Commentationes Mathematicae Universitatis Caroline

Jerzy Płonka
 Subdirectly irreducible groupoids in some varieties

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 4, 631--645

Persistent URL: http://dml.cz/dmlcz/106261

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SUBDIRECTLY IRREDUCIBLE GROUPOIDS IN SOME VARIETIES J. PRONKA

```
Abstract: In one special variety of groupoids we study Iree groupoids, subdireotiy irreducible groupoide and the lattice of gubvarieties.
Kev words: Groupoid, subdirectly irreduoible groupoid, varie㓎.
Classification: 08A30
```

O. In this peper we consider only varieties of groupoide 1.e. varieties of type (2) with the fundamental operation $x \cdot y$ and we accopt the terminology from [2]. In [3] two varieties Σ_{2} and Σ_{3} of groupoids were conaidered where Σ_{2} was defined by the identitien
(1) $x \cdot x=x$
(2) $(x \cdot y) z=(x \cdot y) \cdot y$
(3) $x \cdot(y \cdot z)=x \cdot y$
(4) $(x \cdot y) \cdot y=x \cdot y$
and Σ_{3} was defined by (1)-(3) and
(4°) $(x \cdot y) \cdot y=x$ (see also [2], pp. 394-395).
In [3] it was mhow that:
If a groupoid of belongs to Σ_{2} or Σ_{3} and the operation $x \cdot y$ depends on both variables in O then there exist in og exactly n n-ary polynomials depending on n variables.

In [4] all subdirectiy irreducible groupoids in Σ_{2} and Σ_{3} vere found.

In this paper we atudy the join $\Sigma_{2} \vee \Sigma_{3}$. In Section 1 we prove that $\Sigma_{2} \vee \Sigma_{3}$ is defined by the identities (1)-(3) and the identity
(5) $((x \cdot y) \cdot y) \cdot y=x \cdot y$.

We show that the only subvarieties of $\Sigma_{2} \vee \Sigma_{3}$ are Σ_{2}, Σ_{3}, the trivial variety I 1.e. the variety defined by the identity $x=y$ and the variety Σ_{0} defined by the identity $x \cdot y=x$ (see Theoren 1).

In Theorem 2, Section 1 we describe the free algebras in $\Sigma_{2} V$ $\vee \Sigma_{3}$. In Section 2 we ind all mubdirectly irreducible groupoide in $\Sigma_{2} \vee \Sigma_{3}$

For a variety X of type (2) we denote by $\mathrm{E}(\mathrm{K})$ the set of all identities of type (2) satisfied in all groupoids from K. 1 torm ρ of type (2) conetruoted by means of the operation . will be called a maltiplication term. We shall use the notati-

1. Bxample 1. Let I be a set auch that $|X|>1$. Denote $B=\{\langle a, A\rangle: a \in A \subseteq X\}$. Conmider a groupoid $\mathcal{G}=\left(B_{3} \cdot\right)$ where $\langle a, A\rangle \cdot\left\langle a^{\circ}, A^{\circ}\right\rangle=\left\langle a, A \cup\left\{a^{\circ}\right\}\right\rangle$. Then \mathcal{O} satiafies (1)-(4) so $\mathcal{y} \in \Sigma_{2}$, but \mathcal{O} doen not atisfy (4°).

Bxample 2. Let $z_{4}=(\{0,1,2,3\} ;+)$ be a cyclic group with addition modulo 4. Consider a groupoid $\mathscr{O}=(\{0,1,2,3\} ; \cdot)$ whe$\mathrm{re} x_{0} \mathrm{y}=3 \mathrm{x}+2 \mathrm{y}$. Then Cy satisfies $(1)-(3)$ and $\left(4^{\circ}\right)$ wo $\mathrm{O} \in \Sigma_{3}$, but it does not matisif (4).

Let Σ be the variety of groupoids defined by (1)-(3) and
(5). Let \propto be an ordinal. A multiplication term $\boldsymbol{\rho}$ on variablea $x_{0}, x_{1}, \ldots, x_{\beta}, \ldots(\beta<\alpha)$ will be called a reduced iteration if φ is of the form
(6) $x_{i_{1}} \cdot x_{i_{2}}^{k_{2}} \ldots \cdot x_{i_{n}}^{k_{n}}$ where all variables $x_{i_{1}}, \ldots, x_{i_{n}}$ are differ rent, $i_{2}<i_{3}<\ldots<i_{n}, 0<k_{j} \leqslant 2$ for $j=2, \ldots, n$.

Lemma 1. For any multiplication term ρ ther exists a reduced iteration of the form (6) such that the identity $\varphi=$ $=x_{1_{1}} \cdot x_{1_{2}}^{k_{2}} \ldots \cdot x_{i_{n}}^{k_{n}}$ belongs to $\mathrm{F}(\Sigma)$.

