Commentationes Mathematicae Universitatis Carolinae

Aleš Pultr
Pointless uniformities. II: (Dia)metrization

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 1, 105--120

Persistent URL: http://dml.cz/dmlcz/106282

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

POINTLESS UNIFORMITIES II. (DIA)METRIZATION

 A. PULTRAbstract: Metrization theorems for pointless uniformities and weak uniformities are proved.
Key words: Uniformity on a locale, diameters, metrization.
Classification: 54E15, 54E35, 06D10

This paper is a lose continuation of the paper [6]. There we have proved the equivalence of complete regularity and uniformizability in locales and indicated a role of diameters. A gystem D of diameters gives rise to a uniformity (or, to a weak uniformity, according to how strong conditions are imposed on the diameters) $U(D)$. We have seen, in particular, that if a locale is uniformizable at all, it is uniformizable by a $U(D)$. The main aim of this paper is to prove metrization theorems for pointless uniformities, i.e. to show that, in fact, each uniformity on a locale is a $U(\mathscr{D})$, and that it is induced by a single diameter function whenever it has a countable basis. This goal is achieved by modifying the standard metrization argament (see, e.g., [5]) and, perhaps, yields also a better insight into what is going on there.

The first, and larger, part of the article (Sections 1-3) is devoted to a discussion of various conditions one can impose on diameter functions. Sectica 1 contains the basic defi-
nitions and relations between the conditions. In section 2 it is mown that in the apatial case, the metrie diameterm are in a natural one-one correspondence with the pseudometrica. Seotion 3 deals with construotions allowing to obtain etronger properties of diameters. In the last, fourth, section the indueed uniformities are discussed and metrization theorems are proved.

The terminology follows the standard usage (as, e.g., in [4].[1]), in epecial definitions the notation and convention of [6] are preserved (with the exception of the condition (M) which now contains automatically the condition (A)).

1. Diameters
1.1. We may that a subset of a locale I is connected if $\forall a, b \in S \quad \exists a_{1}, \ldots, a_{n} \in S$ such that $a_{1}=a, a_{n}=b$ and $a_{1} \wedge a_{1+1} \neq 0$ for $i=1, \ldots, n-1$.

We say that it is strongly connected if
$a, b \in S \Rightarrow a \wedge b \neq 0$.
The system of all connected subsets of L will be denoted by conn(L),
that of the atrongly connected ones by

$$
\mathscr{P}(\mathrm{L}) .
$$

1.2. A pre-diameter on a locale L is funation $\mathrm{d}: \mathrm{L} \rightarrow \mathrm{R}_{+}$
(\mathbb{R}_{+}is the set of the non-negative reals) ouch that
(i) $\mathrm{d}(0)=0$,
(ii) $a \leqslant b \Rightarrow d(a) \leqslant d(b)$,
(iii) $\forall \varepsilon>0,\{a \mid d(a)<\varepsilon\}$ is a cover of L.

It is said to be continuous if, moreover,
(C) for each monoton (linearly ordered by \leq) ScL,

$$
d(V S)=\sup \{d(a) \mid a \in S\}
$$

1.3. A pre-diameter d in said to be

- a meak diameter if
(v): for a, b such that $a \wedge b \neq 0$,

$$
d(a \vee b) \leqslant 2 \max (d(a), d(b)):
$$

- an additive diameter if
(A): for a, b such that $a \wedge b \neq 0$,

$$
d(a \vee b) \leq d(a)+a(b) ;
$$

- a star diameter if
$(*)_{2}$ for $S \in \mathscr{P}(L)$

$$
d(V S) \leq 2 \sup \{d(a) \mid a \in S\} ;
$$

- a gtar-additire diancter if
(*A): for $S \in S(L)$,

$$
d(\vee s) \leq \sup \{d(a)+d(b) \mid a, b \in S, a \neq b\} ;
$$

- atrong diometer if
(S): for $S \in \operatorname{conn}$ (L),
$d(\vee S) \leqslant \sup \left\{\inf \left\{\sum_{i=1}^{n} d\left(a_{1}\right) \mid a_{1} \in S, a_{1}=a, a_{n}=b, a_{1} \wedge a_{1+1}+\right.\right.$ $\neq 0\} \mid a, b \in S, a \neq b\} ;$
- a metric diameter if
(M): (A) and
$\forall x \in L \quad \forall \varepsilon>0 \quad \exists u, v, u \wedge x \neq 0 \neq \nabla \wedge x \& d(u), d(v)<\varepsilon \& d(u v v)>$

