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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
24,4 (1983) 

TRIMMED POLYNOMIAL REGRESSION 
Jana JURECKOVA 

Abstract : Robust test about the degree of the polynomial 
regression is suggested. The test is based on the trimmed 
least-squares estimator due to Koenker and Bassett [4} and 
has an asymptotically distribution-free critical region for 
a general class of distributions* The Pitman efficiency of 
the test coincides with the relative asymptotic efficiency of 
the trimmed least-squares estimator to the ordinary least-
squares estimator. 

Key words : Polynomial regression, regression quantile, 

trimmed least-squares estimator. 

Classification; 62010, 62J05, 62G20 

!• Introduction. Let us consider the polynomial regres

sion model 

(U1) Xni *h+P\xni+-"+ fali + \i » iss,' — >n 

where Jn « (Xn1, • • • >*m) ' is the vector of independent ob

servations, x n * ^nl ••••-*!!-&)'
 is a «-*••«» vector, 

jbs (ft0t $)$•••* /-O* is a (P+Dxl vector of unknown para

meters and J^ « ^Eni ••••»Enn^# i8 t h e vec<tor of errors 

which are independent and identically distributed (i.i.d.) 

random variables with a continuous distribution function (d.f.) 

F. In the subsequent text, we shall omit the subscript n in 

YniJ xni' Eni» etc*> unle»» it causes a confusion. Our main 
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interest is in robust testing the hypothesis about the degree 

of the polynomial regression, i.e., 

(1.2) HQ: jlj - 0 , j=- p+1-m,...,p , l4i-*p. 

Koenker and Bassett [4j introduced the concept of regression 

quantile, which seems to provide a basis for L-estimation 

and L-testing in the general linear model. The same authors 

proposed the trimmed least-squares estimator (trimmed LSE) 

as an extension of the trimmed mean to the linear model* This 

estimator was later on studied by Ruppert and Carroll [8] ; 

they considered a special design with an intercept and such 

that the slope-columns of the design matrix sum-up to zero. 

The idea to use the regression quantiles for testing the 

linear hypothesis was mentioned in Ruppert and Carroll [8] 

who proposed a test based on the trimmed LSE under the spe

cial design mentioned above. Koenker and Bas3ett [5] studied 

several robust test9 of linear exclusion hypothesis based on 

1* -estimation, i.e. on minimizing the sum of absolute resi

duals. However, neither of the mentioned procedures cover* 

the general polynomial regression. JureSkov6 [3] derived the 

Bahadur-type representation and the asymptotic distribution 

of the regression quantiles and of the trimmed LSE under a 

more general design. The model considered in [3] covers the 

polynomial regression and thus enables to construct a robust 

test of H . The test statistic is asymptotically distribu-
2 

ted according to V distribution with m degrees of free-

dom under H and according to noncentral X distribution 

under the contiguous alternatives. The Pitman efficiency of 

the test with respect to the classical one based on the or-
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dinary LSE coincides with the relative asymptotic efficien

cy of the trimmed LSE to the ordinary LSE. 

2. Notation and preliminary results. Let us fix (*«, ou, 

0<cx<<o<2<T. We shall start from the polynomial regression 

model (1.1); we shall assume that E«,...,E are i.i.d. 

with the d.f. F(x) which satisfies the following set of 

conditions (A): 

(A.t) F is absolutely continuous with the density f. 

(A.2) 0<f(x)<oo for ^ 1 - £ < x < € 2 + £ , fc>0 

where ^ =F~1(<Xi), i=1,2. 

