Stanisław Szufla An existence theorem for the Urysohn integral equation in Banach spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 19--27

Persistent URL: http://dml.cz/dmlcz/106276

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

25,1 (1984)

AN EXISTENCE THEOREM FOR THE URYSOHN INTEGRAL EQUATION IN BANACH SPACES Stanisław SZUFLA

<u>Abstract</u>: The paper contains an existence theorem for L_gsolutions of the Urysohn integral equation, where L_g(D,X) is a generalized Orlics space over a Banach space X. For the case when X is finite dimensional and \mathcal{P} is a usual N-function, our theorem reduces to some results from Ch. IV of [4].

Key words: Urysohn integral equations, Orlics spaces, measure of non-compactness.

Classification: 45N05

Let X be a separable Barach space and let D be a compact subset of the Buclidean space \mathbb{R}^{m} . In this paper we shall present sufficient conditions for the existence of a solution x of the integral equation

(1)
$$\mathbf{x}(t) = \mathbf{p}(t) + \mathcal{A} \int_{\Omega} f(t, \mathbf{s}, \mathbf{x}(\mathbf{s})) d\mathbf{s}$$

belonging to a certain Orlics space $L_{\phi}(D,X)$.

1. <u>Preliminaries</u>. A function $\varphi : \mathbb{R}_{+} \times \mathbb{D} \longrightarrow \mathbb{R}_{+}$ is called a (generalized) N-function if

(i) $\mathcal{G}(0,t) = 0$ for almost all $t \in D$;

(ii) for almost every to D the function $u \rightarrow g(u,t)$ is convex and non-decreasing on R_{+} ;

(iii) for any $u \in \mathbb{R}$, the function $t \rightarrow g(u, t)$ is L-measu-

- 19 -

rable on D; (iv) for almost every $t \in D$ $\lim_{\substack{u \to 0 \\ u \to 0}} \frac{\varphi(u,t)}{u} = 0 \text{ and } \lim_{\substack{u \to 0 \\ u \to 0}} \frac{\varphi(u,t)}{u} = \infty.$ The function φ^* defined by

 $g^*(u,t) = \sup_{v \geq 0} (uv - g(v,t)) (u \geq 0, t \in D)$

is called the complementary function to \mathcal{G} .

For a given N-function g we denote by $L_{\varphi}(D,R)$ the set of all L-measurable functions $u:D \rightarrow R$ for which the number

 $\|u\|_{\omega} = \inf \{r > 0: \int_{\Gamma} g(|u(t)|/r, t) dt \leq 1\}$

is finite. $L_{g}(D,R)$ is called the (generalized) Orlicz space. It is well known (cf. [3],[4]) that $\langle L_{g}(D,R), \| \cdot \|_{g}$ is a Banach space and

1.1. The convergence in $L_{g'}(D,R)$ implies the convergence in measure.

1.2. For any $u \in L_{g}(D,R)$ and $v \in L_{g*}(D,R)$ the function uv is integrable and

 $\int_{\Pi} |u(t)v(t)| dt \leq 2 \|u\|_{\varphi} \|v\|_{\varphi^{\#}} \qquad (\text{H\"older's inequality}).$

If, in addition, the function ϕ satisfies Condition A:

 $\int_{D} \varphi(u,t) dt < \infty \quad \text{for all } u > 0,$

then we may consider the set $E_{gr}(D,R)$ defined to be the closure in $L_{gr}(D,R)$ of the set of simple functions. Clearly $E_{gr}(D,R)$ is a Banach subspace of $L_{gr}(D,R)$. It can be shown (cf. [3],[4]) that

1.3. The following statements are equivalent:

(i) $\mathbf{x} \in \mathbf{E}_{\boldsymbol{\omega}}(\mathbf{D}, \mathbf{R});$

(ii) $x \in L_{\alpha}(D, \mathbb{R})$ and x has absolutely continuous norm;

(iii) $\int_{\mathbb{T}} \varphi(\alpha | u(t) |, t) dt < \infty$ for all $\infty > 0$.

1.4. If a sequence (u_n) in $E_g(D,R)$ has equi-absolutely continuous norms and converges in measure, then (u_n) converges in $E_g(D,R)$.

