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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
24,4 (1983) 

ON THE EQUATION y* = f (t, y) IN BANACH SPACES 
RZE Bogdan RZEPECKI 

Abstract: In this note, we are interested in the study of 
the differential equation y • f(t,y), y(0) « x with applying 
the method of Euler polygons whenever f is a bounded continuous 
function wi$h values in a Banach space. We prove for our equa
tion Kneser s type results and theorems on the existence of ex
tremal solutions and their continuous dependence on initial data. 

Key-words: Differential equations in Banach spaces, Euler 
polygons, struoture of the set solutions, extremal solutions, 
measure of noncompactness. 

Classification: 34G20 

!• Introduction. Throughout this paper I « fO,a], 

(EP W * \\ ) is a Banach space with the zero element Q, B » 

a {xe E: ll x - xQ l| £ r} , f:IxB—^ B is a bounded continuous 

fxmction, and |lf(t,x) IS ̂  M on IxB. Moreover, let J » 10,Tl 

with T^min (a,r/M). 

Let us consider the differential equation 

(PCX) y' « f(t,y), y(0) - x 

where x€B. In particular, by (PC) we shall denote the problem 

(PCX) with x » xQ. 

A function y:J—> B is said to be a solution of i^x) on 

J, if it is a differentiable function on J, y(0) « x, and 

y'(t) * f(tty(t)) for t in J. 

Many papers related to the problem (PC) have been publish-
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edf see e,g. [6]. Using the method of Euler polygonals we shall 

give Kneser'e type results for (PC) (the set of solutions of (PC) 

is a nonempty continuum in the space of continuous functions from 

J to E) provided In particular some regularity Ambrosetti-Szufla 

type conditions (cf. 11 J, £18]) with respeot to a measure of non-

compactness defined In an axiomatic way. Employing the partial 

orderings induced by cones, existence of extremal solutions of 

(PC) and their continuous dependence on initial data are also 

proTed. 

2. Ho tat ions and basic definitions. Denote by C(J) the spa

ce of all continuous functions from J to B, endowed with the usu

al supremum norm. Further, we will use standard notations. The 

closure of a subset X of E, Its convex hull and its closed con

vex hull be denoted, respectively, by X, conT (X) and conr (X). 

If X and Y are subsets of E and t, 0 are real numbers, then tX + 

+ si is the set of all tx + sy such that xeZ and ycY. ffJxX] 

will denote the image of 3x X under f, and f(t9X) is the set of 

all f(t,x) with x£X. 

We Introduce the following definitions: 

Definition 1. Let e ? 0, 0-^p^T, and let w:J—>E be a 

function with w(0) - x0 and llw(t') - w(t") II ^Mlt' - t»| for 

t'f t"e J. I»et r^ * p + 16 for 1 * 1f2f...,k-1, where k is an 

integer > 1 such that T - p • k£ (without loss of generality we 

assume that p/£ and T/& are integers)* By an Euler polygonal 

line for (PC) on J we mean any function g defined by 
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rw(t) for 0^.t^p t 

|w(p) for p£ t .£r 1 f 

g(t) a g(t|e#P»w) -^g(r 1 ) • (t - r 1 ) f (r l f g(r 1 ) ) 

for T±£ t ^ r l + 1 

( i « 1 f 2 f . . . , k - 1 ) . 

Definition 2. Let n be a positive integer. A function 

uiJ—vB is said to be 1 /n-approximate solution of (PC) on J, 

if it satisfies the following conditions: 

(i) u(0) « X0| 

(ii) fl u(t') - u(t»)I £ Mlt' - t"l for t\t»€ J| 

(iii) sup |u(t) - x ~ [* f(sfu(s))ds l<1/n. 

Definition 3. Let H be a subset of B. By Sn(H) (n « 

• 1,2,...) we denote the set of all 1 /n-approximate solutions 

u of (PC) on J such that for every ta Jf u(t)€ H and there ex

ists hte lOft] with u(t)e x0 + ht» conv (ftJx HI). 

Definition 4. We say that the function f has the Peaxto 

property with respect to H if any sequence (vn) with vne Sn(H) 

contains a subsequence which converges in 0(J). 

Definition 5. By S(H) we denote the set of all solutions 

of (PC) on J with their values in H. 

Moreover f throughout this paper $ and T are functions 

defined in the following way. 

Definition 6. Let % be the space of all bounded sequen

ces of B with the usual supremum norm | • I .We denote by 

$ i %—> [0foo) a function with the following properties} 

1 ° $ (X) - 0 for a convergent sequence lett; 

2° if $ (X) m 0 then X is a compact sequence of E; 

3° l$ (Xt) - $(X 2)UL|X 1 - Xgt f or X-, ̂  € % ; 
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4° $({x}vl) - $(X) and $(x + X) « $(X) for xcB and 

X * 10. 

