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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,4 (1983)

SUBDIRECTLY IRREDUCIBLE GROUPOIDS IN SOME VARIETIES
J. PLONKA

Abgtract: In one special variety of groupoids we study
free groupolds, subdirectly irreducible groupoids and the lat-
tice of subvarieties.

%ez wordg: Groupoid, subdirectly irreduoible groupoid
variety. ’ ’

Classification: 08A30

O. In this peper we consider only varieties of groupoids
i.e. varieties of type (2) with the fundamental operation x.y
and we accept the terminology from [2). In [3] two varieties
= 2 and 23 of groupoids were considered where = 2 ves defin-
ed by the identities
(1) xx=x
(2) (x.y) 2 = (x-5).5y
(3) =xe(yez) = xoy
(4) (x.y)ey = x.y
and 23 was defined by (1)-(3) and
(4") (x-3)+y = x (see also [2], pp. 394-395).
In [3] it was shown thats

If a groupoid C} belongs to 52 or 23 and the operation
X ¢y depends on both variables in (} then there exist in (}
exactly n n-ary polynomials depending on n variables.
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In [4] all subdirectly irreducible groupoids im =, > and 23
were found.

In this paper we study the join =, v 23. In Section 1 we
prove that Sav = 3 is defined by the identities (1)=(3) and
the identity
(5) ((xey)ey)ey = xo3.

We show that the only subvarieties of 2, v 23 are Z,,
= 30 the trivial variety T i.,e. the variety defined by the i-
dentity x=y and the variety > o defined by the identity x.y = x
(see Theorem 1).

In Theorem 2, Section 1 we describe the free algebras in 2‘2 v
v 23. In Section 2 we f£ind all subdirectly irreducible group-
olds in Z,v & 3¢

Yor a variety K of type (2) we denote by E(K) the set of
all identities of type (2) satisfied in all groupoids from K.
A term @ of type (2) constructed by means of the operatiom .
will be called a mmltiplication term., We shall use the notati-

on (000(:")"-.0)" - x"n

n times

1, Example 1, Let X be a set such that |X|>1, Denote
B = {{a,A):1acAS X%, Consider a groupoid O = (By+) where
{(a,AY+<8’A") = <a,Auia’}>, Then ) satisfies (1)-(4) so
Upe = ,, tut ¢J does not satisfy 49.

Example 2, Let 2, = ({0,1 +2,3%3+) be a cyclic group with
addition modulo 4. Consider a groupoid & =:({0,1,2,3};¢) whe-
Te X,y = 3x+2y. Then (J satisties (1)-(3) and (47) so Q¢ =,
but 1t does not satisfy (4).

Let = be the variety of groupoids defined by (1)-(3) and
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(5). Let o« be an ordinel, A multiplication term & on variables
Xo1XqpeeesXpyene ( 3 <) will be called & reduced iteration

it 9@ is of the form

k k
(6) X, + X% veevx,® where all variables eessXy Aare diffe-
1y 1, 1, Tageeenotyy

rent, 12< 13<...<in, O<kj..4.2 for J=2,s..yR.
Lemma 1, TFor any multiplication term @ there exists a re-

duced iteration of the form (6) such that the identity ¢ =
k.
- 1110 11;' 'oo°x:n belon&s to E(Z).
n

Proof. In fact by (3) we can reduce all open parentheses
standing after a variable in @ . Then we get o =
= (coe(xgex, )eoe)x, Delongs to E(Z). By (2) the order of ve~
1 8 Br

riables x,z,...,x’ is erbitrary and we get @ =

r
- (---(!11'111)'...)-111)'xi2)‘...)xiz'...) xin'...)-an belongs
to E(Z) where 1, = 85, and i,< 13<..0 <1, Now by (1) and (5)

we get the statement of the Lemma,

k2 k
Lemma 2, If two reduced iterations x, » veeeeX, 2 and
2emns < 175, 1

q. q,
xy ozjz-...-xjm are different then the identities (1)-(3) toget-

1 2 m
her with the identity
k k q q
(7) Xy 2'o-.'xn-x -x2¢.o.'1m
1 M, i, T Im

imply one of the following identities: (4),(4), x.y = x.