Further, denote by $L_{gr}(D, X)$ the set of all strongly measurable functions $x:D \rightarrow X$ such that $||x|| \in L_{gr}(D, R)$. Analogoualy we define $E_{gr}(D, X)$. Then $L_{gr}(D, X)$ is a Banach space with the norm $||x||_{gr} = || ||x|| ||_{gr}$. Moreover, let $L^{1}(D, X)$ denote the Lebesgue space of all (Bochner) integrable functions $x:D \rightarrow X$ provided with the norm $||x||_{1} = \int_{D} ||x(t)||$ dt. We shall always assume that all functions from $L^{1}(D, X)$ are extended to R^{m} by putting x(t) == 0 for $t \in R^{m} \setminus D$.

Let β and β_1 be the Hausdorff measures of noncompactness (cf. [6]) in X and L¹(D,X), respectively. For any set V of functions from D into X denote by v the function defined by v(t) = = $\beta(V(t))$ for $t \in D$ (under the convention that $\beta(A) = \infty$ if A is unbounded), where V(t) = $\{x(t): x \in V\}$. In what follows we shall use the following

<u>Theorem 1</u>. Let V be a countable subset of $L^{1}(D,X)$ such that there exists $\mu \in L^{1}(D,R)$ such that $||x(t)|| \leq \mu(t)$ for all $x \in V$ and $t \in D$. Then the function v is integrable on D and for any measurable subset T of D

(2)
$$\beta(\{ f \mid x(t) dt : x \in V\}) \neq \int v(t) dt.$$

If, in addition, $\lim_{\tau \to 0} \sup_{x \in V} \int_{D} ||x(t + \tau) - x(t)|| dt = 0$, then $\beta_1(V) \leq \int_{D} v(t) dt$.

We omit the proof of this theorem, because it is similar to that of Theorem 1 from [5].

- 21 -

2. The main result. Assume now that

 1° M,N:R₊×D \rightarrow R₊ are complementary N-functions and M satisfies Condition A.

 $2^0 \ \varphi: \mathbb{R}_+ \times \mathbb{D} \longrightarrow \mathbb{R}_+ \text{ is an } \mathbb{N}-\text{function satisfying Condition } \mathbb{A}$ and such that

(3) $u \neq c q(u,t) + a(t)$ for all $u \ge 0$ and a.a. $t \in D$, where c is a positive number and $a \in L^{1}(D,R)$. Let ψ be the complementary function to φ .

 3° (t,s,x) \rightarrow f(t,s,x) is a function from $D^2 \times X$ into X which is continuous in x for a.e. t,s \in D and strongly measurable in (t,s) for every x $\in X$.

4⁰ $|| f(t,s,x) || \leq K(t,s)g(s,||x||)$ for t, s $\in D$ and $x \in X$, where

(1) $(s,u) \rightarrow g(s,u)$ is a function from $D \times R_+$ into R_+ , measurable in s and continuous in u, and there exist $\alpha, \gamma > 0$ and $b \in L^1(D,R)$, $b \ge 0$, such that $N(\alpha g(s,u),s) \le \gamma \varphi(u,s) + b(s)$ for all $u \ge 0$ and a.e. $s \in D$;

(ii) $(t,s) \rightarrow K(t,s)$ is a function from D^2 into R_{+} such that $K(t,\cdot) \in E_{\mathbf{H}}(D,R)$ for a.e. $t \in D$ and the function $t \rightarrow ||K(t,\cdot)||_{\mathbf{H}}$ belongs to $E_{\mathbf{G}}(D,R)$.

For simplicity put $L^1 = L^1(D, X)$, $L_{\mathcal{G}} = L_{\mathcal{G}}(D, X)$, $E_{\mathcal{G}} = E_{\mathcal{G}}(D, X)$ and $B_{\mathcal{G}}^r = \{ x \in E_{\mathcal{G}} : || x ||_{\mathcal{G}} \leq r \}$. Let **F** be the mapping defined by

 $F(\mathbf{x})(t) = \int_{\mathbf{n}} f(t, \mathbf{s}, \mathbf{x}(\mathbf{s})) d\mathbf{s}$ ($\mathbf{x} \in E_{\omega}, t \in D$).