Definition 7. Let IT be the family of all nonempty hound

ed subsets of B. We denote by Y* IT—> 10,00) a function with 

the following properties: 

1° Y ( * + {x^nSrlD^ Y O O for X 6 ̂  and any conver-

gent sequence (x^) of B; 

2° Y(X) - Y(X), y(oonTX) - Y(X) and y ( ^ } u l ) -

-YOO for X £ 1T5 

3° Y ( t x > ^ t • ¥(X) f ° r t g O a n d l c ^ } 
4° Y 0-i > -̂  Y(X2) whenever X-, c X2 j 

5° if Y(X) - 0 then X is compact. 

4« Compactness type conditions. Here we shall employ mea

sures of noncompactness to impose conditions on f. 

The notion of a measure of noncompactness was defined in 

many ways (see e.g. C2} fI5J ,H5] ). At first, Kuratowski [9J has 

introduced the function oo which is a kind of a measure of non-

compactness. (The measure ot(X) of a nonempty bounded subset X 

of E is defined as the infimum of all & > 0 such that there 

exists a finite covering of X by sets of diameter ^ 6 •) Ambro-

setti [1] proved the existence theorem for the problem (PC) un

der the assumption of uniform continuity of f with cC(t(t,X)).*£ 

£k • oc (X) for all tel and any XcB. A similar result, but 

without the assumption of the uniform continuity, has been pro

ved by Szufla £181 under the condition cC(f IIxXl) ̂ k-cc(X) 

for any XCB. Further extension of Ambrosettl theorem, for uni

formly continuous f, has been proved by Goebel and Rzymowski 

17J, and others (see L2j.L31.161). 
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Itext «e suppose that g:IxEOfoo)—>LO,oo) is a continuous 

function oueh that u(t)sO is the unique solution of the diffe

rential equation 

u* • g(t,u), u(0) m 0 

on the interval I. 

Let $ and T be the functions defined in Sec. 3. We in

troduce the following conditions: 

(I), lim inf h~1 t $ (I + hf(tfX)) - $(X);Ug(tf $ (X)) 

for any sequence X of B and all te I, and assume in addition 

that f is uniformly continuous on 1.x. B. 

(II). Y(fEI*X3)£k • ¥(X) for any subset X of Bf where 

k is a nonnegative constant. 

Let us note that the Kuratowski's measure of noneompset-

ness oO is an example of $ and Y with the properties listed 

in definitions of See. 3. Other examples of such $ f f may be 

found in [2JfC5],t15J. 

Lemma 1. Assume that the condition (I) is satisfied. Let 

v n:J—> B (n m 1,2,...) be functions such that: 

(1) (vn(°)) is
 a convergent sequence, 

(2) l|vn(t') - vn(t«)|| ̂  C|t'- t"| for each n and t'f t" 

in J; 

(3) II vn(t") - vn(t') - f* f(sfvn(s))ds ll^-K/n for each 

n and t f t" in J. 

Then, -tvn*n-2.1$ is a conditionally compact subset of C(J). 

Proof* Define for t e j the function p(t) « $(V(t))f whe

re V(t) • -(vn(t):n^l). Evidently p(0) - 0f p is continuous on 

J, and 

D.p(t) (- lim inf h~1 (p(t • h) - p(t))) <* 
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^lim inf IT1 t$(V(t + h)) - $(V(t) + hf(tfV(t))).) + 
-fv-* w. 

+ g(tfp(t)) 

for t£J. 

Let € >• 0. Since f is uniformly continuous f there exists 

of- d"(e)>Q such that llf(t#fx*) - f(t"fx")li < €,/4L when

ever It' - t" I < <T and ll x' - x" II <cf . By assumption (2) f 

IUn(s) - Tni*)t<<f (n - 1f2f...) if Is - X\<(fJ/C with 

tf«&J. Thus, for sufficiently small h, 0-*h<min (tTtcT/C) and 

n >n • 8KL/e h and t 6.J we obtain o 

II Tn(t + h) - Tn(t) - hf(t,Tn(t)) II 4 « Tn(t + h) - Tn(t) -

- /*^(l.Tn(.))*il|+ f_i+^llf(«,Tn(8)) - f(t,Tn(t))|| dB < 

hence 

$(V(t + h)) - $(V(t) + hf(tfV(t))) . $(ivn(t + h): 

m ^ n 0 * ) - §(-On(t) + hf(tfvn(t)):n^n0t)<6L-sup^ ||vn(t + h) -

- vn(t) - hf(tfvn(t))|| £ eh/2 

and therefore 

^im h~1 L#(V(t + h)) - $(V(t) + hf(tfV(t)))]- 0. 

Consequently, Dgfp(t)£ g(tfp(t)) for 0-£t<T. 

From the Theorem 1.4*1 of 1101 the following result may be 

deduced: 

Let pf L be nonnegative continuous functions defined on I 

and IxE0 fcc) f respectively. Denote by y> the maximal solution 

of the differential equation u* • L(tfu)f u(0) • 0 on the inter

val J. Assume that p(0) • 0f L(tf0)-2.0 on Jf and the inequality 

D«,.p(*fc)̂ L(tfp(t)) is satisfied on £0.T). Then, p(t) ^(t) for 

t tl. 

How, by the above result, we get p(t) • 0 on J. This imp-
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l i e s that ^ T n ( t ) t n > l J (O^t-^T) i s conditionally compact and 

the Aecoli Theorem completes the proof. 