$$
>\mathrm{d}(\mathrm{x})-\epsilon .
$$

1.4. Remark: The following implications are obvious

In [6; Lemma 5.1] we have seen that $(M) \Longrightarrow(*)$. In fact, as we will shortly see, (M) is the strongest of all the mentioned requirement: (and, moreover, impliea continuity). In the
next section we will show that the metrio diameters correspond In the spatial case exactly to the pseudometrics. Thus, they can be understood as a natural modification of the notion of distance for the purposes of general locales.

The reaso n why we list the other mentioned conditions on pre-diameters (and no further ones used elsewhere, e.g. in [2]) is, of course, given by the aims of the article. The condition (W) is the weakest one one needs to induce at least weak unifor mities; (A) is very natural and, besides, it is a part of (M); (*A) is also very natural, probably the most intuitive of all, and it will play a technical role: a star-additive diameter can be very satisfactorily approximated by a metric one: (S) is an extension of ($* A$) and will appear as a consequence of (M). The condition ($*$) is about the minimum one needs for gensrating uniformities; besides, star-diameters will also play a technical role.
1.5. Theorem: A metric diameter is a continuous strong diameter.

Proof: (C): Let $S C L$ be monotone. Take an $\varepsilon>0$ and choose u, \forall such that $d(u), d(\nabla)<\varepsilon, u \wedge V S \neq 0 \neq \nabla \wedge V S$ and $d(u \vee v)>d(\vee S)-\varepsilon$. We have $x, y \in S$ such that $x \wedge u \neq 0 \neq j \wedge \nabla$. If, say, $y \geq x$, we have also $u \wedge y \neq 0$. Thus,
$d(u \vee v) \leqslant d(y \vee u \vee v) \leqslant d(y \vee u)+\varepsilon \leq d(y)+2 \varepsilon$
so that

$$
d(y)>d(V s)-3 \varepsilon .
$$

Hence, $\sup \{d(y) \mid y \in S\} \geq d(V S)$. On the other hand, obviously sup $d(y) \leqslant d(\vee S)$.
(S): Let this not hold. Then, we have an $S \in \operatorname{conn}(L)$ and an $\eta>0$ such tr- ${ }^{-2}$

$$
\begin{aligned}
d(V S)>\sup \left\{\inf \sum_{i} \sum_{1}^{m} d\left(a_{1}\right) \mid a_{1} \in S, a_{1}=a, a_{n}=b,\right. \\
\left.\left.a_{1} \wedge a_{1+1} \neq 0\right\} \mid a, b \in S, a \neq b\right\}+\eta
\end{aligned}
$$

Take an $\varepsilon>0$ such that $\varepsilon<\frac{1}{6} \eta$ and choose u, v such that $d(u), d(v)<\varepsilon, u \wedge V S \neq 0 \neq v \wedge V S$ and $d(u \vee v)>d(V S)-\varepsilon$.
Conaider $a, b \in S$ with $u \wedge a \neq 0 \neq \nabla \wedge b$.
I. Let $a \neq b$. Then we have, in particular,

$$
d(V S)>\inf \left\{_{i} \sum_{i}^{m} d\left(a_{1}\right) \mid a_{i} \in S, a_{1}=a, a_{n}=b,\right.
$$

$$
\left.a_{1} \wedge a_{1+1} \neq 0\right\}+\eta
$$

and hence there are $a_{1}=a, a_{2}, \ldots, a_{n}=b, a_{1} \wedge a_{1+1} \neq 0$ such that

$$
\text { (1) } d(\vee s)>\sum d\left(a_{1}\right)+\frac{1}{2} \eta \text {. }
$$

By 1.2 (ii1) we can choose $u_{i} \in L$ auch that

$$
d\left(u_{i}\right)<\epsilon \quad \text { and } u_{1} \leqslant a_{i} \wedge a_{1+1} .
$$