Proof. In fact by (3) we can reduce all open parenthesea atanding after a variable in φ. Then we get $\varphi=$ $=\left(\ldots\left(x_{g_{1}} \cdot x_{g_{2}}\right) \ldots\right) x_{g_{r}}$ belongs to $E(\Sigma)$. By (2) the order of vem riables $x_{\mathbf{B}_{2}}, \ldots, x_{s_{r}}$ is arbitrary and we get $\rho=$ $\left.\left.\left.\left.\left.=\left(\ldots\left(x_{i_{1}} \cdot x_{i_{1}}\right) \cdot \ldots\right) \cdot x_{i_{1}}\right) \cdot x_{i_{2}}\right) \cdot \ldots\right) x_{i_{2}} \ldots \ldots\right) x_{i_{n}} \cdot \ldots\right) \cdot x_{1_{n}}$ belongs to $\mathrm{E}(\Sigma)$ where $i_{1}=s_{1}$ and $i_{2}<i_{3}<\ldots<i_{n}$. How by (1) and (5) we get the statement of the Lemma.

Lemma 2. If two reduced iterations $x_{1_{1}} \cdot x_{1_{2}}^{k_{2}} \ldots \ldots x_{1_{n}}^{k_{n}}$ and $x_{j_{1}} \cdot x_{j_{2}}^{q_{2}} \ldots \cdot x_{j_{m}}^{q_{m}}$ are different then the identities (1)-(3) together with the identity

$$
\begin{equation*}
x_{i_{1}} \cdot x_{i_{2}}^{k_{2}} \ldots \cdot x_{i_{n}}^{k_{n}}=x_{j_{1}} \cdot x_{j_{2}}^{q_{2}} \ldots \ldots \cdot x_{j_{m}}^{q_{n}} \tag{7}
\end{equation*}
$$

imply one of the following identities: $(4),\left(4^{\circ}\right), x \cdot y=x$.
Proof. If $i_{1} \neq j_{1}$ then multiplying (7) on left by $x_{1_{1}}$ we get by (3) $x_{i_{1}} \cdot x_{j_{1}}=x_{1_{1}}$. If $i_{1}=j_{1}$ but there exiata i_{r}, $r \in\{2, \ldots, n\}$ such that $i_{r} \notin\left\{j_{2}, \ldots, j_{m}\right\}$ then putting in (7) $x_{i_{1}}$ for all variables different from $x_{1_{r}}$ we get by (1)-(3) $x_{i_{1}} \cdot x_{i_{r}}=x_{i_{1}}$ or $x_{i_{1}} \cdot\left(x_{i_{r}}\right)^{2}=x_{1_{1}}$. If the variablea on both eides of (7) are the same but $k_{y} \neq q_{r}$ for some $1<r \in n$ then putting
$x_{1_{1}}$ ror all variables different from $x_{1_{r}}$ we get $x_{1_{1}} \cdot x_{1_{r}}=$ $=x_{1_{1}} \cdot\left(x_{1_{r}}\right)^{2}$. Thas anyway re get one of the identities from the 1eman.

Theoren 1. The lattice of abvarieties of Σ conaiats of the varietien $I, \Sigma_{0}, \Sigma_{2}, \Sigma_{3}$ and Σ where $I \subset \Sigma_{0}, \Sigma_{0} C \Sigma_{2}$, $\Sigma_{0} \subset \Sigma_{3}, \Sigma_{2}$ and Σ_{3} are incomparable and $\Sigma=\Sigma_{2} \vee \Sigma_{3^{\circ}}$

Prool. The varieties Σ_{2} and Σ_{3} are incomparable (seo Examples 1 and 2). Obviously any of the varieties $T, \Sigma_{0}, \Sigma_{2}, \Sigma_{3}$ is a mbvariety of \sum mince an of the identities $x=y, x \cdot y=x$, (4) , (4°) implies (5). Obviousis ic $\Sigma_{0}, \Sigma_{0} \subset \Sigma_{2^{\circ}} \Sigma_{0} \subset \Sigma_{3^{\circ}}$ On the other hand, J. Dudek proved in [1] that I and Σ_{0} are the onis aubvarieties of Σ_{2} and Σ_{3} and all are different. Thus to complete the proof it is enough to show that if K is a proper subvariety of Σ then K is a subvariets of Σ_{2} or Σ_{3}. Let
(8) $\quad(\varphi=\psi) \subseteq E(K) \backslash E(\Sigma)$ 。

By Lemma $1, \varphi=x_{i_{1}} \cdot x_{1_{2}}^{k_{2}} \ldots \cdot x_{i_{n}}^{k_{n}}$ and $\psi=x_{j_{1}} \cdot x_{j_{2}}^{q_{2}} \ldots \cdot \cdot x_{j_{n}}^{q_{m}}$ so $\varphi=$ = Ψ impliea (7) where by (8) the aides of (7) are different. How by Lemea $2, \mathrm{X}$ is a mabvariety of Σ_{2} or Σ_{3}.

Example 3. In the set $\{0,1,2\}$ let us define an operation (1) putting
(9) $x \oplus y=\left\{\begin{array}{l}x+y \text { if } x+y \leqslant 2 \\ x+y-2 \text { otherwise }\end{array}\right.$

Let us consider a groupoid of $=(\{0,1,2\} \times\{0,1,2\} ;$.) where

$$
\left\langle x_{1}, y_{1}\right\rangle \cdot\left\langle x_{2}, y_{2}\right\rangle=\left\{\begin{array}{l}
\left\langle x_{1}, y_{1}\right\rangle \text { if } x_{1}=x_{2} \\
\left\langle x_{1}, y_{1} \oplus x_{2}\right\rangle \text { otherwise. }
\end{array}\right.
$$

Then of aatiafies (1)-(3) and (5) so \mathcal{O} belongs to Σ and \mathcal{O} sam tiafien neither (4) nor (4°).