Lemma 2. Assume that the condition ( I I ) i s s a t i s f i e d and 

T^min ( a f r 0 / ( b 0 + M)) with k T < 1 . where 0 ^ r Q £ r and b 2 0. 

Let (-Cg)* (z n ) he convergent subsequences of E with 

II Xĵ  - xQ II <£ r - rQ and II s n II -£ bQ. Then there ex i s t subsets » 
H ( i j ) ^* * * 1 , 2 , . . . ) of B such that 

H ( i j ) * x i + U t t - o o n T (z^ + f B x H / j jp)*0--* t j*Tf 

and . 

Ho - *!?.. j$>l H(l,3) 
i s a conditionally compact subset of B. 

Proof. Applying arguments analogous to TO (°?* 1-18], p. 

797), we conclude that there e x i s t our subsets &>£ i ) c s * L e t 

us putt I • C x n t n 2 l J » Z • { i ^ t n ^ l ? . Using properties of 9f , 

we get 

Y(H0) A Y(X + U -tt-conT (Z + f EJxH^ptO -*t ^Tl) * 

- ^ ^ ( U t t - c o n T (Z + fUxH 0 3)tO.U«*T}) 4. 

.* ¥(conT « ^ > u T - o o n T (Z + fCJ~H 0 D)) « 

- Uf(T-conT (Z + f£J/cH03))<T«-Uf(Z + * EJ>« H^l) *£ 

-» T • \T(f rJxH 0 l )^kT • UT(H0). 

Hence Y(H Q) « 0 and therefore 5^ is compact. 

5# Kneser'e type result. In the Proposition and Theorem 1 

below, we assume in addition that the following condition Is sa

tisfied: 

(+). There exists a closed subset H of B such that * | j x H 

is uniformly continuous and xQ + t»conr (f[Jx.H])cH for each 

t in J. 
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The proof of our result is similar to that of the Theorem 

in [Hi. 

Proposition. The sets Sn(H) (n « 1f2f...) are nonempty 

and connected in C(J). 

Proof. Let g(«) - g(-f E,pfw) be an Euler polygonal line 

for (PC) on J. Obviously, gCJ]cB. for r^t^r-t+i (here r^ » 

- p + i&, i « 1f2f...fk-1f and k is an integer 2:1 suoh that 

T - p m £k) we haves 

g(t) . w(p) + ̂ |V*«+1 - rffi)f(rmfg(ra)) + 

+ (t - r1)f(rlfg(ri)) 

and 

lls<*> - *0 " J0 *(s,g(s))dslUHw(p) ~ xQ -

- ffvf(Bfw(s))ds|l + f*1 llf(sfg(s))l| ds + 

+ !^4 ^^^BfCvgCr.)) -.«..g(.))fl«.+ 

+ f* Hf(ri,g(r1)) - f(s,g(s))l| ds. 

Denote by u.{>) the Euler polygonal line g(-, e,J>fw) with 
O 

p • 0. Evidently, u£(t)*x0 for O^t £ e and since u£(t)c x0 + 

+ (t - & )»conv (f EJxHl) for t >: S f we infer by (+) that 

uctJ3cH. 

Pix an index n. Proceeding similarly as in C141» by uniform 

continuity of f U gt we conclude that there exists C(n)>0 suoh 

that 
n't 

sup. Hufc(t) - x0 - Jp f(s,u£(s))dsll<1/n 

for each fc, -* £(n). Consequently, Ue*Sn(H) whenever e < £ (n). 

Assume that wt*Sn(H). An argument similar to that in I Hi 

implies that there is a positive e w £ £(n) such that for 

6> <- e . and Otf PA** 
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sup. I lg ( t | €tP fw) - x_ - f f ( s f g ( s t €,fPfw))d0 l l < 1 / n . 
t € £ O *T© 

.Furthermoret for O ^ t ^ p there e x i s t s h^6EO ft3 and 

g ( t | StPtw) • w ( t ) « x 0 + h t »conf ( f l J x H j ) * 

If r ^ t i s f ^ t then 

g ( t t €>tPtw)e w(p) + S I . e fCJxH3 + ( t - r,)fCJ^HJ c 
**-a>f £ - 4 1 

c xft + h*conT (f [JxHl) + J S , e • conT ( f U x F J ) + 

+ ( t - r i )*conr ( f EJxHl) » 

« x 0 + (h^ + t - p • e ) -conT ( f [JxH3) 

and h^ + t - P - e ^.t* Prom t h i s we deduce that Buler polygo

nal l ine g (* f EtPfW)eSn(H) for each e, -*-- €>w and 0 ^ p ^ f # 

Let us put: 

U -iu^tO *-: e <e(a)?t 

\ - - t g f - t ^ t P t W J i O ^ p ^ f } 

with weSn(H) and *j,w -< €w* Modifying the proof from LHl (of. 

C2tJ, p. 664) we proTe that the s e t s Uf Vw are connected i n C(J). 