Theorem 2. Assume in addition that

5° lim sup $\int_{\mathcal{D}} \|F(\mathbf{x})(t + \tau) - F(\mathbf{x})(t)\| dt = 0$ for all r > 0and

 6° $\beta(f(t,s,Z)) \leq H(t,s)\beta(Z)$ for almost every $t,s \in D$ and for every bounded subset Z of X, where $(t,s) \rightarrow H(t,s)$ is a

- 22 -

function from D^{ℓ} into R_{+} such that $H(t, \cdot) \in L_{\phi}(D, R)$ for a.e. $t \in D$ and the function $t \rightarrow \|H(t, \cdot)\|_{\psi}$ belongs to $L_{\phi}(D, R)$.

Then for any $p \in E_{\varphi}$ there exists a positive number ρ such that for any $\lambda \in \mathbb{R}$ with $|\lambda| < \rho$ the equation (1) has a solution $x \in E_{\varphi}$.

<u>Remark 1</u>. For example, the condition 5° holds if f(t,s,x) = K(t,s)q(s,x)

and $\lim_{\tau \to 0} \int_D \|K(t + \tau, \cdot) - K(t, \cdot)\|_{\mathbf{M}} dt = 0$ and $\|q(s, \mathbf{x})\| \leq g(s, \|\mathbf{x}\|)$ for $\mathbf{x} \in \mathbf{X}$ and $\mathbf{a} \cdot \mathbf{e} \cdot \mathbf{s} \in \mathbf{D}$.

<u>Remark 2</u>. The condition 6° holds whenever $f = f_1 + f_2$, where f_1 and f_2 are such that

(*) for a.e. $t,s \in D$ the function $x \longrightarrow f_1(t,s,x)$ is completely continuous;

(**) $||f_2(t,s,x) - f_2(t,s,y)|| \leq H(t,s) ||x - y||$ for $x,y \in X$ and a.e. $t, s \in D$.

<u>Proof</u>. By 4⁰ and the Hölder inequality we have

$$\|F(x)(t)\| \le 2 \|K(t, \cdot)\|_{\mathbf{H}} \|g(\cdot, \|x\|)\|_{\mathbf{N}}$$
 for te D.

Since

$$\|g(\cdot,\|\mathbf{x}\|)\|_{\mathbf{N}} = \frac{1}{\alpha} \|\alpha g(\cdot,\|\mathbf{x}\|)\|_{\mathbf{N}} \leq \frac{1}{\alpha} (1 + \int_{\mathbf{D}} \mathbf{N}(\alpha g(\mathbf{s},\|\mathbf{x}(\mathbf{s})\|),\mathbf{s}) d\mathbf{s}) \leq \frac{1}{\alpha} (1 + \int_{\mathbf{D}} \mathbf{b}(\mathbf{s}) d\mathbf{s} + \mathcal{F} \int_{\mathbf{D}} \mathbf{v}(\|\mathbf{x}(\mathbf{s})\|,\mathbf{s}) d\mathbf{s}),$$

we get

(4) $\|F(\mathbf{x})(t)\| \neq k(t)(1 + \|b\|_1 + \gamma r_{\varphi}(\mathbf{x}))$ for $\mathbf{x} \in E_{\varphi}$ and $t \in D$, where $k(t) = \frac{2}{\alpha} \|K(t, \cdot)\|_{\mathbf{M}}$ and $r_{\varphi}(\mathbf{x}) = \int_{D}^{1} \varphi (\|\mathbf{x}(s)\|, s) ds$. From 4⁰ (i1) and (3) it is clear that $k \in E_{\varphi}(D, R) \cap L^{1}(D, R)$. Hence (5) $\|F(\mathbf{x}) \gamma \| \leq \|k \gamma \| (1 + \|b\| + \gamma r_{\varphi}(\mathbf{x}))$

(5)
$$\|\mathbf{F}(\mathbf{x})\chi_{\mathbf{T}}\|_{\varphi} \leq \|\mathbf{x}\chi_{\mathbf{T}}\|_{\varphi} (1 + \|\mathbf{b}\|_{1} + \gamma r_{\varphi}(\mathbf{x}))$$

for $\mathbf{x} \in \mathbf{E}_{\varphi}$ and any measurable subset T of D.