Let α be an ordinal. It $a \in\{0,1,2\}^{\propto}$ we shall denote by $a(k)$ the k th coordinate of a. Let us denote by p_{k} the element of $\{0,1,2\}^{\propto}$ for which $p_{k}(k)=1$ and $p_{k}(1)=0$ for $1 \neq k$. We denote by B the set of all a $\in\{0,1,2\}^{\infty}$ having a finite mumer of coordinates different from 0. Finally let $B_{\alpha}=\left\{\left\langle p_{k}, a\right\rangle\right.$:
$t k<\alpha, a \in B, a(k)=0\}$.
We define a groupoid $\mathscr{L}_{\alpha}=\left(B_{\alpha} ; \cdot\right)$ where

$$
\left\langle p_{k}, a\right\rangle \cdot\left\langle p_{k_{1}}, d_{1}\right\rangle=\left\{\begin{array}{l}
\left\langle p_{k_{1}}, a\right\rangle \text { if } k=k_{1} \\
\left\langle p_{k_{k}}, a^{\circ}\right\rangle \text { otherwise }
\end{array}\right.
$$

where $a^{\prime}(i)=a(i) \oplus p_{\mathbf{k}_{1}}(i) ; \oplus$ is defined by (9).
Theorem 2. A free groupoid in the variety Σ with \propto free generators is isomorphic to \mathcal{L}_{∞}.

Proof. Let F_{c} be the set of all maltiplication terms on variables $x_{0}, x_{1}, \ldots, x_{\beta}, \ldots, \beta<\alpha$. Let \sim be a relation in F_{α} defined by the formula $\varphi \sim \psi \Longleftrightarrow(\varphi=\psi) \in E(\Sigma)$. A free algebra with α iree generators in Σ is isomorphic to the algebra $f_{\infty}=\left(\left\{[\varphi]_{\sim}\right\}_{\varphi G F_{\alpha} ;} \cdot\right)$. By Lemas 1 any term φ has a representation in the form $\varphi=x_{i_{1}} \cdot x_{1_{2}}{ }_{2} \ldots \cdot x_{1_{n}}$. But this representation is unique. In fact if $\varphi=x_{1_{1}} \cdot x_{1_{2}}^{k_{2}} \ldots \cdot x_{i_{n}}$ and $\varphi=x_{j_{1}} \cdot x_{j_{2}}^{q_{2}} \ldots$ $\ldots \cdot x_{j_{m}}^{q_{m}}$ where the right sides of the last identities are different then by Lemma 2 one of the identities (4), (4^{\prime}) or $x \cdot y=x$ belongs to $\mathrm{E}(\Sigma)$, which oontradiots Example 3 .

How the mapping h defined by the formula
$h\left(\left[x_{i_{1}} \cdot x_{i_{2}}^{k_{2}} \ldots \cdot x_{i_{n}}^{k_{n}}\right]_{N}\right)=\left\langle p_{i_{1}}, b\right\rangle$, where $b\left(i_{j}\right)=k_{j}$ for $2 \leqslant j \leqslant n$ and $b(r)=0$ for $r \notin\left\{1_{2}, \ldots, i_{n}\right\}-$ sets up an isomorphism of f_{α} onto \mathcal{H}_{α}. In lact h fe 1.1 since the representation from

Lemma 1 is unique and h is a homomorphism by (1)-(3) and (5).
2. For a class K of groupoids we shall denote by $P(K)$, $S(K), H(K)$ and $I(K)$ the classes of all products, subgroupoids, homomorphic images and isomorphic copies of groupoids from K, respectively. If $\left\{X_{1}\right\}$ ifI is a partition of a set X we shall denote by e(\{X, $\}_{i \in I}$) the equivalence relation induced by this partition.

Let us consider the following 6 groupoids $y_{1}=(\{a\} ; \cdot)$.
$g_{2}=(\{a, b\} ; \cdot)$ where $x \cdot y=x$ for any $x, y \in\{a, b\}$.
$G_{3}=\left(\left\{a, b, x_{1}\right\} ; \cdot\right)$ where $a \cdot x_{1}=b, b \cdot x_{1}=a$ and $x \cdot y=x$ otherwise.
$g_{4}=\left(\left\{a, b, c, x_{1}\right\} ; \cdot\right)$ where $a \cdot x_{1}=b, b \cdot x_{1}=a$ and $x \cdot y=x$ otherwise.
$\mathcal{O}_{5}=\left(\left\{a, c, x_{2}\right\} ; \cdot\right)$ where $a \cdot x_{2}=c$, and $x \cdot y=x$ otherwise.
$y_{6}=\left(\left\{a, b, c, x_{1}, x_{2}\right\} ; \cdot\right)$ where $a \cdot x_{1}=b, b \cdot x_{1}=a, a \cdot x_{2}=$ $=\mathrm{b} \cdot \mathscr{X}_{2}=0$ and $\mathrm{x} \cdot \mathrm{y}=\mathrm{x}$ otherwise.