Now, we se t 

W - U -£UuVw iweSn(H)|* 

Since w(-) m g (« f 7 i w f T f w)s? w for weS n (H) f we get S f l (H)c I , 

4.8 UcSn(H) and T f c S n ( H ) , WcSn(H). further, we obeerrc that 

8 ( , t l f f ° t f ) • u-r» ( O s U r i Y f . Therefore 0 u T f i s connected i n 

C(J). Consequently, Sn(H) » W i s a connected subset of C(J). 

How, we are in pos i t ion to prove 

Theorem 1. I f the function f has the Peano property with 

respect to H, then the se t S(H) i s nonempty, compact and connec

ted in the space C(J). 

Proof* The integral mean-value theorem may be stated a0 

followst f c*>(0)dfl6t*conT (-C63(fl)8O-^0^tJ)# Hence 
Jo 

S(H)c 0 ^ s « ( H ) f a*-d consequently S(H) - Q. S_(H). 
*v.t. n n .•V'2^ ** 
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Assume that f has the Peano property with respect to H. 

Then (see Lemma 1 in LH1) S(H) i0 nonempty and compact. By 

2 of LH1 with !„ « SW(H) and the facto aboTe9 (\ Srl(H) 

is a connected subset of C(J). This completes the proof. 

Example 1. Suppose that the condition (I) is satisfied. 

Let T m min (a,r/M). We haTe: x0 • t-conT (fEJxBJ)cB 

for tcJ. It is obvious that Lemma 1 is applicable to any se

quence (Tn) with T:Q6Sn(B). Therefore f has the Peano property 

with respect to B. Thus all assumptions of Theorem 1 are satis

fied, S(B) (the set of all solutions of (PC) defined on J) is 

a continuum in C(J). 

Let T • min (a9r0/M) with 0^rQ^r. Let Q be a nonempty 

subset of the closed ball of B with the center in x. and of ra-
o 

dius r - rQ. Denote by S(x) the set of all solutions of (PCX) 

on J. We shall proTe below that if the set Q is connected then 

S » U-CS(x)*xfiQ$ 

is a connected subset of C(J). 

In fact, let us assume that S is not connected. Thus there 

are nonempty sets S.| 9 S2 such that S • S.j v> S2 9 S.j o S2 « 0 and 

Si • SnS^ (i - 1,2). Define the sets Q± (i « 1,2) by 

Q^ »{x£Qs for some ysS^ we naTe y(0) • x}. 

Vote Q±•¥$ and Q « Q-jU Qg. We show that Q-jOQp « 0 and Q^ « 

- Q A Q ^ . 

Suppose on the contrary that Q-jnQg-*^. Let x€Q«joQ2. Put 

Y± » S(x)nSi (i « 1,2). BTidently *±*09 I^X- » S(x) and Y^n 

Al 2 • 0. Furthermore, 
Y^cS(x)r.sT • S(x)oiS^£ SnS^CS^, 

henoe S(x)oY^cYi« Therefore S(x) is disconnected, in contra

diction with the c meotedness of S(x). 
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To show that Q, « QnQ^ 1«* xGQnQ.^ Then xeQ and the

re exist x ^ Q , y n^S 1 (n « 1f2f...) such that yn(0) • x^ and 

H x^ - x ft —*- 0 as n —*• CO • By Lemma 1 we conclude that 

^Vj^ -5(3̂ ) is a conditionally compact subset of C(J). Hence 

(yn) contains a subsequence which converges uniformly on J to 

seme function yQ and yQeS(x). Since Y0
e 8^ a*»d SoS^cs^ it 

follows that y e S ^ This implies x€Qif and the proof is com

plete. 

By the facts above,Q is disconnected and contradicting 

our assumption. This proves that the set S is connected in C(J). 

Moreover, notice that using Lemma 1 we obtains S is com

pact in C(J) whenever Q is a eompact subset of E. 

Example 2. Let the condition (II) be satisfied and 

T^min (afr/M) with kT<1. 

By Lemma 2 there exists a compact subset BQ of B such that 

B0 « xQ + Ult-conv (fEJ*B0l)sO£t£T?. 

Since f |IxB is uniformly continuous and 

x0 + t-conv (fU*B0,l)Cx0 + U -tt.eonv (f[JxBQ1)s 

s04t£fliCBof 

the condition (+) is satisfied for H • BQ. Let X • (• ) be a 

sequence with vnC Sn(B0). The set 7 is a closed equicontinuous 

subset of C(J). Since BQ is compact, Ascoli's Theorem proves 

that? is compact in C(J). Thus f has the Peano property with 

respect to BQ. Therefore all assumptions of Theorem 1 are sa

tisfied, and we are done. 

For more results of Kneser type we refer to Szufla, e.g. 

L19UL20J. 
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6. Extremal solutions. Throughout this section it will he 

assumed that K is a solid cone in E (i.e. f K is a closed subset 

of 1 with nonToid interior such that xf yf zf -zeK and tf s£0 

imply tx + sy e K and z » & ) • The partial orderings on B induced 

by K are x£y if y - x€K and x<y if y - x&Int K (the interior 

of K). 