We obtain

$$
\begin{aligned}
& d\left(u \vee u_{1}\right) \leq d\left(u \vee a_{1}\right) \leq d\left(a_{1}\right)+\varepsilon, \\
& d\left(u_{1} \vee u_{2}\right) \leq d\left(a_{2}\right), \\
& \vdots \\
& d\left(u_{n-2} \vee u_{n-1}\right) \leq d\left(a_{n-1}\right), \\
& d\left(u_{n-1} \vee \vee\right) \leq d\left(a_{n} \vee \vee\right) \leq d\left(a_{n}\right)+\varepsilon .
\end{aligned}
$$

Uaing rapeatedly (A) we obtain

$$
\begin{gathered}
d\left(u \vee u_{1} \vee \ldots \vee u_{n-1} \vee v\right) \leq d\left(u \vee u_{1}\right)+d\left(u_{1} \vee u_{2}\right)+\ldots+ \\
+d\left(u_{n-1} \vee v\right) \leq \Sigma d\left(a_{1}\right)+2 \varepsilon
\end{gathered}
$$

eo that

$$
d(V s)<d(u \vee v)+\varepsilon \leq \sum d\left(a_{1}\right)+3 \varepsilon<\Sigma d\left(a_{1}\right)+\frac{1}{2} \eta
$$

in contradiction with (1).
II. Let $a=b$. Choose an arbitrary $c \in S$, $c \neq a$ (obviously S has to have at least two elements). We have

$$
d(V s)>\inf \left\{\sum_{i=1}^{m} d\left(a_{1}\right) \mid a_{1}=a, a_{n}=c, a_{i} \wedge a_{i+1} \neq 0\right\}+\eta
$$

so that, again, there are $a_{1}=a, a_{2}, \ldots, a_{n}=0$ urh that

$$
d(V s)>\sum d\left(a_{1}\right)+\frac{1}{2} \eta
$$

We obtain a contradiction

$$
\begin{aligned}
& d(V s)<d(u \vee \nabla)+\varepsilon \leqslant d(u \vee a \vee \nabla)+\varepsilon \leqslant d(a)+3 \varepsilon \leq d \\
& \quad \leq \sum d\left(a_{1}\right)+3 \varepsilon<\sum d\left(a_{1}\right)+\frac{1}{2} \eta<d(\vee s)
\end{aligned}
$$

2. Spatial oage: metric diameters and psoudometrion

2.1. In this section, a topological space $X=(X, L)$ is given, L if the locale of its open sets. To keep the motation in accord with that of the general case, we will denete the open aete in X by lower case Koman letters. The points of X will we denoted by α, β, γ and σ^{r}. If ζ is a paeudonetrio on \bar{x} we write

$$
\begin{aligned}
& \Omega_{\rho}(\alpha ; \varepsilon)=\{\beta \mid \rho(\alpha, \beta)<\varepsilon\} \text {. } \\
& \text { 2.2. Let } \rho \text { be a bounded pseudometrio on the set } x \text {. We }
\end{aligned}
$$ oonstruct

$$
\mathrm{d}: \mathrm{I} \rightarrow \mathbb{R}_{+}
$$

by putting
(2) $d(x)=\sup \{\rho(\alpha, \beta) \mid \alpha, \beta \in x\}$.
2.3. Proposition: Let the topology of (x, ρ) be weaker than that of X. Then d defined by (2) is a metrio diameter.

Proof is matter of easy checking. Since the seta $\Omega_{\rho}(\cdot ; \cdot)$ are open, we can take for u, v in (M) suitable $\Omega\left(\alpha ; \frac{1}{2} \varepsilon\right), \Omega\left(\beta ; \frac{1}{2} \varepsilon\right)$.
2.4. Let $d: L \rightarrow \mathbb{R}_{+}$be a metric diameter, define

$$
\rho: X \times X \longrightarrow \mathbb{R}_{+}
$$

by putting
(3) $\quad \rho(\alpha, \beta)=\inf \{d(x) \mid\{\alpha, \beta\} \subset x\}$.
2.5. Proposition: The function ρ is a pseudometric on the set X .

Proof: The triangle inequality follows easily from (A), $\rho(\alpha, \alpha)=0$ from 1.2(iii). Obviously, $\rho(\alpha, \beta)=\rho(\beta, \alpha)$.
2.6. Lemma: Let $S 0$ be constructed from d by (3). Them $\Omega_{\rho}(\alpha ; \varepsilon)=V\{x \mid x \in L, \alpha \in x, d(x)<\varepsilon\}$.
Consequently, the topoiogy of (x, ρ) is weaker than L.
Froof: We have
$\rho(\alpha, \beta)<\varepsilon$ iff $\exists x \supset\{\alpha, \beta\}, x \in L$, such that $d(x)<\varepsilon$.
2.7. Theorem: The formulae (2) and (3) constitute a oneone correspondence between the set of all bounded metric diamoters d on L and the set of all bounded pseudometrics ρ on X suah that the topology of (X, ρ) is weaker than L.