It was proved in [4] that
(i) a groupoid O belongs to Σ_{2} and it is subdirectly irreducible iff \mathcal{O} is isomorphic to one of the groupoids \mathcal{F}_{1}, y_{2}, y_{5}
(ii) A groupoid \mathcal{Y} belongs to Σ_{3} and is subdirectly irre'cible iff \mathcal{O} is isomorphic to one of the groupoids $\mathrm{Kg}_{1}, \mathrm{Cg}_{2}$, $\mathrm{r}_{3}, \mathrm{Cg}_{4}$ 。

Lemma 3. The groupoid \mathcal{O}_{6} belongs to Σ, moreover $\mathcal{O}_{6} \in$ $\in \operatorname{HSP}\left\{\mathrm{Cg}_{3}, \mathrm{Cg}_{5}\right\}$ 。
In fact the set $S=\left(\left\{a, b, x_{1}\right\} \times\left\{a, b, x_{2}\right\}\right) \backslash\left\{\left\langle x_{1}, x_{2}\right\rangle\right\}$ is a subalgebra of $\mathcal{Y}_{3} \times \mathcal{O}_{5}$. So the algebra $\mathrm{F}^{2}=(\mathrm{S} ; \cdot)$ belongs to $S P\left\{\mathrm{CH}_{3}, \mathrm{Cg}_{5}\right\}$. Purther, a relation
$\operatorname{exe}\left(\left\{\{\langle a, a\rangle\},\{\langle b, a\rangle\},\{\langle a, c\rangle,\langle b, c\rangle\},\left\{\left\langle x_{1}, a\right\rangle\right.\right.\right.$, $\left.\left.\left.\left\langle x_{1}, c\right\rangle\right\},\left\{\left\langle a, x_{2}\right\rangle,\left\langle b, x_{2}\right\rangle\right\}\right\}\right)$
is a congruence in \mathcal{O}^{2}. Finally, the algebra of $/ \mathrm{e}$ is isomorphic to $\%_{6}{ }^{\circ}$

Lemma 4. The groupoid. \mathcal{O}_{6} is subdirectly irreducible.
Proof. It is enough to show that if R is a congruency in \mathcal{Y}_{6} such that $[a]_{R} \neq[b]_{R}$ then $R=\omega$ where ω is the diagonal. We shall write $[x]$ instead of $[x]_{R}$. In fact, let $c \in[a]$. Then $b=a \cdot x_{1} R c \cdot x_{1}=C R$ a. So bRa - a contradiction. The same contradiction gives the assumption that $0 \in[b]$. If $c \in\left[\mathcal{F}_{1}\right]$ then $a=a \cdot c R a \cdot \mathscr{X}_{1}=b-a$ contradiction. If $c \in\left[\mathscr{H}_{2}\right]$ then $a=a \cdot c R a \cdot x_{2}=c-a$ contradiction (see the first case). So $[c]=\{c\}$. If $\mathscr{P}_{1} \in[a]$ then $b=a \cdot \mathscr{P}_{1} R a \cdot a=a-a$ contradiction. The same contradiction gives the assumption $x_{1} \in[b]$. If $x_{1} \in\left[x_{2}\right]$ then $a=b \cdot x_{1} \mathrm{Rb} \cdot x_{2}=c-a$ contradiction. So $\left[x_{1}\right]=\left\{x_{1}\right\}$. If $x_{2} \in[a]$ then $a=a \cdot a R a \cdot x_{2}=c-a$ contradiction. Analogously $x_{2} \notin[b]$. Thus $R=\omega$.

Theorem 3. A groupoid of belongs to Σ and it is subdirectly irreducible iff \mathcal{O} is isomorphic to one of the groupoids $\mathrm{Cg}_{1}, \ldots, \mathrm{~g}_{6}$.

Proof. $\Longleftarrow . ~ F o r ~ t h e ~ g r o u p o i d s ~ C \mathcal{~}, \ldots, \mathrm{O}_{5}$ the statement holds by Theorem 1, (i) and (ii). For the groupoid OF_{6} the statement holds by Theorem 1, Lemma 3 and Lemma 4.

Before we prove the necessity we have to show some properties.

Let $\mathrm{O}=(\mathrm{G} ; \cdot \mathrm{F}$.
(iii) $\mathcal{G} \in \Sigma$ iff the following condjtions $1^{\circ}, 2^{\circ}$ and 3° are satisfied.
1^{0} There exists a partition $\left\{G_{i}\right\}_{i \in I}$ of G such that for any $i \in I$ the set $\left\{h_{i}^{j}\right\}_{j \in I}$ of mappings from G_{i} into G_{i} is given.
2^{0} The mappings hil satisfy the following conditions:
$\forall_{i \in I} h_{1}^{i}=1 d_{i} \quad \forall_{i, j, s \in I} h_{1}^{j} \circ h_{1}^{s}=h_{1}^{s} \circ h_{i}^{j} ;$
$\forall_{1, j \in I} h_{i}^{j} \circ h_{i}^{j} \circ h_{i}^{j}=h_{1}^{j}$.
3^{0} If $a \in G_{i}, b \in G_{j}$ then $a \cdot b=h_{1}^{j}(a)$.
The proof is analogous to that of Theorem 3 from [3].
(iv) If g is of the form from (iii), $a \in G_{k}$ then for any $i \in I$ one of the following cases holds.
(10) $h_{\frac{1}{i}}(a)=a$
(11) $h_{k}^{i}(a)=b \neq a, h_{k}^{1}(b)=b$
(12) $h_{f}^{i}(a)=b, h_{k}^{i}(b)=a, a \neq b$
(13) $h_{k}^{1}(a)=b, h_{x}^{1}(b)=c, h_{k}^{1}(c)=b, a \neq b, a \neq c, b \neq c$