Proof. If 1.+ §; then multiplying (7) on left by 111 we
get by (3) 1:11- 131 - 111. 1f 1,=], but there exists 1,
re{2,...,n} such that 1r¢{32.....3m} then putting in (7) x11
for all variables different from x; we get by (1)-(3)

T
2 1 -

xi1oxir = x11 or 111- (xir) - 111. f the variables on both si

des of (7) are the same but k.+q, for some 1<r«&n then putting
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x; for all variables different from xir ve get 111-::11_ -
- ‘1,'(‘11,’2' Thus anyway we get one of the identities from the
lemma,

Theorem 1, The lattice of subvarieties of = oonsists of
the varieties T, X, 22, 2'3 and = where T C EZ,C Z o
=,C 23, =, and 2'3 are incomparable and == X,V 23.

Proof, The varieties =, and 23 are incomparable (see Ex-
amples 1 and 2), Obviously any of the varieties T, = , =, 23
is a subvariety of = since any of the identities x=y, x.y = x,
(4),(4") implies (5). Obviously 2c = ,, T € =, T ,€ X,
On the other hand, J. Dudek proved in [1] that P and Z, are the
only subvarieties of = 2 and = 3 and all are different. Thus to
complete the proof it is enough to show that if K is & proper
subvariety of = then K is s subvariety of =, or 2'3. Let

(8) (@ =y)sE(K)\EB(ZX).
k, kn % Iy
1 - . L) - . *e0e® =

By Lemma 1, @ x11112 xinmdy x31sz xJ-sop
= y implies (7) where by (8) the sides of (7) are different.
¥ow by Lemsa 2, K is a subvariety of 2'2 or 2'3.

Example 3. In the set {0,1,23 let us define an operation
@ putting

x+y if x+y£2
x+y=-2 otherwise

Let us consider a groupoid Q] = (£0,1,21%{0,1,233+) where

(11.71> iz Xy =X

(9 x®y =

(x, -11> . <12032> '{
(11 ',1 G xz) otherwige.
Then () satisfies (1)-(3) and (5) so QL belongs to = and G sa~
tisties neither (4) nor (4°).
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Let o« be an ordinal, If a £90,1,2}° we shall denote by
a(k) the k th coordinate of a. Let us denote by p, the element
of £0,1,2Y%  for which p (k) = 1 and p (1) = O for ik, We de-
note by B the set of all ae{0,1,2} having a finite number of
coordinates different from O. Finally let B ={<p,al:
tk<o( ,a€ B,a(k) = 03, '

¥We define a groupoid X e ™ (B«, $°) where

{pysa? 1if k=k,

<pk,.) A <pk p‘1> -{
1 {pysa ‘> otherwise

where a’(1) = a(i) @ P (1)3 ® 1s detined by (9).

Theorem 2. A free groupoid in thé variety = with o¢ free

generators is isomorphic to o‘ﬁgc .

Proof. Let ¥, be the set of all multiplicetion terms omn
variables X ,XjjeccsXgrocey f3<co . Let ~s be a relation in F
defined by the formula @ ~ Ye=>( @ = 3 )e E(Z). A free algeb-
ra with « free generators in = 1is igomorphic to the algebra

Fo = (Lol Yo p
tation in the form @ = 111-212-...-11 +» But this representation

x, % x, 9%
is unique. In fact if ¢ = 111- x“le-...-x1 and @ = x31.132....
n

3+). By Lemma 1 any term ¢ has a represen-

...-xgm wHere the right sides of the last ldentities are diffe-
m .
rent then by Lemma 2 one of the identities (4),(47) or x.y = x

belongs to E(=), which contradicts Example 3.
Bow the mapping h defimned by the formula
k
h([xi1. x:i“"'xinlv) = (p11 ,b?7 , where b(ij) - kj for 24 34n
. n

and b(r) = O for r¢ii,,...,1 } - sets up an isomorphiem of ‘fc

onto &y, . Ip tact h ta 1-1 since the repreésentation from
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Lemma 1 is unique and h is a homomorphism by (1)-(3) and (5).