We say that a function f:JxB—>E is nondecreaslng if 

x-j-̂ Xg implies f(tfx-j)-6f(tfX2) for each t in J. 

The following theorem (D7}» Th* 70.1, p. 224) on "strong 

differential inequalities11 will he needed for later use: 

Let fsJxB->E he a nondecreaslng function. Suppose that 

uf T are continuous functions from TOfT) into B satisfying the 

following conditions: 

(1) U(0)^T(0) (orf U ( 0 ) < T ( 0 ) H 

(2) u^(t)-6f(tfu(t)) for 0*£t<T; 

(3) f(tfT(t))<T^(t) (or, resp. f (tfT(t))^T+(t)) for 

0^t<T. 

Under our assumptions u(t)<T(t) for 0-ct<T. 

A solution yx of the problem (PCX) on the .Lnterral J is 

called a maximal solution, if for eTery solution y of (PCX) 

existing on Jf the relation y(t)-£yx(t) holds on J. 

Theorem 2. Suppose that the function f is nondecreaslng 

and the condition (1) (resp. (11)) (see Sec. 4) Is satisfied. 

Let 0<£ro-£rf b o^0 and b -. rQ/(b0 + M). Let J - COfT0Jf where 

TQ<T * min (afb) (resp. T^min (afb) with lcT<1). 

Then, for eTery xeE such that llx - x Q I U r - r , ^ x ' 

has a unique maximal solution yx on J . Moreover, the mapping 
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from 9C - (xCEt II x - x0U 4z r - TQ9 xQ< x j into C(J) i s cont i 

nuous at the point x . 

Proof. Consider the differential equations 

(PCm) y' - %m + f(tfy)t y(0) » x (m « 1t2f...) 

where ft x - x J - r - r and (s ) is a sequence of £ such that 

<&< zm and |U H -^1/m. m m 

Denote by B(xtrQ) the closed ball of £ with the center in 

x and of radius rQ. The functions fm(t,x) • %m + f(ttx) (m » 

» 1tfct...) are bounded on IxB(xtr0) by bQ + Mf 

$(X + hfm(ttX))^f(X + hf(tfX)) and !#(fmO>x:i) ̂  Y(f p.*XJ). 

Therefore f by the examples of Sec. 5 and our lemmas f if the con

dition (I) (resp. t (II) with kT<:1) is satisfied, then (PCm) 

has a solution y defined on J and ijmi*£l} is a conditionally 

compact subset of C(J). 

Assume that (yi(m)) is a subsequence of (yffl) which conver

ges uniformly to the limit y°. Evidently, y° is a solution of 

(PCX) on J. Let y be any solution of (PCX). We have: 

y(0) « x « y i ( m )(o) t 

y'(t) - f(tfy(t))t 

f(t fy i ( m )(t))^ a i ( m ) + f(ttyi(m)(t)) - y i ( m )(tH 

therefore, by the result on "strong differential inequalities"t 

y(t)-<yi(m)(t) (m • 1t2,...) for 0*-tt<T. How, taking the limit 

as m —-*- oo f conclude y(t)t£y°(t) for 0-£t<T. Consequently, 

y° is the desired maximal solution of (PCX) on JQ. 

Let (xi) be a sequence of 3£ which converges to x • Deno

te by mi# mQ the maximal solutions of (PCX ) and (PC)f respec

tively. To show that 

sun limi(t) - »0(t) - as i—*>oo, 
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let (^(i)) b e Ây subsequence of (m±). In view of Lemma 1 

(resp* Lemma 2)f (-\(i)) contains a convergent subsequence when

ever the condition (I) (resp. f (II)) holds. 

Let («£(.£)) be a convergent subsequence of (-^(i)) and 

"^(i)(*)"*"* •<*) (*•"** °° ) uniformly on JQ. By 

"o<°> - xo < xn(i) * »n(i)(0)' 
mQ'(t) » f(tfm0(t))f 

<<!)<*> - «*.«a(i)<«>. 
we may apply the theorem on "strong differential inequalities" 

to obtain mQ(t)< ̂ (^(t) (i • 1f2f...) for 0<t-<.T# Hence 

mQ(t)^m(t) for 0^t<T and since m is a solution of (PC), 

m(t)sm0(t) on JQ. 

In a similar way one can introduce the definition of the 

minimal solution of (PCX) and formulate a result analogous to 

(Theorem 2. 

7. Dependence on parameters. The solution of (PCX) is an 

operator (multivalued, in general) defined on some spaces of 

points (ffx). In U11 and 1123 we characterize sufficient con

ditions for this operator to be continuous. Here we give a ver

sion of the Krasnoselskii and Krein result (see 181) on conti

nuous dependence of a solution of the differential equation 

y' « P(tfyf X) on the parameter A . 

Let JXm IxB * A f where A is some space with a limit 

point X 0 We assume that Fs £1 —*» E is a bounded mapping and 

the function (tfx) \—*- f (tfxf X) is continuous on IxB uniform

ly with respect to (tfxf X) o IV (i.e., for every e *• 0 there 

exists Sm -/( e ) > 0 such that 

itP(t1fx1fX) - Ktg.Xg, %)\\ < S whenever \\y - t2 I ̂  ̂ J 
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ttx-j - Xg II << cT and A, € A ) . 

