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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 
24.4 (1983) 

POSITIVE QUASI-MINIMA 
Jan MALY 

Abstract; The nonnegative quasi-miniaa of J | Dulmdx on 
m region H c R n are invest igated. The ra-capacity of zero se t s 
(excluding the t r i v i a l case) vanishes. The strong minimum prin
c ip le holds uf m 2" n-1 , the Harnack Inequality and the strong 
Liouvi l le theorem are va l id for m>n. 

Key words: Quasi-minimum, minimum principle , Harnack ine 
qual i ty , capacity. 

Classif icat ions 35J20, 35B50 

1 • Introduction. The standard way of the variational ca l 

culus passes through the Euler equations of functionals. If. Gias

quint a and E. Giusti (L3J-L4-I) have shown a direct method how 

to invest igate the qual i tat ive behavior of minima of the func

t ional 

*(u) - J a f (x fu(x) fI>u(x))dx 

where ilc R a is a bounded domain and f is a "reasonable" Cara-

th^odory function, u runs through HJl»™(H). Their method ext

ends to the context of quasi-minima. This concept has been in

troduced by If. Grlaquinta and E. Giusti in C31 and further stu

died by the same authors in L-Vl. It includes among others so

lutions of elliptic equations in divergence form (even nonva-

riatlonal, without restrictions concerning the continuity of 

coefficients). 
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The main objective of 13] and t4J cone is te in regularity 

results. Wevertheleso, quasi-minima 0000000 a number of farther 

interesting properties of the kind whioh is typical for ooluti-

one of elliptic equations. Several of them (e.g. removable oin-

gularities, the weak minimum principle, the Liourille theorem) 

are discussed in L4-I. The validity of the Harnack inequality and 

of the strong minimum principle is stated in £41 to be open. 

The present paper is devoted to a partial eolution of the 

above mentioned problems. We consider (scalar) quasi-minima of 

the functional JlDulndx where m > 1 . We prove that the strong 

minimum principle holds provided m>n-1 and the Harnack inequa

lity ie valid for m>n. By the wayt the m-capacity of zero sets 

of nonnegatlve quasi-minima is investigated. Using the Harnack 

inequality 9 the Liouville theorem from 143 ie strengthened. 

2- Preliminaries. We start with some less obvious termino

logy and notation. By a continuum we understand a compact con

nected Bubset of R n with at least two points. The k-dimensional 

Lebeegue or surface measure le denoted by u^. If u ie a func

tion, we define Z(u) »-tx:u(x) • Ol. Sometimes we express pointo 

of Rn in the form x « ( x ( 1 ) . x ( 2 ) ) where x ( 1 > € R f x^ a J 6R n "\ i f 
AcRn, then k^ means {x^^ ixcAl (3 - 1,2). 

Let Jdc Rn be. a bounded set and K c SL be oompaot. Denote 

m-cap (K9SX) - inf { L I Dul^dxtu € 2KIL), u - 1 on K}. 

The set function m-cap:K v—> m-cap (£,.&) la termed a capacity. 

2*1* Raaarke. a) The domain of the capacity oan be ext

ended to more general sets than compacts, see 111. We ahall not 

need this fact. 

b) The Hauedorff dimension of sets of m-capacity aero ie 

682 



l e s s or equal to n-m (see 110.)). In particular, i f m>n-1 f then 

tTtry continuum U H c Rn has a pos i t ITS m-capacity. 

Let u: £L —> R be a function and Q £ 1. We say that u i s 

a Q-ainisMBi of / I Dul*dx on IL i f uCH^CQ. ) *»* -tor STery 

open set u* c c SL and function T C H J ^ * ( X L ) with T « u on JiAtf 

the inequality 

.LlDttl"dx^Q LlDrl*dx 

holds. I f the constant Q i s not speci f ied f we say "quaai-mini-

mumH. The co l l ec t ion of a l l nonnegatiTt Q-minima (quasi-minima) 

of JlDulmdx on SL i s denoted by QJUL ,Q) (Q*(JCL)). 