2, Por a class K of groupoids we shall denote by P(K),
8(K), H(K) and I(K) the classes of all products, subgroupoids,
homomorphio images and isomorphic copies of groupoids from K,
respectively., If {X} je1 18 8 partition of a set X we shall de-
note by e({X;}, ;) the equivalence reletion induced by this par-
tition,

Let us consider the following 6 groupoids

U, = (18334,

G, = ({e,b}3+) where x.y = x for any x,y¢ {a,b}.

(43 = ({a,b,#,33+) where a « s¢,=b, b. %, =a and x.y =x otherwise.
G4 = (ia,b,0, %,33+) where a -2 =b, be3¢,=a and x.y =x otherwise.
%s = (fa,c,2,}3+) where a-,=c, and x-y=x otherwise,

(46 = ({a,b,c,ae.‘,aeaip) where a «3=b, b.2,=a, a.d¢,=
= b -382-0 and x.y=x otherwise.
It was proved in [4] that
(1) a groupoid g_ belongs to 22 and it is subdirectly ir-
reducible 1iff C} is isomorphic to one of the groupoids U}.‘,
Dos @5.

(1i) A groupoid (g. belongs to 23 and is subdirectly irre-
cible 1ff (] is isomorphic to one of the groupoids },, QJ‘Z'
K30 Uye ,

‘ Lemma 3. The groupoid (46 belongs to = , moreover CJG €
<« BP{ U 30 G 5}.
In fact the set S = ({a,b,%,3x{a,D, #,5)\{C 289, 2,01 1s &
subalgebra of (4.3 > (%5. So the algebra %"= (S;+) belongs to
SP {Cgr (45§. Further, a relation
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ese({{< 2,82}, {<v,a>},{<ca,c>,<¢b,e>3, {<e4,a?,
(ayy02%, e, ®,2 , (b, 2,01})

is & congruence in %" ., Pinally, the algebra % /e is isomor-

phic to gs.

Lemme 4. The groupoid (46 is subdirectly irreducible.

Proof. It 18 enough to show that if R is a congruency in
(46 such that [alp#[blp thea R = ¢ where  is the diagonal.
We shall write [x] instead of [x];. In fact, let o€ [a]. Then
b=a- a€1R c-2, = cR a, So bRa - a contradiction. The same
contrediction gives the essumption thet ¢ elbl., If ¢ € [2e,]
then & = asc R a+ 9, = b - a contradiction. If ¢ €[3e,] then
a =a«cRa-a, =c - a contradiction (see the first case).
So [el ={c}. It %, € [a]l then b = a+» %R a+a = & - a contra~
diction. The same contradiction gives the essumption 2¢, € [bl.
It ¢, eloe,] then a = b . 2¢Rb « 22, = ¢ - & contradiction. So
[9&1] = {ae1§. It aeaets] then a = aca R a+ %, = ¢ - & con-
tradiction. Analogously 3e2¢ {bl. Thus R = .

Theorem 3. A groupoid O} belongs to = and it is subdi-
rectly irreducible iff q. is isomorphic to one of the groupoids

Bireees Pgo

Proof. <= . For the groupoids CJfj,e.., (45 the gtatem-
ent holds by Theorem 1, (i) and (ii). For the groupoid Cge the
statement holds by Theorem 1, Lemma 3 and Lemma 4.

Before we prove the necessity we have to show some proper-
ties.

Let O = (G3+).

(111) } € = 1ff the following conditions 1°,2° and 3°

are satisfied.
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1° There exists a partition 16,37 of G such that for
eny 1€ I the set {hj je1 ©f mappings from G, into G, 1s given.
2% The mappings h{ satisfy the following conditions:

i
Vier By =iy Yy 4y oo nf onf = o nds
Vi, gerhiend onf - uf.
3° 1r a€Gy, be Gj then a*b = h.i(a).
The proof is analogous to that of Theorem 3 from [3].