Next, denote by S^ the se t of a l l solutions of the eon ac

t ion 

y ' - F ( t f y f A ) f y(0) - x 0 

on the interral J « lOfmin (a fr/M)] with l l f ( t f x f X)\\ & H o n i l . 

Theorem 3 . Suppose that 

lim inf h"1 [ $ ( X + h?(t fX f .X)) - $ t t ) . l ^ g ( t f # ( X ) ) 

for any sequence X of B and all ( t , . \ ) £ l x A , where 

giIxLOfop)—>-tOfOO) is a continuous function such that u(t) s 

=0 is the unique solution of the differential equation u' « 

* g(tfu)f u(0) m 0 on the interral I. MoreoTer, let 

(*) 11. f* f(sfxf A)ds - f**(B9x, \)ds 

for eTery (tfx) in IxB. 

Under our assumptions for any T^ ->- 0 there exists a neigh

bourhood U of the point XQ such that If lie D, then 

inf ,«UP «y.(t) - y(t)l|<^ 

for eTery y^ e S^. 

Proof. By Example 1 f S^+ 0 for each X € A • Suppose that 

the theorem is false. Then, there is X -> 0 and for erery n (n • 

• 1f2f...) there exist Xn e A and y_€S, auoh that lim X- • 
n n JL^ *>-roP n 

« A. and o 

i^e •*->-- Hytt^) - yt*>" r U <n - 1 • * • • • • ) • 
u *%0 

As in the proof of Lemma 1 „ we obtain that {yn:nr1} is a 

conditionally compact subset of 0(J). Let (yi(n)) oe a conver

gent subsequence of (yn) with yi(n)(t)—> y 0 ^ (
n ~~¥ OO ) uni

formly on J. 
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How oboerrs that ty means of (X-) we obtain 

l ia^ J* »(-,$(»), \HB - fo* H*&B), V*~ 

for every on J pieoewise oonstant function $. Therefore (cf# 

t8l)f one can prove that 

£*.?«, •Cfcp<8'yiU)(8)'Ai(n))d8 - £ t- ,<- , .-r
c». V d s 

for t eJ. Prom this it follows that y r t€S 1 and consequently 
o ^ 

inf sup II y-if „*(•*) - y ( t ) II —> 0 as n —-> oo , 
tyt 5^ t - e j x * n ' 

a contradiction. The proof i s therefore complete. 

I t i s known that i f a function G J I X B —> E i s Lipschitz 

on B with a constant kf then cC(G(tfX))£k • cc(X) (here oc ±a 

the Kuratowski measure of noncompactness) for t e l and I c B , 

Prom t h i s remark and Theorem 3 we obtain the following result* 

Let ( X ) be a sequence of A convergent to 7i , l e t y 6 

£ S . (m » 0 , 1 , . . . ) and S * i s singleton* Further, l e t 
Am ^ o 

lim f P ( s ,x f A ,Jds » f P ( s f x f krt)ds 

for ( t f x ) 6 l x B , Assume i n addition that 

l i P ( t f x 1 f X ) - P(t f X2 f X)tt 4 p( t ) Hx1 - XgH for t € l f x^Xg 

in B and l e A , where p i s an integral)le function such that 

2»sup J p ( s ) d s < 1 . Then 

| u P l l lyn(t) - y 0 ( t ) h - > 0 

as n —> oO . 

8- Appendix* The object of this appendix is to derive a 

result of Stokes type (CI61) on existence of solutions of (PC) 

on the half-line t £ 0 via the fixed-point theorem given below., 

Denote by C[DfoO) the set of all continuous functions 
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from the monnegatlTO remit into 1 (X is our Banaoh spate with 

tht Kuratowaki meaflure of noneompactmess ot) • The tot ClOfoo) 

will be considered as a Ttotor apace tndowtd with tht topology 

of uniform comrergence on compact flubsetfl of L0fCO)# 

.We not tht following fixed-point theorem L133: 

Let X ho a nonempty closed oonTtx and boundtd subset of 

Cfofoo). Lot P be a function which assigns to eaoh nonempty 

subset X of 3B a nonnegatiTO real number P(X) with tht follow

ing properties* (1) P(co . iTX) - r(X)f (2) if r(X) • 0 thou 

X is compact, and (3) <Q, X^ it nonempty oompaot whtntTtr (X||) 

is a dtcreasing tequence of nonempty closed oonrtx subsets tf 

X and P(In)-> 0 as n — ^ co . Suppose that f is a oontimm-

ous mapping of % into itself such that r(fCXl)-££( r ( I ) ) t o r 

oath nonempty subset X of $ f whoro <f is a right-oontinuouB 

function with <»(t)<t for t>0. Under the hypo the BOB f f has a 

fixed point in X . 

for IcCCO.co) and t>0 wo denote by X(t) the sot of all 

x(t) such that xeX# to state the Aoooll Thtortm as followst 

k subset X of cLofco) is conditionally oompaot if and only if 

X is almost equicontinuoue and I(t) is oompaot in B for OTery 

tsro. 