We mention some properties of quasi-minima proTtd i n 143. 

2 .2 . Proposition. Let us be a quasi-minimum o f / l D u l n d x 

on SL and H ' c c i l be an open s e t . Then there i s TC C0fCC(.Q.') 

(oc € J0f1C) such that u * T a .e . 

2*3» Remark. In what fol lows, by quasi-minima we under

stand their continuous "representatives", which i s j u s t i f i e d 

by 2 . 2 . 

2*4« Proposition (weak minimum princ ip le ) . Let u be a qua-

fli-minimum of J lDulmdx on SL and SL§ c c SL be an open s e t . 

Then 

inf u * inf u, sup u » sup u. 
SL9 d.0.' XX* dfl.' 

3 . Smallntss of zero s e t s . In th i s sect ion SL c Rn w i l l 

be a bounded region. 

3»1- Lemma. Let 0 +u6Q™(H fQ). Then ja Z.(u) » 0. 

Proofs Let F c SL be the smallest closed se t such that 

u > 0 a .e . on Si \ F. I f F » 0 we are through. Suppose ze d¥r\ 

n i l • Let It c c Si be a ba l l with center at z. There are o 
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r,h>0 and disjoint balls B1,B2cB() with radius r suoh that 

fia(B1r.Z(u))^0 

and u > h on Bg. Choose a co-ordinate system suoh that (0,0) is 

a center of B.j and (1,0) is a center of B2. Denote M « Z(u)nB .j« 

For every i6M^ 2 ) and kel t k>1/h put 

<y(e) m sup-vte3-.rt1[i(tts)cB0nZ(u)}t 

tfk(s) - inf *t c3<}<s)tUtu(t,s)£ 1A?. 

Obviously, 9, ipk are measurablet u-J>« 0, u o f ^ • 1/k and 

Y k —* ¥ * *or • T e r3 r • € * we ^aT# 

T4&) 
1*( / ktDu(tts)ldt)

Bl-S 
<$>(S) ^ ( & ) 

*(y k(s) -g^s))*"
1** /fc) lDu(tts)l

Bldt. 

Let • eSS(H) he nonnegative, • « 1 on BQ« Denote 

Uk --(x eil sku(x)--:v(x)3. 

By the quasi-minimum property of ku we have 

^ ^k • ?l1~**s < 4^k* t l > t t , i l d x*Q 4 f c
l l h r ,"d x * 

-f* Q f lDv!mdx. 
'XL 

However, from the monotone convergence theorem we deduce 

/M(a
l*k-<?l1"ad«-> + 0° 

which is a contradiction. 

3*2. Theorem. Let 0 «£u£Q™(fi tQ). Let KcZ(u) be a com

pact set. Then m-cap(K,XL) « 0. 

Proofs Find • 6 3) (XI)t • - 1 on K. Let kcH. Denote 

•k » • - ndn(ku.v) t 

0 k »<x€Xl:ku(x)--v(x)J. 
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Although v^ need not belong to o9(H)» by a usual regulariza-

tion technique we obtain 

m-cap(K,XL ) 4 / I Dv^^dx. 
SL J-

From the quasi-minimum property of ku it follows 

(m-cap(Kfil))
1/m^( 4 t D Y k l

m d x ) 1 / m « 

-* ( f iDv- Bku)mdx)1/m-*( f !Dvlmdx)1/m + ( f.jDkulmdx)1/m^ 

-* (1 + Q1/m)( L lDvimdx)1/m. 

By 3.1 

and hence 

m - c a p ( K , H ) . é c inf JJ,lDvImdx » 0. 

3*3. Remark. Treating a more general concept of capacity 

(cf. 2.1.a) we can simply say wm-capacity of Z(u) is zero". U-

sing 2.1.b we conclude that the n-p-dimensiona1 T*—*«--• 

sure of Z(u) is zero for each p<m. 

3*4. Lemma. Let u£Q m(il) f Z(u)4:0. Then Z(u) contains a 

continuum. 