Proof: I. Start with a diameter d, constructpby (3) and a new alameter d^{\prime} from ρ by (2). Obviously,

$$
d^{\prime}(x) \leq d(x) .
$$

Let there be an x and an $\varepsilon>0$ such that $d(x)>d^{\prime}(x)+3 \varepsilon$. Take u, v such that $u \wedge x \neq 0 \neq \nabla \wedge x, d(u), d(v)<\varepsilon$ and $d(u \vee v)>$ $>d(x)-\varepsilon$ (and, hence, $\left.d(u \vee v)>d^{\prime}(x)+2 \varepsilon\right)$. Choose $\propto \in u \wedge x$, $\beta \in V \wedge x$. Consider an arbitrary $w \in I$ such that $\{\alpha, \beta\} \subset W$. We have $d(u \vee v) \leqslant d(w \vee u \vee v) \leq d(w)+2 \varepsilon$
and hence

$$
d(w) \geq d(u \vee v)-2 \varepsilon>d^{\prime}(x)
$$

so that

$$
\rho(\alpha, \beta) \geq d(u \vee v)-2 \varepsilon>d^{\prime}(x)
$$

in contradiction with the definition of $d^{\prime}(x)$.
II. Start with a pseudometric ρ, construct d by (2) and then a new pseudometric ρ^{\prime} by (3). We obriously have

$$
\rho^{\prime}(\alpha, \beta) \geq \rho(\alpha, \beta)
$$

Let $\rho^{\prime}(\alpha, \beta)>\rho(\alpha, \beta)+3 \varepsilon$. Consider $u=\Omega\left(\infty ; \frac{1}{2} \varepsilon\right)$, $v=\Omega\left(\beta ; \frac{1}{2} \varepsilon\right)$. Thus, $d(u), d(v)<\varepsilon$. Take $\gamma \in u, \sigma^{\prime} \in v_{0}$. We have
$\rho(\gamma, \delta) \leqslant \rho(\gamma, \alpha)+\rho(\alpha, \beta)+\rho(\beta, \delta)<\rho(\alpha, \beta)+2 \varepsilon$ and if $\gamma, \delta \in u$ or $\gamma, \delta \in \vee$ obviously $\rho(\gamma, \sigma)<2 \varepsilon$. Thus $d(u \vee v) \leq \rho(\alpha, \beta)+2 \varepsilon<\rho^{\prime}(\alpha, \beta)-\varepsilon$
in contradiotion with the definition of ρ^{\prime}.
2.8. Proposition: (Hotation from [6].) Let d be a metric diameter on L, let ρ be obtained by (3). Then
u fa open in (x, ρ) iff $u \in I_{u}$
where U is the u-basis $\{\{a \mid d(a)<\varepsilon\} \mid \in>0\}$.
Proof: Let u be open in (x, ρ). By $2.6, u \in I$. Let \propto be an arbitrary point of u. Take an $\varepsilon>0$ such that $\Omega(\propto ; 2 \varepsilon) \subset u$. Put $\nabla=\Omega(\propto ; \varepsilon)$ and consider $\AA=\{a \mid d(a)<\varepsilon\}$. We have $A \nabla \leq u$ and hence $v{ }^{u} u$ 。
Since \propto was arbitrary, $u=V\{x \mid x \notin u\}$.
On the other hand, let $u=V\{x \mid x \stackrel{u}{u} u$. Take an $\propto \in u$. There is an $x, x \stackrel{u}{u} u$ such that $\alpha \in x$ and there has to be an $\varepsilon>0$ such that, for $A=\left\{a \mid d(a)<\varepsilon_{0}\right\}, \Delta x \leqslant u$. Obviously, $\Omega(\alpha ; \varepsilon) \leq A x$.