(A.3) The derivative f' of f exists and is bounded in 

neighborhoods of ?« and ? 2* 

Denote 

U.\) X = X = 
A,n ** 

xn 

the nx(p+1) matrix. The i-th row of X^ will be denoted 

by x.* • We shall assume that the sequence ^X^J ns1 satis

fies the following set of conditions (B): 

(B.1) lim i x! X « Q, Q = (q-nJ .: v=n 
n-".x» *" * 0>-^°> • • • iP 
where Q is a positively definite (p+1)x(p+1) matrix,, 

(B.2) max \xA ^ « 0(n t / 4), as n—**? . 
l-=i--n 
I^P 

«î ( T~ lv_ 1 Jì""1 (B.З) max íx.| J ( T |xk|
 J ) " å — > 0, a n-*»; j=1,...fp. 

1-=i*n ' Jc=1 

The condition (B.I) means that 

(2.2) i r x( -> q, , j*0,1,...,2p 
n 1̂ 1 x ° 
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where q0,...,q2p eatieffr 

(2.3) qkf j » q-^j , k,j»0t...,p. 

•0 an example of X^ satisfying (B) may serve the follow

ing sequence 
i. 

(2.4) x ^ » J(5JT) , i*1,...,n 

where J(t) : [0.1]—->R is a bounded function; then 

n £ - *ni —* ] (J(t))kdt, as n~*». 
For <**<X.jfo<2> denote 

(2.5) Ij^x) » * - l [ x < 0 ] , X6R1 

and 

(2.6) ^(x) » x . tf^x) , x€R 1 . 

The ^-regression quantile /?>(«) i s then defined as the 

(p+1)x1 vector t s ( t ^ . . . . , t ^ ) * which solves 
»v O* * p 

(2.7) T fy<X± - x ^ t ) ; - min. 

The solution of (2.7) ie generally not uniquely determined; 

suppose that a rule is given which selects a unique element 

of the set of solutions for cx= <*., <*2* 

It then follows from Theorem 2.1 of JureCkova [3] that 

n!/2(|(rf) - £ - e t F-^oC)) 

(2.8) 

n~1/2[f(F_1(«))J-1 Q_t І x t (0 (S^-ГҶл))* O p
(n"

1 / 4
) 

for oC»oC
1f
oc

2>
 where gj - (1,0,...

t
0) ie a (p+1 )xt vector, 

Let A be the diagonal nxn matrix with the diagonal 
" A * 

f 0 if Y
4
 < x/ &(*.) or X. > x.' A(oO 

(2.9) »
i i
- - a

i
- j i

N
- i U 1 1 * i £ 2 

^t otherwiee, i»1,...,n« 

The trimmed LS£ ie then defined as the ordinary LSE calcula-
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ted after trimming-off Y. with a. * 0, i=1, •••,», i.e., 

(2.10) L -= L
W
(*1>*'>) =- (X'AX)"(X'AI). 

,V /Va I * C fkt A/A* »V A/AS 

I t then follows from Theorem 3«1 of JureSkova [3J that 

n1/2ta(tv"2>-&- s^J 
-= n 

where 

(2 .П) 
" 1 / 2 (« 2 ^,) '" 1 S в , g iïi(^Ei)-E^Ei)) + Op(n-1/4) 

(2 .12) «\|Kx) - ' 
fo i f x < l i 

1 Г T l ^ J 2 
?2 І f 3 2 ° 

^ 2 
and £ = (Kg-x.Г1 ^ F _ 1 (u) du . 

°S 
Consequently (cf.Theorem 3»2 of [3j), 

(2.13) 

— > N p+i<2» e 2 ^i»^2» F ) S" 1 )
 »

 a a n
""*°° 

where _ 

s2 
&

2
(«

1
,<x

2
,F) = («

2
-o<.)-

2
 ̂  (F

-1
 (u)-S")

2
du 

+ oc.(| t-S)2 + a-^к^-Š")2 -^}^^)Hì-«2){%-Щг\. 

We may see from (2.11) that only the first component L of 

L is generally asymptotically biased. !Ihe asymptotic varian

ce (2.14) coincides with that of the trimmed mean in the loca

tion model. 

