= T T ( ^ J / 6 J : i 6 X) x O / J - X . 

Now, the desired equality (it) follows from (ii). 

Let (B-: j £ J) be a system of algebra* from a variety V, 

and A is a subalgebra of their direct product. All congruences c_t> 

on A which are not of the form A A TT( <-d _j: 5 € J) for any «6- £ 
_______ j j 

Con B- (j 6 J) are called skew (on A). 
J 

THEOREM 2. Let V be a variety of algebras. The following <ft>n-

ditions are equivalent: 

(i) there are no skew congruences on direct products of two 

algebras from V; 

(ii) there are no skew congruences on finite direct products 

of algebras from V; 

(iii) there are no skew congruences on direct sums of algebras 

from V. 

PROOF. Let us concentrate on (ii) => (iii) only. If A is 

a direct sum of the system (B-: j 6 J) from V and ot€Con A, 
o 

it is enough to show 

A M T ( O U U ) : 0 e J) £ cC, , 

the reversed inclusion being trivial. Let X __, J be finite. Us­

ing Lemma 2 we obtain 

A A T T C O C U ) : i € J) A arJ-iX = 

TT(«*<3): 5 6 X) x (AA J - X)MT(cC(:j): j U - X) A 5tJ-0-

• TT(oiU): 5 e x) x oAf J - X 

5TT(c6(j ) : o « X ) * c - . / \ j - X » < _ t , 

523 



according to (ii). Now, the result follows from Lemma 1. 

Since finite meets (trivially) and finite joins (see Fraser-

Horn [1]) are preserved by finite direct products, from Theorem 

it follows that for a direct sum A of any system of algebras 

(B-: j € J) there is an infective 0,1-homomorphirm of lattices 

TT(Con B-: j € J) —> Con A given by 

<oo,: je J>i-> ^TT(<t:: j e J) . 
J V 

which is an isomorphism in any variety satisfying the c n ^ tions 

of Theorem 2. Moreover, every congruence ^perutioa ^ o>? variety 

preserved by finite direct products is preserved by the above map, 

too. The commutator [.06 ,/3] (see Freese-McKenzie [2]) as well as 

the congruence operation [«L -» £] * V (** : Cy><5tj£/$ ) » ealled 

mutator by Zlatos* [6], can serve as examples. 
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