Proof; Choose z€Z(u). Let B be an open ball with z c B c c 

c c DL • Denote by K the component of the set Z(u)nf cont

aining z. Assume K * *zy. Then (cf. £23, Theorem 6.1.23) there 

is an open set U such that z e U c B and u > 0 on 3U, which con

tradicts the weak minimum principle (2.4). 

3*5. Corollary. Let 0 =£ u€ Qm(D,), m>n-1. Then Z(u) *> 0. 

Proof: It follows from 2.1.b, 3«2 and 3.4. 

4. The strong minimum principle. In this section H e Rn 

will be a region. 

- 685 -



The olassioal strong minimum principle says that erery 

nonnegatiTe harmonic function on XL Tanishee identically pro Ti

ded it Tanishes at aome point* This result has been extended 

to more general elliptic equations of the second order by B. 

Hopf £6-3. Por further comment• we refer to C5J. 

f e present a strong minimum principle for qua si-minima of 

/(Dul^dx proTided m>n-1. Por m>n-1 see 3.5. This section 

is deToted to m * n-1. The case a<n-1 remains open* 

4*1* Lemma. Let K c XL be a compact set with (4^K^ '*Q* 

Then there is a closed set P C K " ' and a continuous mapping ft 

tP —> Rn~ auoh that graph fcK and (4^ P>0* 

Prooft Choose £. € 10, (OjK^C . We 0hall construct a 0*-

quence i&Jl of compact sets by induction. Put K^ » K. If K^ --»• 

defined, we see there are compact sets H^ jCK^, j * 19...»P^» 

ouch that diam H^ .^2""k
f the sets H£ I (3 - 1».-*»Pk) are 

pairwise disjoint and 

«*, (K<1)N y 4]\)<2-H . 
Put 

*k+i - y **9y 
The intersection O Kk ie the graph of a mapping with the da-

aired properties* 

4*2. Theorem. Let 0 =£ u €Q*(X1 ,Q), m « n-1. Then Z(u) » 0. 

Proof: Suppose Z(u)4»0. By 3.4 there ie a continuum K c 

c Z(u). Making a suitable choice of the co-ordinate system we 

may suppose (i^ K * * ' T 0* According to 4.1 there ie a closed sot 

F c r ' and a continuous mapping f:P—> Rn auoh that (**9>0 

and graph fcKcZ(u). Put 

B - y dist ( 8il ,graph f) 
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aad 

&' «Cx€ .Q. idiat(x fgpaph f ) < R ? . 

f iad • 6 3) ( i i ) with • - 2 oa Jd'. Denote S - ixe a*"1! I x\ • 1?. 

Defiae a mapping y j f x S x t O f R 3 —> H' by 

T ( t f a , p ) - ( t f f ( t ) + pa) . 

Denote* 

ttj. • mia(2kttfr)t 

0 k • -tx 6 JQ. ittk(x)< r(x)3 f 

A* - T" 1^)* pk - V ^ + l 

(k.2-1). Thepa I f j c l a a d a se t Mc f x S auoh that ("u^i 1 ^ 0 *»* 

fop every ( t f B ) e M and k> j the inc lus ion 

l l ^ c ^ o y « t i x i a l x C O f R ] ) 

holds. Then fop ( t f s ) € M and k > j we have 

1 * ^«t^{BUCO fRl)nPk
l l ) t tk • r » «^. 

We shall use subsequently the Holder inequality, the ohange of 

variables for fixed t and finally the quasi-minimum property of 

2*tt to obtaia 

( ( n ^ M ) * - 1 & ( / p I Diî  * Y I dtdsdp)11-1 ^ 
«e> 

4 L r11-2 lDu,, . v 1 -~ 1 dtdedrC f r~1 dtd-dr)-"2 6 

&<L r - 1 dtdsdr ) a - 2 L i D i ^ l ^ d x 6 
•it, - * 

« Q < / D r - 1 d t d s d r ) - - 2 L lDrl n - 1 dx. 