Lot us denote by oCj the Kuratowaki measure of nonoompact-

noss on the space C(I). A. Aabresettl (13 prtTod that 

<*>j<X) m <tf(l/-tX(t)tt*l}) - supj. 06(X(t)) 

for oaoh bounded equlsontlnuous subset X of C(I)» Wo shall ust 

also the following theorem duo to Kuratowaki C9lt Xf (Xn) is a 

decreasing sequence of nonempty olosed bounded subsets of C(I) 

and ^jO^} —> 0 as n —*» oa f than O . X a is nonempty and 
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compact subset of C(I). 

Theorem 4. Suppose that fQi E0f O0)xl—* B is a continuous 

function such that Hf0(tfx) It £ H(tf II x II ) for t >0 and x €Ef 

where B is continuous and monotonically nondecr easing in the 

second variable. Let L: L"0f oa)—*-L0f oo) he a continuous function 

with J^L(s)ds^1f and 9tHofoo)—*»LOfoo) a nondecreasing 

right-continuous function with (pl%)<t for t>0. Furtherf let 

the scalar differential equation 

u# m H(tfu)f u(0) - llx0H 

have a bounded solution u and u(t)^uQ for t^O. Assume in ad

dition that 

oc(f0D:xX3)^«u|I L(t) . c?(oc(X)) 

for any compact sub interval I of lCOfCO) and any XcE bounded 

Then there exists a solution y of the equation 

y' - *0(*,y),
 y ( 0 ) * xo 

satisfying the inequality lly(t) It -* u(t) for every t>0. 

Proof. Let us denote by X the set of all xeCtO.co) such 

that llx(t)H«^u(t) for t>0 and 

Hx(t1) - x(t2)ll ̂  I /t H(sfu0)dsl 

for t . j , t 2 ? 0 . Obviously, 3D is a closed convex bounded and an 

almost equicontinuous subset of CtOfco). 

Put T(X) - sup0 oC(X(t)) for X c <£ . Since T(X1) £ 

^rtJ*) whenever X^cX^, by the corresponding properties of 

oCf T(X) « T(X) - T(convX). If T(X) - 0 then P(t) is 

compact for every t?0, and therefore Ascoli's theorem proves 

that X is compact in Ctbfco). How, let (Xn) be a decreasing 
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sequence of nonempty closed subsets of 95 such that P(Xn) —> 0 

as n — > oo . Let t>0. Since the set ? n
 m *-n\iQ \) ifl ^ieon--

tinuous and sup A t o6(X__('r)) —* 0 as n — * 60 f Ambrosetti's 

theorem proves that cCfo t3(^n^ ~~*' ̂  as n~~* ^° • According 

to Xuratowski's theorem applied to the sequence (Vn) , ̂ Q ^ ? n 

is nonempty compact in CCOftlt hence ^x(t):x S ^ ^ J X - J T
 is com~ 

pact. Consequently, /*V X is a nonempty and compact subset of 
fl.21 ** 

C£0f<30). 

fo apply our fixed-point theorem, let us consider the con

tinuous mapping T defined by 

(Ty)(t) - xQ + ro
if0(sfy(s))ds 

for ycCCOjCO). Modifying the reasoning from the proof of Theo

rem 2.1.2 1103 we infer that TLX3 c X - Let X be a nonempty 

subset of 3£ . T o prove the theorem i t remains to show that 

P(TCX3)^ y ( r ( x ) ) . 

To this endf fix t>0. Let us put Xt - L M X ( e T ) : 0 ^ c*-t}. 

Since L|^Q .£• is uniformly continuousf for any given e -> 0 the

re exists cf » 0 such that It' - t»l<<<r (0^t'f t»&t) implies 

i3C(Xt)|X'(t
#) - L(t»)| -c e . For a positive integer m>t/cT f 

let t m 0-<t.|-<#.# < t m - t be the partition of the interval 

C0ft3 with tA • 1 + t ^ (i « 1f2f...fm). Moreover, let us de

note by Gr̂  (i » 1f2f...fm) a point in 1^ « ̂ -^.i t*4-t such that 

L( ^±) * sup ̂ L(cT):ti--1 -6 S ' ^ t . j J . 

For x€X f we have 

/0 f0(8,x(8))ds - ̂  /t. f0(8,x(s))ds fi 
"•ť 

e*2?i ( ti - t t - 1 ) conv (-Lf^tf^eOht^ <k s - ^ D c 
c ni?i ( t i " tL^-Soar it0tl±»XtM 

and it follows that 
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ccdLXKt)) -oC( -f T* - 0(s ,X(.))d«X€X .) ^ 

. t o t ^ S ^ - t ^ . M m r ( -^n^x^) ) -S 

-ty(ot(X t)) • j £ L(-)d« + ^ V . / - < 6 i ) " L(B))-,(ee(Xt))dB-

- 9 («upicC(X(<J) ) .0^6T^t» + Jgj J ^ ^ o C t t ^ K L ^ ) -

- L(«))da * 9 ( T(X)) + .J l , /.,.*' 9(«CX t))(L( ft) - L(B))d«. 