-*• Test of H . Let us turn back to the polynomial reg

ression model (1.1). The distribution function P of the 
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errors £.,...,!! is generally unspecified; we shall only 

assume that F satisfies the condition (A) for fixed crfj,-̂ , 

0<o(j<o<2<1* We wish to construct a test of the hypothesis 

(3.1) H 0 : |&j « 0, j«p+1-m,...,p (1-k-^p), 

which is insensitive to the special shape of F. 

Assume that the matrix $_ satisfies the condition (!) of 

Section 2. Denote 

(3.2) £ - /!...?!. 

the nx(p+1-m) submatrix of L . Then, according to (B.1), 

<3.3) £ £ ' &—> S* • M n->00 > 
where (f is a positively definite (p+1-m)x(p+1-m) submatrix 

of Q. Denote 

O U p+1-m 

p+1-m m 

the (p+1 )x(p+1) matrix. Let L * Ln(«-,o^2) denote the trim-

med LSE defined in Section 2: let L * LtA(«<1«o<0) denote the 
* .v A»n I c 

trimmed LSE calculated under the assumption that H is true. 

Then L is a (p+1-m)x1 vector; denote 

(3.5) E*= (I-*oi.-.»^m»0,...,0)' 

its extension to (p+1)x1 vector. Consider the statistic 

(3.6) T - (L - E V X'X (L - .C*) / S* 

where 

(3.7) 
sn ' < V * l ^ M ) " 1 zn +Kl<í-oí,<1)-to)2 

+ ( 1 ^ 2 ) ( ^ 0 ( - < 2 ) > L 0 ) 2 - t < i ^o(e<1 )-Lo)+(,-«2)(/!'o<w2)-Lo)J 2j 
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and 

(3.8) Z2 a Y'A I"ln+1- X(X'AX)"xlAY $ 

i (o(.),L are the first components of AC 0^)* £> respecti

vely, i=1,2. 

We propose T as a test criterion for testing H • The 

corresponding asymptotic critical region is given in the fol

lowing the or em • 

Theorem 3.1. Let Y4,...,Y be independent observations 

satisfying the model (1.1) with the i.i.d. errors distributed 

according to the d.f. F satisfying the condition (A). Let 

&n satisfy the condition (B). Then, under H , the statia* 

tics T are asymptotically distributed, as n—**?, according 
p 

to Oc distribution with m degrees of freedom. 

The following theorem gives the asymptotic distribution of 

T under the local alternatives, n 

Theorem 3.2. Let Y-,.,.,Yn and ^ satisfy the assump

tions of Theorem 3.1• Then, under the sequences of alternati-

(3.9) -Ca : ̂  = MlT b k ; b k e R
1, k=p+1-m,... ,p , 

the, statistics T are asymptotically distributed according 
2 

to none entrap V distribution with m degrees of freedom 
an4 w|tj| the noncentrality parameter 

(3.10) m 2 = F' Q b /£2Ut,o<2,F) 

where 

(3.11) S = y^^llS'Vl-tt^-'V^ 
p+1-m v—-^~M 

It follows from Theorem 3.2 that the Pitman efficiency of 
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tfca test based on T with respect to the clasical F-test 

coincides with the relative asymptotic efficiency of the trimmed 

LSE to the ordinary LSE. 

4. Proof8 of Theorems 3.1 and 3.2. The theorems will be 

proved with the aid of three lemmas. 

Lemma 4.1» Under the assumptions of Theorem 3*1> the sta

tistics 

(4.1) (S2 (o^oCg,F))"1 Vn 

where 

(4.2) V « (L - E*)#X#X (L - I*) 
2 

are asymptotically distributed as X with m degrees of free-
2 

dom under H and as noncentral \ with m degrees of free-; 
2 

dom and noncentrality parameter m of (3*10) under K^, respec
tively. 