3. Fabricating diameters with stronger properties

3.1. For a star diameter d on a locale L put
$\delta^{\prime}(x)=\operatorname{lnf}_{\varepsilon>0} \sup \{d(u \vee v) \mid u \wedge x \neq 0 \neq \nabla \wedge x, d(u), d(v)<\varepsilon\}$.
3.2. Lemma: For any $x, y \in L$ we have

$$
\sigma(x \vee y) \geq d(x \vee y)-d(x)-d(y) .
$$

Proof: If $x=0$ or $y=0$, the right hand side is zero. Thus, we can assume that $x \neq 0 \neq y$.

Let $\delta(x \vee y)<d(x \vee y)-d(x)-d(y)$. Then we have an $\varepsilon_{0}>0$ such that, for $\varepsilon<\varepsilon_{0}$,
$\propto=\sup \{d(u \vee \nabla) \mid u \wedge(x \vee y) \neq 0 \neq \nabla \wedge(x \vee y), d(u), d(v)<\varepsilon\}<$ $<d(x \vee y)-d(x)-d(y)$.
Choose u, v such that $u \wedge x \neq 0 \neq \nabla \wedge y$ and $d(u), d(v)<\varepsilon$. We have

$$
d(x \vee y) \leq d(x \vee y \vee u \vee v) \leq d(u \vee v)+d(x)+d(y)
$$

and we obtain a contradiction

$$
\propto \geq d(u \vee v) \geq d(x \vee y)-d(x)-d(y)>\infty
$$

3.3. Lemma: We have

$$
\frac{1}{2} \mathrm{~d}(x) \leqslant \delta^{\prime}(x) \leqslant \mathrm{d}(x) .
$$

Proof: If $u \wedge x \neq 0 \neq \nabla \wedge x$ and $d(u), d(v)<\varepsilon$, we have

$$
d(u \vee v) \leq d(x \vee u \vee v) \leq d(x)+2 \varepsilon .
$$

Hence, $\quad \sigma^{\prime}(x) \leq d(x)$.
Now, let us have, for some $x \in L$ and $\eta>0$,

$$
\delta(x)<\frac{1}{2} d(x)-\eta
$$

Thus, we have an $\varepsilon>0$ such that

$$
\sup \{d(u \vee v) \mid u \wedge x \neq 0 \neq \nabla \wedge x, d(u), d(v)<\varepsilon\}<\frac{1}{2}(d(x)-\eta) .
$$

Take the system $S=\{u \in \operatorname{Lld}(u)<\varepsilon, u \wedge x \neq 0\}$ and ohoose a fixed $\nabla_{0} \in S$. Thus, $x \leq V\left\{u \vee \nabla_{0} \mid u \in S\right\}$ and we obtain, by $(*)$,
$d(x) \leqslant 2 \sup \left\{d\left(u \vee \nabla_{0}\right) \mid u \in S\right\}<d(x)-\eta$
which is a contradiction.
3.4. Theorem: For any star-additive diameter d there is a metric diameter δ such that

$$
\frac{1}{2} \mathrm{~d} \leq \delta \leq \mathrm{d} .
$$

Proof: According to 3.3 it suffices to prove that the σ from 3.1 is a metric diameter. Obviously, it is a prediameter (1.2(ii) is straightforward and $1.2(i)$ and (iii) follow from 3.3).
(A): Let it not hold. Hence, we have mome $a, b \in I, a \wedge b \neq 0$, and an $\eta>0$ such that

$$
\delta(a \vee b)>\sigma^{\prime}(a)+\delta(b)+\eta
$$

Thus, for a afficiently mall $\varepsilon>0$,

```
    \(\delta^{\prime}(a \vee b)>\operatorname{mip}\left\{d\left(u_{1} \vee \nabla_{1}\right) \mid u_{1} \wedge a \neq 0 \neq \nabla_{1} \wedge a, d\left(u_{1}\right), d\left(\nabla_{1}\right)<\epsilon\right\}+\)
```