If $\left\{R_{s}\right\}$ sGS is a set of nontrivial congruences in a groupoid of such that $\int_{A \in S} R_{B}=\omega$ then the set $\left\{R_{R}\right\}_{s \in S} w i l l$ be called a decomposition of O . Obviously, if such a decomposition exists then O is subdirectly reducible.

For a set A we shall denote by $D(A)$ the set of all 1-element subsets of A.

From now on we assume that a groupoid $O=(G ; v)$ belongs to Σ, is subdirectly irreducible and is of the form from (iii)

Similarly like in [4] (Lemma 1) we can prove
Lemma 5. If for any $i, j \in I, h_{i}^{j}=1 d$ then \mathcal{G} is isomorphic to g_{1} or to g_{2}.

In view of Lemma 5 in the sequel we shall assume that

$$
\begin{equation*}
\exists_{1, j \cdot I} h_{i}^{j} \neq 1 d \tag{14}
\end{equation*}
$$

Let us put $J=\left\{j \in I_{:}\left|G_{1}\right|>1\right\}$.

Lemma 6. $|J|=1$.
Proof. By (14) we have $|J| \geq 1$. Similarly like in [4] (Lemna 2) we can prove|J| $\leqslant 1$.

By Lemam 6 we can denote by k the unique element of J. Put $I^{\prime}=I \backslash\{k\}$. So for any $i \in I^{\prime}$ we have $\left|G_{1}\right|=1$. Thus only mappings h_{k}^{j} for $j \in I^{\circ}$ can be different from the identity.

Lemma 1. If $1, j \in I^{\circ}$ and $i \neq j$ then $h_{k}^{i} \neq h_{k}^{j}$.
The proof is analogous to that of Lemma 3 from [4].
Let $I_{0}=\left\{1 \in I^{0}: h_{k}^{1} \neq 1 d\right\}$. By (14) we have $I_{0} \neq \phi_{0}$
For any $i \in I_{0}$ we define two relations R_{i} and R^{1} as follows:
$a R_{i} b$ iff $a=b$ or $a, b \in G_{k}, b=h_{k}^{1}(a)$, and $a=h_{k}^{1}(b)_{;}$
a $R^{1} b$ iff $a=b$ or $a, b \in G_{k}$ and $h_{k}^{i}(a)=h_{k}^{1}(b)$.
Similarly like in [4] we can prove that any of R_{i} and R^{1} is a congruence of g .

Lemma 8. For any $1 \in I_{0}$ we have $R_{i} \neq \omega$ or $R^{1} \neq \omega$.
In fact, since $\left|G_{j}\right|=1$ for $j \in I^{\prime}$, so it must exist $a \in G_{k}$ such that $h_{i}^{i}(a) \neq a$. Consequently one of the cases (11),(12) or (13) holds and $\left|[a]_{R_{i}}\right|>1$ or $\left|[a]_{R^{1}}\right|>1$.

Lemma 2. For any $i \in I_{0}$ we have $R_{i}=\omega$ or $R^{i}=\omega$.
In fact, $R_{1} \cap R^{i}=\omega$ since if $a R_{1} \cap R^{i_{b}}$ then $a=b$ or $a, b \in$ $6 G_{k}$ and $a=h_{k}^{i}(b)=h_{k}^{i}(a)=b$. Thus if both R_{i} and R^{i} are different from ω then $\left\{R_{i}, R^{i}\right\}$ is a decomposition of g - a contradiction.

Lemma 10. If for some $i \in I_{0}$ we have $R_{i}=\omega$, then for $a \in G_{k}$ exactly one of the cases (10) or (11) holds. If for mome $i \in I_{o}$ we have $R^{i}=\omega$, then for acG exactly one of the cases
(10) or (12) holds.

In fact, the case (13) is impossible by Lemma 9. If $R_{i}=\omega$ then (12) is impossible. If $R^{i}=\omega$ then (11) is impossible.

We denote $I_{0}^{2}=\left\{1 \in I_{0}: R_{i}=\omega\right\}, I_{0}^{3}=\left\{1 \in I_{0}: R^{i}=\omega\right\}$. By Lemma 8 and 9 we have $I_{0}=I_{0}^{2} \cup I_{0}^{3}$ and $I_{0}^{2} \cap I_{0}^{3}=\varnothing$.