- 23 -

Similarly it can be shown that

(6) $\int_{T} \|f(t,s,x(s))\| ds \leq \frac{2}{\alpha} \|K(t,\cdot) \gamma_{T}\|_{H} (1 + \|b\|_{1} + \gamma r_{\varphi}(x))$ for $x \in E_{\varphi}$, $t \in D$ and any measurable subset T of D. In virtue of 1.3, from (5) we infer that F is a mapping of E_{φ} into itself. We shall show that F is continuous. Let $x_{n}, x_{0} \in E_{\varphi}$ and $\lim_{m \to \infty} \|x_{n} - x_{0}\|_{\varphi} = 0$. Suppose that $\|F(x_{n}) - F(x_{0})\|_{\varphi}$ does not converge to 0 as $n \rightarrow \infty$. Thus there exist $\varepsilon > 0$ and a subsequence $(x_{n_{1}})$ such that

(7)
$$\|\mathbf{F}(\mathbf{x}_n) - \mathbf{F}(\mathbf{x}_0)\|_{\varphi} > \varepsilon$$
 for $j = 1, 2, ...$

and lim x_n(t) = x_o(t) for a.e. t∈D. From 1.3 and the inequaj→∞ j lity

$$\mathbf{r}_{\varphi}(\mathbf{x}_{n}) \leq \frac{1}{2} \mathbf{r}_{\varphi}(2(\mathbf{x}_{n} - \mathbf{x}_{0})) + \frac{1}{2} \mathbf{r}_{\varphi}(2\mathbf{x}_{0})$$

it follows the boundedness of the sequence $(r_{\varphi}(\mathbf{x}_{n}))$. By (6) this implies that for a.e. $t \in D$ the sequence $(\|f(t,s,\mathbf{x}_{n}(s))\|)$ is equiintegrable on D. As $\lim_{\substack{j \to \infty}} f(t,s,\mathbf{x}_{n_{j}}(s)) = f(t,s,\mathbf{x}_{0}(s))$ for a.e. $t,s \in D$, the Vitali convergence theorem proves that

$$\lim_{j \to \infty} F(\mathbf{x}_n)(t) = F(\mathbf{x}_0)(t) \text{ for a.e. } t \in \mathbb{D}.$$

Moreover, in view of (5), the sequence $(F(\mathbf{x}_{n_j}))$ has equi-absolutely continuous norms in L_g. Thus, by 1.4, $\lim_{j \to \infty} ||F(\mathbf{x}_{n_j}) - f(\mathbf{x}_{n_j})||_{\varphi} = 0$ which contradicts (7).

Fix a function $p \in E_{\varphi}$. Denote by Q the set of all $q \ge 0$ for which there exists $r \ge 0$ such that $\int_D \varphi (\|p(t)\| + qk(t)(1 + \|b\|_1 + \varphi r), t)dt \le r$. Let $\varphi = \min (\sup Q, 1/\|h\|_{\varphi})$, where $h(t) = = \|H(t, \cdot)\|_{\varphi}$ for $t \in D$.

Fix $A \in \mathbb{R}$ with $|A| < \rho$. From the definition of ρ we deduce

- 24 -

that there exists d > 0 such that

 $\int_{\mathbb{T}} \varphi \left(\| \mathbf{p}(t) \| + \| \mathbf{\lambda} \| \mathbf{k}(t) (1 + \| \mathbf{b} \|_{1} + \gamma \mathbf{d}), t \right) dt \neq \mathbf{d}.$ (8) Set $U = \{x \in E_{\varphi} : r_{\varphi}(x) \notin d\}$ and $G(x) = p + \mathcal{A}F(x)$ for $x \in E_{\varphi}$. Then G is a continuous mapping $E_{\varphi} \rightarrow E_{\varphi}$ and, by (4) and (8), G(U \subset U). Consequently $G(\overline{U}) \subset \overline{G(U)} \subset \overline{U}$. (9) $\overline{U} \subset B_{\alpha}^{d+1}$. (10)Now we shall show that for any countable subset V of \overline{U} $V \subset \overline{\text{conv}} (G(V) \cup \{0\}) \implies V \text{ is relatively compact in } E_{\phi}$. (11)Assume that V is a countable set of functions belonging to \overline{U} and $V \subset \overline{\operatorname{conv}} (G(V) \cup \{0\}).$ (12)Owing to 1.1 it is clear that $V(t) \subset conv (G(V)(t) \cup \{0\})$ for a.e. $t \in D$. so that (13) $\beta(V(t)) \leq \beta(G(V)(t))$ for a.e. $t \in D$. From (4) it follows that for any $y \in \overline{G(U)}$ $||y(t)|| \leq \mu(t)$ for a.e. $t \in D$, where $\mu(t) = \| p(t) \| + |\lambda| k(t) (1 + \|b\|_1 + \gamma d)$. As V is countable, in view of (9) and (12), this implies that there exists a set D of Lebesgue measure zero such that $\|\mathbf{x}(t)\| \leq \mu(t)$ for all $\mathbf{x} \in V$ and $t \in D \setminus D_0$. (14) Let us remark that $(u \in E_{\omega}(D,R) \cap L^{1}(D,R))$. On the other hand, by 5° , (10) and (12), we have $\lim_{\tau \to 0} \sup_{x \in V} \int ||\mathbf{x}(t + \tau) - \mathbf{x}(t)|| dt = 0.$

