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POSITIVE QUASI-MINIMA
Jan MALY

Abstract: The nonnegative quasi-minima ofleuImdx on

a region Q c R® are investigated. The m-capacity of zero sets
(excluding the trivial case) vanishes. The strong minimum prin-
ciple holds uf mZn-1, the Harnack inequality and the strong
Liouville theorem are valid for mZn.

Key words: Quasi-minimum, minimum principle, Harnack ine-
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Classification: 35J20, 35B50

1._Introduction. The standard way of the variational cal-
culus passes through the Euler equations of functionals. M. Gia~
quinte and B. Giusti ([3],[4]) have shown a direct method how
to investigate the qualitative behavior of minima of the func-
tional
P(u) = fn £(x,u(x),Du(x))dx

where () c R® is a bounded domain and f is a "reasonable" Cara~
théodory function, u runs through H]:M({). Their method ext-

ends to the context of quasi-minima. This concept has been in-
troduced by M. Giaquinta and E. Giusti in [3] and further stu-
died by the same authors in ({41, It includes among others so-
lutions of elliptic equations in divergence form (even nonve-
riational, without restrictions concerning the continuity of

coefficients).
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The main objective of [3] and [4) consists im regularity
results., Nevertheless, quasi-minima possess a mumber of further
interesting properties of the kind whioh is typical for soluti-
ons of elliptic equations. Several of them (e.g. removable sin-
gularities, the weak minimum principle, the Liouville theorem)
are discussed in [4]. The validity of the Harnack inequality amd
of the strong minimum principle is stated in [4] to be open.

The present paper is devoted to a partial solution of the
above mentioned problems., We consider (scalar) quasi-minima of
the functional [ |Dul™iax where m>1, We prove that the strong
minimum principle holds provided m>n-1 and the Harnack inequa~
1ity is valid for m2n, By the way, the m-capacity of zero sets
of nonnegative quasi-minima is investigated. Using the Harnack
inequality, the Liouville theorem from [4] is strengthened.

2. Preliminaries., We start with some less obvious termino-
logy and notation. By a continuum we understand a compact comn-
nected subset of R® with at least two points. The k~-dimensional
Lebesgue or surface measure is denoted by Gxe If u is a funo-
tion, we define Z(u) = {x:u(x) = 0}, Sometimes we express points

of B in the form x = (x(1),x(?)) where x“)gn. ) ¢ R'n-'-ﬁ.I-r
AcR®, then A(j) means {x(;’ 1xeAl (§ = 1,2),

Let Qc R® be a bounded set and K c .. be compact. Denote
‘m-cap (K,Q) = inf {!_;llml"dx:ueﬁ(.ﬂ.), u =1 on K}.

The set function m-cap:K > m-cap(K,Q ) is termed a capacity.

2.1. Remarks, a) The domain of the capacity can be ext-

ended to more general sets than compacts, see [1]l. We shall not
need this fact.
b) The Hausdorff dimension of sets of m-capacity zero is

- 682 -



less or equal to n-m (see [101). In particular, if m>n-1, them
every coantinuum im Q c R® has a positive m-capacity.

Let us O ~> R be a function and Q2 1, We say that u is
s G-minimum of [ | Dul™ax on Q. it uenl;:(,ﬂ.) and for every
open set Uc c & and fumction v¢ 31;:(.0.) with v = u on 0\U

the imequality
J‘u\m\‘axso I

holds. If the constant Q is not specified, we say “quasi-mini-
mum". The collection of all nonnegative Q-minima (qxia.i—minina)
of [1Dul®ix on © 1s denoted by Q3(2,Q) (QF(R)).

We mention some properties of quasi-minima proved in I[4].

2.2, Proposition. Let us be a quasi-minimum of [ |Dul™ax
on 0. and Q'c c £. be an open set. Then there is v& C°**(Q’)
(e €10,1L) such that u = v a.e.

2.3+ Remark, In what follows, by quasi-minima we under-
stand their contimuous "representatives™, which is justified
by 2.2,

2.4, Proposition (weak minimum principle)., Let u be a qua-
si-minimum of [ |Dul™dx om R and 2‘c c Q) be an open set.
Then

inf u = inf u, sup u = sup u.
o - Xvig Qr Q!
3. Smallness of zero sets. In this section Q. c R® will

be a bounded region.
3.1. Lemms. Let OshueQy(Q,Q). Then w Z(u) = O.