(1v) I2 Q is of the form from (11i), 8 € G, then for eny
1€I one of the following cases holds.

(10) By(e) = a
(1) Bi(a) = b#a, BE(b) = b
(12) ni(a) = b, Bi(b) = &, a#d
(13) hi(a) = b, h:(b) = c, h;'(c) = b, akb, ake, bic

It {n} Py i8 a set of nontrivial congruences in a group-
oid G} such that ».Qs R, = ¢ then the set {RJ .o will be cal-
led a decomposition of Cg . Obviously, if such a deoonpoqition
exists then (J is subdirectly reducible.

Por a set A we shall denote by D(A) the set of all 1-ele-
ment subsets of A.

From now on we assume that a groupoid g = (Gy+) belongs
to = , is subdirectly irreducible and is of the form from (1ii)

Similarly like in [4] (Lemma 1) we can prove

‘Lemma 5. If for any 1,j€1I, hi = id then (} is isomorphic
to G4 or to G,

In view of Lemma 5 in the sequel we shall assume that
(14) 3, grbi+te

Let us put J = {JeI:1G,1>1].
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Lemma 6. |J[= 1,

Proof. By (14) we have |J1> 1, Similarly like in [4] (Lem-
ma 2) we can prove |J] £1, 4

By Lemma 6 we can denote by k the unique element of J.

Put I° = I\{k}. So for any 1€I  we have |G,] = 1. Thus
only mappings ha for J€ I  can be different from the identity.

Lemma 7. If 1,J€I° and 14 then hisnl.

The proof is analogous to that of Lemma 3 from [4].

Let I, = {1€ I :hi#1df. By (14) we have I +4.

Por any 1€ Io we define two relations R; and R" as follows:
& R;b 12f asb or a,b€G,, b = hi(a), and a = Bl(b);
s Blb 121 asb or a,b€ 0, and hi(a) = ni(b).

Similarly like in [4] we can prove that any of R; and ri
is & congruence of .

Lemma 8. PFor any 1eIo we have Riil- @ or Ri* (A

In fact, ‘since |Gyl = 1 for J€I’, 80 it must exist a6 Gy
such that bi(a)#a. Consequently one of the cases (11),(12) or
(13) holds and Ilalnil>1 or l[a]niln.

Lemma 9. Por any 1€ I, we Have Ry =@ or Rl ..

In fact, Ry R' = & since 1f aR,n B'b then a = b or a,be
¢G_ and & = hi(b) = hi(a) = b Thus 1f both R, and B! are aif-
ferent from o then {Ri .Ri} is a decomposition of O} - a contra-
diction. ‘

Lemma 10. If for some i6& I, we have Ri = & , then for

a€ G, exactly one of the cases (10) or (11) holds. If for some

iec Io we have R1 = & , then for a¢ Gk exactly one of the cases
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(10) or (12) holds.

In fact, the case (13) is impossible by Lemma 9. If Ry =
then (12) is impossible, If Rl = @ then (11) is impossible,
2 . 3 .r o
We denote I = fieI :R; =i , IJ = {1€I:R wl.
2 -3 2 .3
By Lemma 8 and 9 we have I = I_uIg and I nIZ = 4.

Lemma 11. If 12 = #, then G is isomorphic to C}s. It
2
I, = ¢ then U} is isomorphic to (5 or ¢,.

Proof. If I = §# then by Lemma 10 and (iii) we infer that
O} satisfies (4) and by (1) and (14), G} is isomorphic %o (..
It Iﬁ = @ then by Lemma 10 and (1i1) we infer that O} satisfies
(4°) and by (i1) and (14), G} is isomorphic to @3 or CJ—4.