Proof. Let us first consider the asymptotic distribution un

der H . Consider the partitions 

(4.3) 

Moreover, denote 

(4.5) B » 

the (p+1 )x(p+1) matrix and 

(4.6) C = Q"1 - B . 
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It follows from the symmetry of g that 

/ 12.g22.-yi Q12' 

<*•*> S = S S 9 = V Q21 -22 

and 

(4.8) C'QC = C : C is of rank m. 
V Ml. »V * V 

It follows from (B.1), (4.8) and (2.11) that, under HQ, 

(L-r*)' X'X (L-L*) 

(4.9) = (*2-«i )-2[n"1/2 ^ ( ^ V - S f V ) ] ' 2 ' 

*[n"1/2 Sr i ( f V - f Ei})] + °P ( 1 ) 

as n—•.><*> , and it follows from the classical central limit theo

rem that 

c£ [(<V*1 r] n~1/2;jn xi(^(Ei)-E(y(Ei))J 

(4.10) 

— * Np+1 ̂ 2» 6*2(o41 ,o<2,F) Q), as n—>«> . 

(4.8), (4.9) and (4.10) together with Proposition VIII of Section 

8a.2 of Rao [7] imply that (4.1) is, under H , asymptotically 
2 

V distributed with m degrees of freedom. 

Proceeding quite analogously, we get that, under 1^, 

(4.11) ( e 2 ^ f«0fF) T
1 (L-I*-n"1/2F) Vx(L-I*-n"1/2E) 

2 
is asymptotically 0( -distributed with m degrees of freedom; 
this completes the proof of the lemma. 

Lemma 4.2. Under the conditions (A) and (B), 

(4.12) S 2 -£* fc2(*lf«2fF)f ££ n~->o* . 

2 2 
Proof. The estimator S^ of or was suggested by Ruppert 
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and Carroll [8] who proved its consistency under a special de

sign. The proof of the lemma rests on the following lemma which 

could be proved quite analogously as Lemma 3.1 of JureSkov6 [3J. 

Lemma 4.3. Let U.j,...,U be i.i.d. random variables 

with the d.f. P satisfying the condition (A). Denote 

(4.13) T„(v) -* nU2T U? lfu^F"1(o()+n"1 / 2 x.' v ] , v e R p + 1 

with o< -o< . j , <.<2. (Then, provided the matrix X with the rows 
x i * i s 1 , • • • 9 n s a t i s fy the condi t ion (B), 

(4.14) sup |T (v)-T (0)-n"1(F"1(o<))2f(F" t(c<) T" x.' v I -£•» 0 
lul^K l n " n 1=1 " 1 ~ l 

as n—^co , fo r any K > 0 . 

It follows from (4.14) and from (2.8) that 

(4.15) (n-m)"1JI a.E? -&-> P x2dF(x) , as n~>co . 
î 1 * * £ 

J1 
Moreover, by Lemma 3.2 of [ 3 ] , 

(4.16) n"1 X'AX = <*2"o(1)S + ° p ( 1 ) 

and thus , by (2 .10) , 

(n-mf1 E'AX (X'AX)" X'AE 
* .V «V V / V M M »».» * / »V 

(4.17) « (n-m)"1(L-li)'(X#AX) (L-A) + o n(1) 

-(n-m)"1(oc2--^1)(L-|i)#Q(L-|i) + 0 (1) 

and this, by (2.11),, can be rewritten as 

(4.18) .[n"X ji(«̂ (Ei)-EAjKEi))Q"
1+e1(o<2-c<1)J*J +op(1) 

«(•c2-^1)y2 + O ( D . 
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Combining (4.15), (4.17) and (4.18), we get 

(4.19) (n-mr1 Z 2 -£-> $ (x-o*)2dF(x). 

Moreover, it follows from (2.8) and (2.11) that 

(4.20) jV*i) - L0
 = F"1(<*i) -°~ + °pCO, i=1,2. 

(4.19) and (4.20) then complete the proof of Lemma 4.2. 

Theorems 3.1 and 3.2 then follow from Lemmas 4.1 and 4.2. 
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