Proof: Let P ¢ O be the smallest closed set such that
u>0 a.e. on N \P, It P = J we are through., Suppose z € dFn
nQ . Let B,cc Ll be a ball with center at z. There are
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r,h >0 and disjoint balls B, ,Bzc Bo with radius r such that
@p(Byn2(u))>0

and u>h on B,. Choose a co-ordinate system such that (0,0) is
a center of By and (1,0) is a center of By. Denote M = Z(u)n B,.
Por every -el(z) and xe N, k >1/h put

@(s) = sup {t €l-r,1(:(t,8)c B AZ(W)},
¥y (8) = inf {¢ clg(s),1[su(t,s) > 1/x1,

Obviously, @, y, are measurable, ue® = 0, u o Yy = 1/k and

Ty — @ . Por every 351(2) we have

¥ (8)
14( | 2 Kiduct, ) lat)® <
@(s)

% ®
& Cyy(e) = 9(8)™ "™ [sfs) | Du(t,m)| Mat.

Let v € S5 (f).) be nonnegative, v = 1 on B,. Denote

Uy ={x e Q sku(x)< v(x)}.
By the quasi-minimum property of ku we have

[l *e B L P _&bk'lml'dxéq fy ) ovias 4
4 Q f 1pvi®ax,
However, from the monotone convergence theorem we deduce
fumhlfk -gl1™is - + 0
which is a contradioction.

3.2. Theorem. Let OkueqQ}(0,Q). Let KcZ(u) be a com-
pact set. Then m-cap(K,Q) = 0.
Proof: Pind ve D(Q), v =1 on K. Let ke N. Denote
Yy = v - min(ku,v),
Uy = {xefl:ku(x)< v(x)3.
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Although v, need not belong to (LR), by & usual regularisa-
tion technique we obtain

m-cap(K,0L) < j;z. | kalmdx.

Prom the quasi-minimum property of ku it follows

(n-cap(k,0))' /B¢ ( [ 1Dw 1"ax) /™ &

= ( fu"lnv - Dkulmdx)”"é(fuhl Dvi®ax)'/m 4 ( J&L)nkul"di)‘/"é
& (1 + Q"M fuhlnvl“'dx)‘/“.

By 3.1
@o( Q) U) =0
and hence

m-cap(K,D) 4 c ipt fu‘.\Dvlmdx = 0.

3.3. Remark, Treating a more general concept of capacity
(cf. 2.1.8) we can simply say "m-capacity of Z(u) is zero", U~
sing 2.1.b we conclude that the n-p-dimensions? - ~3~~*

sure of Z(u) is zero for each p< m.

3.4, Lemma. Let ue QT(.O.), Z(u)# P. Then Z(u) contains a

continuum,

Proof: Choose z €Z(u). Let B be an open ball with ze¢Bcc
cc S . Denote by K the component of the set Z(u)nB cont-
aining z. Assume K = {z}. Then (c¢f. [2]1, Theorem 6.1,23) there
is an open set U such that ze UC B and u>0 on O9U, which con-
tradicts the weak minimum principle (2.4).

3.5. Corollary. Let 0z ueQy(Q), m>n-1. Then Z(u) = ¢.

Proof: It follows from 2.1.,b, 3.2 and 3.4.

4, The strong minimum principle. In this section Q¢ R®
will be a region.



The classical strong minimum principle says that every
nomnegative harmonic function on Q. vanishes identically provi-
ded 1t vanishes at some point. This result has been extended
to more general elliptiec equations of the secomd order by E.
Hopf [61. For further comments we refer to [5].

We present a stirong minimum primciple for quasi-minima of

J 1pul™ax provided m>n-1. For m>n-1 see 3.5. This section

is devoted to m = n~1, The case m<n-1 remaims open.

4.1. Lemma, Let K c O be a compact set with w,k(!)>o0.
Then there is a closed set Fc x(” and a contimuous mapping f:

n-1

sP — R such that graph fcK and r>0.

Proof: Choose & &30, wK{')[, We shall construct e se-
quence {Kk} of compact sets by induction. Put K, = K. If K, 1s
defined, we see there are compact sets xk',cxk. J = 1....,pk.

-k (1)
such that diam H, 44277, the sets By 3 (J = 1,c..,py) ave
pairwise disjoint and
e GOSN W Eh<2Te
Put
K1 = Ef Hk.j‘
The imtersection Q K, is the graph of a mapping with the de-

sired properties.

4.2, Theorem, Let 0z ueQ}(£,Q), m = n-1, Then Z(u) = #.