Lemma 11. If $I_{0}^{3}=\varnothing$, then of is isomorphic to \mathcal{g}_{5}. If $I_{0}^{2}=\varnothing$ then OH is isomorphic to Og_{3} or \mathcal{O}_{4}.

Proof. If $I_{0}^{3}=\varnothing$ then by Lemma 10 and (iii) we infer that of satisfies (4) and by (i) and (14), of is isomorphic to CH_{5}. If $I_{0}^{2}=\emptyset$ then by Lemma 10 and (iii) we infer that of satisfiea $\left(4^{\circ}\right)$ and by (ii) and (14), of is isomorphic to \mathcal{G}_{3} or \mathcal{G}_{4}. Q.E.D.

In view of Lemma 11 from now on we assume that

$$
\begin{equation*}
I_{0}^{2} \neq \varnothing \neq I_{0}^{3} \tag{15}
\end{equation*}
$$

Denote $R_{n}=\left(i \bigcap_{i \in I_{0}} R_{i}\right) \cap\left(i \bigcap_{i \in I_{0}} R^{i}\right)$.
Lemma 12. Any congruence class $[a]_{R_{n}}$ is either 1-element or is of the form $[a]_{R_{\cap}}=\{a, b\}$ where $a \neq b$, for any $i \in I_{0}^{3}$ we have $h_{k}^{1}(a)=b$ and $h_{k}^{i}(b)=a$ and for any $1 \in I_{o}^{2}$ we have $h_{k}^{i}(a)=$ $=h_{k}^{1}(b) \notin[a]_{R_{n}}$.

Proof. For $i \in I_{0}^{3}$ any congruence class $[a]_{R_{1}}$ is at most 2-element. So if $\left|[a]_{R_{n}}\right|>1$ then it mus be $[a]_{R_{i}} \subseteq[a]_{R_{n}}$. Consequently if $\left|[a]_{R_{n}}\right|>1$ then $[a]_{R_{n}}=[a]_{R_{i}}=\{a, b\}$ where $a, b \in G_{k}$. Moreover for any $i \in I_{0}^{3}$ we have $h_{k}^{1}(a)=b$ and $h_{k}^{1}(b)=$ $=$ a. Let $j \in I_{0}^{2},\left|[a]_{R_{n}}\right|>1$ and $[a]_{R_{n}}=\{a, b\}$. So

$$
\begin{equation*}
h_{k}^{j}(a)=h_{k}^{j}(b) \tag{16}
\end{equation*}
$$

By (15) and by the first part of the proof there exdsts $i \in I_{0}^{3}$ such that

$$
\begin{equation*}
h_{k}^{1}(a)=b \text { and } h_{k}^{1}(b)=a \text {. } \tag{17}
\end{equation*}
$$

Let us assume that $h_{k}^{j}(a) \in[a]_{R_{n}}$ and e.g. $h_{k}^{j}(a)=b$. Then by (16) and (17) we get $h_{k}^{j} h_{k}^{i}(a)=b, h_{k}^{i} h_{k}^{j}(a)=a$, which contradicts 2^{0}. Analogously $h_{K}^{j}(a) \neq a$.

Let us denote $R(2)=\left\{R_{i}^{1}\right\}_{i \in I_{0}^{2}}$ and $R(3)=\left\{R_{1}\right\}_{i \in I_{0}^{3}}$
Lemma 13. The set G_{k} containg exactly one 2-element class of the congruence R_{n} and exactly one 1-element olass of the congruence R_{n}.

Proof. If $R_{n}=\omega$ then obviougly we have a decomposition of g , namely $\left\{R_{i}\right\}_{i \in I_{0}^{3}}{ }_{0}\left\{R_{i}^{1}\right\}_{i \in I_{0}^{2}}^{2}$, since any of these congruences is not trivial. If $R_{n} \neq \omega$ then by Lemma 12 there exists a 2-element class of the congruence R_{n}. If there exist two different 2-element classes $[a]_{R_{n}}$ and $[a]_{R_{n}}$ included in G_{k} then two congruences $e\left(\left\{[a]_{R_{n}}\right\} \cup D\left(G \backslash[a]_{R_{n}}\right)\right)$ and $e\left(\left\{\left[a^{\prime}\right]_{R_{n}}\right\} \cup D\left(G \backslash\left[a^{0}\right]_{R_{n}}\right)\right)$ form a decomposition of g - a contradiction. Denote $Q=[a]_{R_{r}}$. By Lemma 12 it is easy to oheok that the relation $Q_{Q}=e\left(\left\{G_{k} \backslash Q\right\} \cup D(Q) \cup D\left(G \backslash G_{K}\right)\right)$ is a congruence of Of . We shall show that

$$
\left|G_{k} \backslash Q\right|=1
$$

In fact it cannot be $G_{k} \backslash Q=\emptyset$ since $I_{0}^{2} \neq \varnothing$ and by Lemma 12 it unst be for $j \in I_{0}^{2}, h_{K}^{j}(a) \notin Q$.

If $\left|G_{k} \backslash Q\right|>1$ then e_{Q} is nontrivial and $R(2) \cup R(3) \cup\left\{Q_{Q}\right\}$ is a decomposition of Cf .