Hence, by Theorem 1, the function $t \rightarrow v(t) = \beta(V(t))$ is integrable on D and

(15)
$$\beta_1(\nabla) \leq \int_D v(t) dt.$$

Furthermore, from 4° and (14) it follows that for any t \in D such that $K(t, \cdot) \in E_{M}(D, \mathbb{R})$, we have

 $\|f(t,s,x(s))\| \leq \eta(s) \text{ for } x \in V \text{ and } s.e. \ s \in D,$ where $\eta(s) = K(t,s)g(s, (\omega(s)))$. As $\omega \in E_{\varphi}(D,R)$, $4^{O}(1)$ implies that $g(\cdot, \omega) \in L_{N}(D,R)$, and consequently, by the Hölder inequality, $\eta \in L^{1}(D,R)$. Hence, owing to 6^{O} and (2),

$$\beta(G(V)(t)) = \beta(\{\mathcal{A} \int_{\mathcal{A}} f(t,s,x(s)) ds: x \in V\}) \leq$$

 $|\lambda| \int_{\mathcal{D}} \beta\left(\{f(t,s,x(s)): x \in V\}\right) ds \leq |\lambda| \int_{\mathcal{D}} H(t,s) \beta\left(V(s)\right) ds$

In view of (13), this shows that

 $v(t) \leq \lambda \int_{D} H(t,s)v(s) ds$ for a.e. $t \in D$.

Moreover, by (14), we have $v(t) \leq \omega(t)$ for a.e. $t \in D$, and therefore $v \in E_{\omega}(D,R)$. Thus, by the Hölder inequality,

 $v(t) \neq |\lambda| \parallel H(t, -) \parallel_{\mathcal{V}} \parallel v \parallel_{\varphi}$ for a.e. $t \in D$,

so that

11 V 1 ≤ 121 11 11 1 1 1 1 10.

Since $|\lambda| \|h\|_{\varphi} < 1$, this implies that $\|v\|_{\varphi} = 0$, i.e. v(t) = 0 for a.e. $t \in D$. Hence, by (15), $\beta_1(V) = 0$, i.e. V is relatively compact in L¹. On the other hand, as $\mu \in E_{\varphi}(D, \mathbb{R})$, (14) implies that V has equi-absolutely continuous norms in L_{\varphi}. From this we deduce that V is relatively compact in E_{φ} , which proves (11). Applying now Daher's generalization of the Schauder fixed point

Applying now Daner's generalization of the Schauder fixed point theorem (cf. [1]), we conclude that there exists $x \in \overline{U}$ such that x = G(x). It is clear that x is a solution of (1).

- 26 -

References

- [1] J. DAHER: On a fixed point principle of Sadovskii, Nonlinear Analysis 2(1978), 643-645.
- [2] J. DANES: On densifying and related mappings and their applications in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin 1974, 15-56.
- [3] A. KOZEK: Orlicz spaces of functions with values in Benach spaces, Comm. Nath. 19(1977), 259-286.
- [4] M.A. KRASNOSELSKII, J.B. RUTICKII: Convex functions and Orlicz spaces, Moskva 1958.
- [5] W. ORLICZ, S. SZUFLA: On some classes of nonlinear Volterre integral equations in Banach spaces, Bull. Acad. Polon. Sci. Math. 30(1982), 239-250.
- [6] B.N. SADOVSKII: Limit-compact and condensing operators, Russian Math. Surveys 27(1972), 85-155

Institute of Mathematics, A. Mickiewicz University, Posnań, Poland

(Oblatum 29.11. 1983)