Since by 3.1 

<"n( Q V -» (*n Z(u) " °» 
we have 

lim L l D v ^ d x - 0 
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and thus 

1J« J-p r~1 dtdsdr « + oo . 

Consequently, the Cesar sums 

k"1 V V 1 d t < U d r 

also tend to infinity. By 2.2 there are constants c . , > 0 , cC € 

i € J0,1C such that for every (t,s,r)€ Pk we have 

lu(T*(tfrfs)) - u ^ t . s . O ^ U c - j r
0 0 

whioh implies 

r r ( 2 - k - 1 c 7 1 ) 1 ^ . 

Hence for k > j we obtain 

IA>AJ"1 dtd8dr* e2 ^(a-fe-ie-i)i A
 r"1 to- c3k« 

whioh is a contradiction. 

5» The Harnack inequality. Let jQ., D/c Rn be regions, 

SL' c c H • Then there is a constant c such that for every non-

negative harmonic function u on XL we have 

sup u ^ o inf u. 
XI' XL' 

This property of the Laplace equation is called the Harnack i-

nequality. It has been generalized to more general elliptic e-

quations of the second order by J.Moser L7J, J. Serrin [8J and 

N.S. Trudinger L93. For further informations and comments see 

153. 

We shall prove the Harnack inequality for quasi-minima of 

J lDu\mdz provided m£ n. The case m< n remains open. 

In what follows, B/~> denotes the open ball with center at 

the origin and diameter a> and S^ its boundary (sphere). 
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5*1« ktaaa. Sup post ni2rnf Q>1 f R>0. Thtn thtrt i t r > 0 

such that for tTtry u( Q^BggtQ) wt haTt 

tup u£2 inf n. 
K ** 

Proof i Find T c Sb (B^) f T • 1 on B-̂ . Dtnott I « 

• fB lDrlmdx. Wt shall ust tht following slight Modification 

of tht SoholtT imhedding theorem: There i t c1 > 0 such that, 

(ogc w)m
85c1 f$ JDw^dft^^x) 

for tTtry wc H , a (S . j ) . By a homothtty argument wt obtain for 

tTtry «> > 0 and wg. H 'm(Srt> ) 

(oec w)Bá o^-1--*1 LI DwlB dfí-.d). 

Find C2»r>0 such that 

2*0.^1-* c* * £ * go a * 1 dp 

Consider uc Q+(B2R»Q^# D e n o t e 

a • inf nf b • sup uf 

tt • min(ufb)f 

u* « {x«B2Rfu(x)< bT(x)J. 

By the wtak ndninaua principle 2.4 for eTery p € trfR.3 thtrt art 

y f*€ Ŝ  with u(y) « af u(z) • b. Wt haTt 

(b-a)m-£ e, ?»-n + 1 4 I B8l"d ^ (x) « 

"°1?*"a*1 V u l D U , m d < U n - l C X ) # 

Using the quasi-minimum property of u we obtain 

o2(b-a)<,( .4Rf.l**"1<b-.)'dj»)1/" * 

^ ( o , J"7i lDuJ-ax)1 /- i(C lQ J^lDbTrdx)1/- ^ 
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^ Q D ^ ^ C g b , 

so b*2a. 

5.2. Theorem. Let R f Si' c R n be regions, Jl'c c H , 

Assume m£n f Q>1. Then there is a constant c>0 such that 

sup u ̂  c inf u 
nf XL' 

for eTery u€.Q™(ilfQ). 

Proof: It follows from 5.1 by the usual "chaining argument", 

see e.g. L529 Theorem 2.5. 

5«3. Corollary (the LiouTille theorem). Suppose m>n. 

Then eTery u€Q®(Rn) is constant. 

Proof: It is easy to see that the olass Q+(Rn
fQ) (Q is 

fixed) is invariant under a homo the ty. Hence the ratio r/R from 

5.1 does not depend on R and every u€Q°(Rn
fQ) is bounded by 

2u(0). How we can use 143, Theorem 4*4. 
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