If ct(Xt) - 0 then g>(oC(Xt)) » 0 and therefore 

oC(TEXl(t)).6 0 » 9 ( 0 ) * y( T(X)). As cC(Xt)>Of 

oc(TLXKt)) * y ( r(X)) + 

• t:£ f * <j.(octtt))e(«J(xt))"1d.*:cp(P(x)) + e t 

and since fc is arbitrary, we obtain oc(T[Xl(t)) 4 3>(T(X)). 

Thus, oc(TtXKt)) * J>(T(X)) for all t2.0. This implies 

n(TtX3) 4 y( T(X))f and, oonsequently T has a fixed point in 

X • The proof is complete. 

R e f e r e n c e s 

11] A. AMHROSBTTI* Un teorema di eslstensa per le equazioni 
differenziali negll spasi di Banach, Rend. Sem. 
Mat. UniT. PadoTa 39(1967), 349-360. 

121 J. BAHAif and K. GOEBELi Measure of noncompactness in Ba
nach spaces, Lect. Motes Pure Applied Math. 60f 

Marcel Dekker, Hew York 1980. 

U31 J. BANAi, A. HAJHOSZ and S. WEDRYCHOWICZ: Some generali
sation of Ssufla's theorem for ordinary diffe
rential equations in Banach space, Bull. Acad. 
Polon. Sci.f Ser. Sci. Math. 29(1981)f 459-464. 

[43 J. DAJTB§t Some fixed point theorems, Comment. Math. UniT. 
Carolinae 9(1968), 223-235. 

C51 J. DANBSS On denslfying and related mappings and their 
application in nonlinear functional analysis, 

- 628 



Theory of nonlinear operators, Axademie-Yerlag, 

Berlin 1974, 15-56. 

Ul K. DBIMLIHG: Ordinary differential equations in Banaeh spe-

ces, Lect. Kotos in Math. 596f Springer-Yerlag, 

Berlin 1977. 

C73 K. GGBBEL and W. RZYMOWSKI: An existence theorem for the 
equation x' • f(tfx) in Banaeh space, Ball* 
Acad* Polon. Sol., Ser. Sol. Math* Aetrenom. 
Phys. 28(1970), 367-370. 

18} M.A. KPACHOCEJlbCKMft n C.r. KPEnH: 0 npHsnnne ycpexaeswi * 
He-iKHeJtHOi MexaHMKe, YcnexM M S T . Hayx 10(1955), 
147-152. 

[9J K. KURATOWSKIt Snr las espaces complete, Pand. Math. 15 

(1930), 301-309. 

1101 V. LAKSHMTKAHTHAM and 3. LEELAx Differential and integral 

inequalities, Yol. 1, Academic Press, Vow York 

1969. 

112] B. RZEPBCKI: On the operator equation in Banaeh spaoes, 

Demonstratio Math. 12(1979), 189-201. 

Cl1l B. RZEPECKI: Some properties of the set of solutions on 
an operator equation in a Banaeh spaeo, Comment. 
Math. 22(1978), 467-478. 

C13I B. RZEPBCKI: On measure of noneompaotness in topological 

spaces, Comment. Math. UniT. Carolinae 23(1982), 
105-116. 

C14I B. RZEPECKIs Euler polygons and Kneser's theorem for solu
tions of differential equations in Banaeh spa
ces, Comment. Math. UniT. Carolinae 23(1982), 
657-669. 

£151 B.ff. SADOVSKII: Limit compact and condensing operators, 
Russian Math. Surreys 27(1972), 86-144. 

(163 A. STOKES: The applioation of a fixed-point theorem to a 

Tariety of nonlinear stability problems, Proo. 

Hat. Acad. Sci. U.S.A.. 45(1959), 231-235. 

- 629 -



L173 J* SZARSKIj Differential inequalities, PfH, Warszawa 1965. 

£181 S. SZUfLAs Some remarks on ordinary differential equations 
in Banaoh spaces, Bull. Acad. Polon. Sci.9 Se>. 
Sci. Math. Astronom. Pnys. 16(1968)9 795-800. 

[191 S. SZUPLA: Solutions sets of nonlinear equations. Bull. 
Acad. Polon. Sci. 9 S6r. Sci. Math. Astronom. 
Pnys. 21(1973)9 971-976. 

l20l S. SZUPLAt Some properties of the solutions set of ordina
ry differential equations, Bull. Acad. Polon. 
Sci.9 Ser. Sci. Math. Astronom. Pnys. 22(1974)9 
675-678. 

[211 S. SZUPLA: Kneser's theorem for weak solutions of ordina
ry differential equations in reflexive Banach 
spaces, Bull. Acad. Polon. Sci., Ser. Sci. Math. 
Astronom. Phys. 26(1978), 407-413. 

Institute,of Mathematics A. Mickiewicz University, Matejki 48/ 
49 § Poznaň 60-769, Poland 

(Ohlatum 17.5. 1983) 

- 630 -


		webmaster@dml.cz
	2012-04-28T09:37:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