‘ Proof: Suppose Z(u)s @, By 3.4 there is a continuum K ¢
c Z2(u). Making a suitable choice of the co-ordinate system we
may suppose 4 x(‘)> O. According to 4.1 there is a closed set
Pc K“) and a continuous mapping f:F-—> Rn"'l such that («1!>o
and graph fc Kc Z(u). Put
R = & dist (80 ,graph 1)
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and
0’ ={x el aist(x,graph £) <R3,

Piad ve D(N) with v = 2 on 0’. Denote 8 = {x6 8™ 11 Ixl = 13,
Defime & mapping y:¥=x8x[0,R1—> Q' vy

y(t,8,r) = (t,2(%) + rs).
Denote’
u, = min(2%,v),
U =ix € Q su (0) < v(2)3,

b = ¥, B = N Ay
(kz1). There is Je ¥ and a set Mc F»'S such that @, 1M>0 and
for every (t,s)e M and k> j the inclusion
[1,2cu 0 v ({t3xis1x(0,R])

holds. Then for (t,s)e M and k > j we have

1 ¢ Jieiatmino 1)z, Do © ¥\ &

We shall use subsequently the Holder inequality, the change of
variables for fixed t and finally the quasi-minimum property of
2%u to obtain
n-1 n-1
(up ™" £ ( f&lnukovldtdau) 4

-2 n-1,, -1 n-2
4 ‘[P,, ™% |Du, « v 17" atdsar( fP,.,r atdsar)™~c 4
-1 n-2 n=1
e(fﬁ r~' atasdr) fu.‘l Du, | ™ lax <

< o( f;, =~'atasar)™? falm\““u.
3

Since by 3.1
@nl Q) V) & @y Z(u) = 0,
we have
n-1
1;.: fu.,‘ pvi*lax = 0
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and thus
1 _[P* r~Vatdsdr = + 0.

Consequently, the Cesar sums
-1

! S, As™ AT

dtdsdr
also tend to infinity. By 2.2 there are constants 64>0,cC €
€ JO,1[ such that for every (t,s,r)€ P, we have

la( ¥ (t,r,8)) - u(y(t,s,0))| & c11.-°c

which implies

rz (2-1:-1 °;1 )1/oc .

Hence for k> j we obtain

-1
f Ar dtdsdrﬁczf 2kt The rdr £ o5k,

which is a contradiction.

5. The Harnack ineguality. Let Q, f'c R® be regions,
N’ccQ . Then there is a constant ¢ such that for every non-

negative harmonic function u on L we have

5?’;; u£o ig.g .
This property of the Laplace equation is called the Harnack i~
nequality. It has been generalized to more general ellipiic e-
quations of the second order by J.Moser (7], J. Serrin [8] and
N..‘.';. Trudinger [9]). For further informations and comments see
£53.

We shall prove the Harnack inequality for quasi-minima of
J | Dul™ax provided mZ n. The case m<n remains open.

In what follows, Bg,, denotes the open ball with center at

the origin and diameter @ and Sga its boundary (sphere).
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5.1, Lemma. Suppose mzn, Q>1, R>0, Then there is r>0

such that for every ué Q)(B,p,Q) we have

pu£2 inf u,

-%w By
Proof: Pind vcﬂ)(sz), v = 1 on Bg. Denote I =

- melelmdx. We shall use the following slight modification
of the Sobolev imbedding theorem: There is cq4> 0 such that,

m m

(ogr " o, j:Sq I Dwl™a @ _4(x)

for every we¢ H' "(81). By a homothety argument we obtain for
every © >0 and we g '"(39 )

(oa: w)R< o4 @m-n-ﬂ fﬁol owi® e q(x)e

Pind LN ,*>0 such that
R
m m n-m-1
2 c1QIéca<-f’; ®© dgo.
Consider u< Q)(B,;,Q). Demote

a = inf u, b = sup u,
B, n

A = min(u,b),

U = {x€B,p,u(x)< bv(x)}.

By the weak minimum principle 2.4 for every @ € [r,R] there are
YeZ€ SS" with u(y) = &, u(z) = b. We have
(b-8)"¢ ¢ @™ L 1 RIMa @ ,(x) =

59

= 01 ?m-n+1 f%nu ‘m‘md éﬂ.n_1 (x) .

Using the quasi-minimum property of u we obtain
R -
(a4 ( [ @ P ™ (b-a)ap) /™ <

£(oy f lDu\md;)1/'é(c.‘Q]t'llvalmdxﬂ/" “
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£ (eaQD) ' ™ps oy,
so b&2a,

5.2. Theorem. Let N, 0’ c R® be regions, N'cc N,

Assume m2n, Q> 1, Then there is a constant ¢>0 such that
sup u£c inf u
n’ Q!

for every ue QT(.Q »Q).

Proof: It follows from 5.1 by the usual "chaining argument",

see e.g. [5]1, Theorem 2.5,

5.3, Corollary (the Liouville theorem). Suppose m>n.

Then every u< Qi‘(n") is constant.

Proof: It is easy to see that the oclass Qf(Rn,Q) (Q is
fixed) is invariant under a homothety. Hence the ratio r/R from
5.1 does not depend on R and every ue Q(R",Q) is bounded by

2u(0). Now we can use [4], Theorem 4.4.
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