Q.E.D.
In view of Lemma 11 from now on we assume that

(15) 24o+13.
i
Denote R, = (%Qg Ry)n (‘.“QI: R™).
Lemma 12, Any congruence class [alnn is either 1-element
or is of the form [a]n = {a,bt where a%b, for any i€ Ig we
i (8}
heve hi(a) = b and hi(b) = a and for any i€ Iﬁ we have h}k(a) =
i
= hk(b)¢ [a]R,\ :
Proof, Por 1e¢ Ig any congruence class [aJRi is at most
2-element. So if 1[laly | > 1 then 1t mus be [al, € [aly -
R, R, R
Consequently if | lalg | > 1 then el = Lalg = {a,b} where
~ '~ p &

a,b< Gy. Moreover for any i€ Ig we have hé(a) = b and hji‘(b) =
= a. Let j¢ Ii. l[a’lnﬁ\ > 1 and [a]Rn = {a,b}. So

(16) n(a) = ni(v).
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By (15) and by the first part of the proof there exists
1€ I such that

(17) h.i(a) = b and hki(b) = 8,

Let us assume that h&(a)e [a]nn and e.g. hi(a.) = b, Then
by (16) and (17) we get h&h;(a) = b, hiha(a) = a,which contira-
dicts 2°. Analogously hg(a.).f: a.

Let us denote R(2) = {R'l , and R(3) = iR} ,
1e12 te1)

Lemma 13, The set Gk contains exactly one 2-element class
of the congruence R~ and exactily one 1-element class of the

congruence R, .

Proof. If R, = then obviously we have a decomposition
i
of namely {R,} v iR since any of these congruen-
¢ ¥ ger? 1e12’

ces is not trivial., If R, 4= @ then by Lemma 12 there exists
a 2-element class of the congruence R, . If there exist two
different 2-element classes [al and (a7, included in G
R, R x
then two congruences e(-([alR } v D(a\Taly )) end
0% ()
e({[a'JRAJ U D(G\[a'JR )) form & decomposition of C} -~ a con-
(2}
tradiction. Denote Q = [a]Rr\. By Lemma 12 it is easy to check
that the relation e - e(-in\ Qv D(Q)u D(G\ Gk)) is a congru-
ence of ('g- + We shall show that
In fact it cannot be G\ Q = # since I>4g and by Lemma 12 1t
must be for je Is. h&(a)éq.
If 1G,\ Q1>1 then eq 1s nontrivial and R(2)v R(B)Ufcq'i
is a decomposition of ] .

Proof. =p of Theorem 3. If any hy is the identity,
then by Lemma 5, (} 1s imomorphic to @, or @,. Otherwise
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by Lemma 6 there exists exactly one ke I such that lel>1 and
(14) holds. If Ig = @, then by Lemma 11, CL-is isomorphic to
U 12 IZ = ¢ then by Lemma 11, O} is isomorphic to Yy or
Cg-4. If (15) holds then by Lemma 13 we can denote by a,b,c
the elements of G, where [a]R,.. = [b]R,., = Ta,b} and [elp = {c}.
By Lemma 12 for any i¢ Ig we have h%(a) = b, hi(b) = a and
bi(c) = . So by Lemma 7 we have |I2| = 1. Let us put I = {1}
and denote by 9t the only element of Gio. Analogously for any

;jsI§ we have by Lemma 12: hi(a) = h%(b) = h&(c) = ¢, So by
Lemma 7 we have |I2| = 1. Put 12 = {3,} and denote by ¢, the
only element of Gjo.

It must be I \]=f.In fact, 1f meI \I and d is the on-
1y element of G, then two congruences e( {{a},a\{aij),
e({{c,d},D(6G)\ {c,d% )}) form a decomposition of ¢ . So Gy =
= {a,b,cl,G\Gk = {2, %,} and G satisfies formulas of mul-
tiplication in (Jz. Thus G is isomorphic to (F¢ where the isc
morphism is defined by denoting elements of G in the above waj

Q.E.D.

By Birkhoff theorem (see [2], p. 124), we have

Corollary 1. A groupoid (] belongs to = ittt G} is isomon
phic to a subdirect product of a family of groupoids f, - ¢,

Corollary 2. A groupoid (} belongs to = iff U} can be
embedded into some cartesian power of (. -

In fact, any of the groupoids (}; - CZLS is a subaligebra

of (4«6.