Proof. \Rightarrow of Theorem 3. If any h_{k}^{i} is the identity, then by Lemma 5, \mathcal{O} is isomorphic to \mathscr{G}_{1} or \mathscr{G}_{2}. Otherwise
by Lemma 6 there exists exactly one $k \in I$ such that $\left|G_{k}\right|>1$ and (14) holds. If $I_{0}^{3}=\varnothing$, then by Lemma 11, OYis isomorphic to CJ_{5}. If $\mathrm{I}_{0}^{2}=\emptyset$ then by Lemma $11, \mathrm{Og}$ is isomorphic to Cg_{3} or \mathcal{O}_{4}. If (15) holds then by Lemma 13 we can denote by a, b, c the elements of G_{k} where $[a]_{R_{n}}=[b]_{R_{n}}=\{a, b\}$ and $[c]_{R_{n}}=\{c\}$. By Lemma 12 for any $i \in I_{0}^{3}$ we have $h_{k}^{1}(a)=b, h_{k}^{i}(b)=a$ and $h_{K}^{1}(c)=c$. So by Lemma 7 we have $\left|I_{0}^{3}\right|=1$. Let us put $I_{0}^{3}=\left\{1_{0}\right\}$ and denote by \mathcal{L}_{1} the only element of $G_{i_{0}}$. Analogously for any $j \in I_{o}^{2}$ we have by Lemma 12: $h_{k}^{j}(a)=h_{k}^{j}(b)=h_{k}^{j}(c)=c$. So by Lemma 7 we have $\left|I_{0}^{2}\right|=1$. Put $I_{0}^{2}=\left\{j_{0}\right\}$ and denote by x_{2} the only element of $G_{j_{0}}$.

It must be $I_{0}^{\prime} I_{0}=\varnothing$. In fact, if $m \in I_{0}^{\prime} \backslash I_{0}$ and d is the onIy element of G_{m}, then two congruences $e(\{\{d\}, G \backslash\{d\}\})$, $e(\{\{c, d\}, D(G) \backslash\{c, d\})\}$) form a decomposition of \mathcal{C}. So $G_{k}=$ $=\{a, b, c\}, G \backslash G_{k}=\left\{\mathscr{X}_{1}, \mathscr{P}_{2}\right\}$ and G. satisfies formulas of multiplication in \mathcal{H}_{6}. Thus of is isomorphic to \mathcal{F}_{6} where the isc morphism is defined by denoting elements of G in the above waj
Q.E.D.

By Birkhoff theorem (see [2], p. 124), we have
Corollary 1. A groupoid of belongs to \sum iff of is isomos phic to a subdirect product of a pamily of groupoids $\mathcal{g}_{2}-\mathcal{V}_{1}$

Corollary 2. A groupoid of belongs to Σ iff \mathcal{O} can be embedded into some cartesian power of g_{6}.

In fact, any of the groupoids $\mathcal{G}_{1}-\mathcal{H}_{5}$ is a subalgebra of g_{6}

The groupoid \mathcal{Y}_{6} has 5 elements and generates Σ.
One can ask if there exist groupoids having less elements and generating Σ. The answer is "yes".

Let us consider two groupoids \mathcal{O}_{7} and \mathcal{O}_{8} defined as follows:

$$
\begin{aligned}
\mathcal{O}_{7}= & (\{a, b, c, d\} ; \cdot) \text { where } a \cdot d=b, b \cdot d=c, c \cdot d=b, \text { and } x \cdot y=x \\
& \text { otherwise. } \\
\mathcal{O}_{8}= & (\{a, b, c, d\} ; \cdot) \text { where } a \cdot c=a \cdot d=b, b \cdot c=b \cdot d=a, \\
& a=c \cdot b=d=d \cdot a=d \cdot b, \text { and } x \cdot y=x \text { otherwise. }
\end{aligned}
$$

Theorem 4. $C y$ is a 4-element groupoid such that HSP $\{\mathrm{C}\}=\sum$ iff of is isomorphic to \mathcal{O}_{7} or \mathcal{O}_{8}.

The number 4 is the least number of elements of groupoids generating Σ.

Proof. Consider in $\mathcal{C H}_{7}$ two congruences R_{1} and R_{2} where $R_{1}=e(\{\{a, c\},\{b\},\{d\}\}), R_{2}=e(\{\{a\},\{b, c\},\{d\}\})$. Then \mathcal{G} / R_{1} is isomorphic to $\mathcal{C H}_{3}$ and \mathcal{C}_{7} / R_{2} is isomorphic to \mathcal{O}_{5}. But $R_{1} \cap$ $\cap \mathrm{R}_{2}=\omega$ so Cg_{7} is isomorphic to a subdirect product of Cf_{3} and \mathcal{O}_{5}. Consequently $\left\{\mathcal{G}_{3}, \mathcal{F}_{5}\right\} \subseteq \operatorname{HSP}\left\{\mathcal{G}_{7}\right\}$ and by Lemras 3 and Corollary 2 we have $\operatorname{HSP}\left\{\mathrm{Cy}_{7}\right\}=\Sigma$. The proof that $\operatorname{HSP}\left\{\mathrm{CH}_{8}\right\}=$ $=\Sigma$ is similar - it is enough to consider two congruences $R_{3}=e(\{\{a\},\{b\},\{c, d\}\})$ and $R_{4}=e(\{\{a, b\},\{c\},\{d\}\})$.

To prove that \mathcal{O}_{7} and C_{8} are the only 4-element groupoids generating Σ let us assume that $\mathcal{Y}=(\{a, b, c, d\} ; \cdot) \in \sum$. By (iii) we have $1 \leq|I| \leq 4$. If $|I|=4$, then any G_{i} is one element and by (iii) $x \cdot y=x$ for any $x, y \in\{a, b, c, d\}$. Thus g belongs to $\Sigma \sum_{0}$ and does not generate Σ by Theorem 1. The same case holds if $|I|=1$.

In general, if \mathcal{O} satisfies $x \cdot y=x$, then it cannot generate Σ. Excluding this case we have the following possibilities for of, up to permatations of the elements a, b, c, d : $\left(c_{1}\right)$ of is isomorphic to \mathcal{O}_{7} or \mathcal{O}_{8}.

For $I=\{1,2\}, G_{1}=\{a, b, o\}, G_{2}=\{d\}$ we have possibilities: $\left(c_{2}\right) a \cdot d=b, b \cdot d=a, x \cdot y=x$ otherwise. Then $g \in \sum_{3^{\circ}}$
$\left(0_{3}\right)$ a.d $=c, x \cdot y=x$ otherwise. Then of $\in \Sigma_{2}$.
$\left(O_{4}\right) a \cdot d=b \cdot d=0$ and $x \cdot y=x$ otherwise. Then $g \in \Sigma_{2}$.
For $I=\{1,2\}, G_{1}=\{a, b\}, G_{2}=\{0, d\}$ we have possibilities:
$\left(a_{5}\right) \quad a \cdot c=a \cdot d=b, b \cdot c=b \cdot d=a, c \cdot a=c \cdot b=d, d \cdot a=$
$=\mathrm{d} \cdot \mathrm{b}=0, \mathrm{x} \cdot \mathrm{y}=\mathrm{x}$ otherwise. Then $\mathrm{g} \in \Sigma_{3}$.
(0_{6}) a.c $=a \cdot d=b, c \cdot a=0 \cdot b=d$ and $x \cdot y=x$ otherwise.
Then $g \in \Sigma_{2}$.
(a_{7}) $a \cdot c=a \cdot d=b, b \cdot c=b \cdot d=a, x \cdot y=x$ otherwise. Then of $\in \Sigma_{3}$
(08) $2.0=a \cdot d=b$ and $x \cdot y=x$ otherwise. Then $\mathcal{O} \in \Sigma_{2^{*}}$
For $I=\{1,2,3\}, G_{1}=\{a, b\}, G_{2}=\{c\}, G_{3}=\{d\}$ we have posaibilitiess
(g_{g}) $\mathrm{a} \cdot \mathrm{o}=\mathrm{b}$ and $\mathrm{x} \cdot \mathrm{y}=\mathrm{x}$ otherwise. Then $\mathcal{G} \in \Sigma_{2^{\circ}}$
$\left(c_{10}\right) a \cdot 0=b, b \cdot c=a, x \cdot y=x$ otherwise. Then $\mathcal{G} \in \Sigma_{3^{\circ}}$
$\left(c_{11}\right) \quad a \cdot 0=a \cdot d=b, x \cdot y=x$ otherwise. Then $\mathcal{O} \in \Sigma_{2}$
$\left(c_{12}\right) \quad a . c=a \cdot d=b, b \cdot c=b \cdot d=a, x \cdot y=x$ otherwise.
Then $g \in \Sigma_{3}$.
However, by Theorem 1 only in the case (o_{1}), of generates Σ
Finally, if of has less than 4 elements and belongs to Σ, then in its decomposition into subdirect product of subdirectily irreducible groupoids from Σ, \mathcal{O}_{4} and \mathcal{O}_{6} cannot occur.

If only g_{2} or $\mathcal{C H}_{3}$ occur, then $\mathcal{O} \in \Sigma_{3}$ and does not generate Σ.

If only CH_{2} or Of_{5} occur, then $\mathrm{O} \in \Sigma_{2}$ and does not generate Σ.

If g_{3} and g_{5} occur, then Of is isomorphic both to g_{3}
and to \mathcal{H}_{5} by projections, which is a contradiction since \mathcal{O}_{3} is not isomorphic to Of_{5}.

References

[1] J. DUDEK: A new characterization of groupoids with at most n essentially n-ary polynomials, Bull. de la Soc. Rayale des Sci. de Liège, 48, $\mathrm{n}^{\circ} 9-10(1980), 390-392$.
[2] G. GRÄTZER: Oniversal algebra, Springer-Verlag, 1979.
[3] J. PLONKA: On algebras with n distinct essentially n-ary operations, Algebra Universalis, vol.1, fasc.1(1971), 73-79.
[4] J. PLONKA: Subdirectly irreducible algebras with exactly n essentially n-ary polynomials, to appear.

Institute of the Polish Academy of Sciences, ul. Kopernika 18, Wroolaw, Poland
(Oblatum 12.9.1983)