The groupoid Ul has 5 elements and generates = .

One can ask if there exist groupoids having less elements

and generating =. . The angwer is "yes".
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Let us consider two groupoids % and (Jg defined as fol-
lows:
(g., = ({a,b,c,d};*) where a.d=b, bed=c, ce.d=b, and Xxey=x
otherwise.
Cg-s = ({a,b,c,d}3+) where a.c=a.d=b, bec=bed=a,

a=c.b=d=d.a=d.b, and x-y=x otherwise.

Theorem 4, CJ. is a 4-element groupoid such that
HSP{Q3= = 1ff } 1s isomorphic to (f, or Fge

The number 4 is the least number of elementis of groupoids

generating = .

Proof, Consider in ('517 two congruences R, and R, where
Ry = e({{a,c},{v},{d3}), R, = e({{a},ib,c},{a}}). Then (47/R1
is isomorphic to C}B and C}-{/Rz is isomorphic to (4—5. But RyN
NR, = @ 80 Gy is isomorphic to & subdirect product of %
and Q}S. Consequently {(43. qs}snsy{q,‘t.,} and by Lemma 3 and
Corollary 2 we have HSP {(f,} = X ., The proof that HSP{(J g} =
= = 1g similar - it is enough to consider two congruences
Ry = e({{al,{b},{c,d}}) end R, = e({{a,b},{c},{a3}).

To prove that 97 and C{,’-B are the only 4-element groupoids
generating X let us assume that C} = ({a,b,0,d};.)e = . By
(1i1) we have 1 £|I1£4, If Il = 4, then any G; 1is one element
and by (iii) x+y = x for eny x,ye{a,b,c,d}. Thus gl velongs to
= ° and does not generate = by Theorem 1, The same case holds
1 1I{ = 1.

In general, if C} satisfies x.y = x, then it cannot gene-
rate = . Excluding this case we have the following possibili-

ties for (4- , up to permutations of the elements a,b,c,d:

(cq) O is isomorphic to G}, or G}g-
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Yor I = {1,2}, @, = {a,b,0}, G, = {a} we have possibilities:
(cz) ad = b, bed = a8, xoy = x otherwise, Then (y.e = 3¢
(e3) asd = o, Xy = x otherwiee, Then G e = ,.
(0,) a:d = bed = o and x.y = x otherwise. Then L. e X ,.
Por I = {1,2}, G, = {a,b}, G, = {0,4} we have possibilities:
(65) @« =ad=bd, brocmbdusg, oia=cb=d,das=
= d:b = 0, x.y = x otherwise, Then Qe = ,,
(og) @ac =ad =D, 008 =0b=dand x.3 = x otherwise,
Then (g,e 22.
(o.,) 86 = 8:d = b, beo = bed = &, Xy = X otherwise, Then
Ge =,
(eg) @.0 = a:d = b and x.y = x otherwise. Then (Je =,
Por I = {1,2,33, Gy = {a,b}, G, = {0}, G, = {d} we have
possibilities:
(sg) a:c = b and x.y = x otherwise, Then Qe X ,.
(°10) 8.0 = b, bec = &, x:y = x otherwise, Then Jle X ;.
(¢9) @a.c = acd = b, Xy = x otherwige. Then Yle = ,.
(042) @:c = asd = b, bec = bed = &, Xy = x otherwise,
Then (e = 30

However, by Theorem 1 only in the case (o4), Cg generates =

PFinally, if (y. has less than 4 elements and belongs to = ,
then in its decomposition into subdirect product of subdirectly
irreducible groupoids from = , g 4 8nd @ ¢ cennot occur,

1t only 4, or % occur, then Je = 3 and does not ge-
nerate = .

If only g.g or %5 ocour, then C}e = , and does not ge-

nerate = .

If ¢, and (45 occur, then I is isomorphic both to (#3
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and to %"5 by projections,which is a contradiction since %3

is not igomorphic to q-5.
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