 \(+\sup \left\{d\left(u_{2} \vee \nabla_{2}\right) \mid u_{2} \wedge b \neq 0 \neq \nabla_{2} \wedge b, d\left(u_{2}\right), d\left(\nabla_{2}\right)<\varepsilon\right\}+\frac{1}{2} \eta\).
 Choose $u, \nabla, u \wedge(a \vee b) \neq 0 \neq \nabla \wedge(a \vee b), d(u), d(\nabla)<\varepsilon$ such that $\delta(a \vee b)<d(u \vee v)-\frac{1}{2} \eta$
so that
$d(u \vee v)>\sup \left\{d\left(u_{1} \vee v_{1}\right) \mid \ldots\right\}+\sup \left\{d\left(u_{2} \vee \nabla_{2}\right) \mid \ldots\right\}$.
Thus, neither $u \wedge a \neq 0 \neq \nabla \wedge a$ nor $u \wedge b \neq 0 \neq \nabla \wedge b$ and we can assume
 $\neq 0$. We obtain a contradiction

$$
d(u \vee \nabla)>d(u \vee w)+d(w \vee \nabla) \geq d(u \vee \nabla \vee w) .
$$

The metric property: By 3.2 we obtain
(4) $\delta^{\prime}(x) \leqslant \frac{\operatorname{lnf}}{\varepsilon \rightarrow 0} 0$ sup $\left\{\delta^{\prime}(u \vee v)+2 \varepsilon \mid u \wedge x \neq 0 \neq v \wedge x, d(u), d(v)<\right.$ $<\varepsilon\}$.

Let δ be not metric. Then we have an $\varepsilon_{0}>0$ such that for all u, v such that $\delta^{\prime}(u), \delta^{\prime}(v)<\varepsilon_{0}$ and $u \wedge x \neq 0 \neq \nabla \wedge x$ necessarily (5) $\quad \delta(n \vee \vee) \leq \sigma(x)-\varepsilon_{0}$.

Choose an $\varepsilon<\frac{1}{2} \varepsilon_{0}$. By (4) and 3.3 we have

$$
\delta(x) \leqslant \sup \left\{\delta^{\prime}(u \vee v)+2 \varepsilon \mid \ldots, \delta^{\prime}(u), \delta^{\prime}(\nabla)<\varepsilon\right\}
$$

and hence, using (5), we obtain a contradiction

$$
\sigma^{\prime}(x) \leqslant \sigma^{\prime}(x)-\varepsilon_{0}+2 \varepsilon<\delta^{\prime}(x) .
$$

3.5. Let 1 be a pre-diameter. For $S \in c o n n(L)$ and $a, b \in S$ put $\mu_{p}(a, b, s)=\inf \left\{\left.\sum_{i=1}^{m} f\left(a_{1}\right)\right|_{a_{1}}=a, a_{n}=b, a_{i} \wedge a_{i+1} \neq 0\right.$,

$$
\left.a_{1} \in S\right\}
$$

Further, put

$$
\mu_{f}(S)=\sup \left\{\mu_{f}(a, b, s) \mid a, b \in S\right\}
$$

3.6. Observation: 1. Let $\mathrm{b}_{1} \wedge \mathrm{~b}_{2}+0$. Them

$$
\mu(a, c, s) \leq \mu\left(a, b_{1}, s\right)+\mu\left(b_{2}, c, s\right)
$$

2. Let $S_{1} \subset S_{2}$. Then

$$
\mu\left(a, b, s_{1}\right) \geq \mu\left(a, b, s_{2}\right) .
$$

3.7. For $x \in L$ put

$$
d_{f}(x)=\inf \left\{\mu_{p}(S) \mid \text { SGconn }(L), x \leq V S\right\}
$$

Obviously,

$$
d_{f} \leq f_{0}
$$

3.8. Theorem: The function d_{f} is a starmadditive dianeter.

Proof: Obviousiy, d_{f} is a pre-diameter. Let it not be ataradditive. Thus, we have an $S \in \mathscr{S}(L)$ and an $\varepsilon>0$ such that
(6) $d_{f}(V S)>\sup \{d(a)+d(b) \mid a, b \in S, a \neq b\} \div 3 \varepsilon$.

For each aGS choose an $S_{a} \in$ conn (L) such that

$$
V S_{a} \geq a \text { and } \mu_{\rho}\left(S_{a}\right)<d_{\rho}(a)+\varepsilon
$$

Thus, by (6), we have

$$
\begin{equation*}
\text { for } a n y a, b \in S, a \neq b \text {, } \tag{7}
\end{equation*}
$$

$$
d(V S)>\mu\left(S_{a}\right)+\mu\left(S_{b}\right)+\varepsilon .
$$

Put $T=U\left\{S_{a} \mid a \in S\right\}$. Obviously, $T \in \operatorname{conn}(L)$ and $V T \geq V S$ so that $\mu(T) \geq d\left(V^{\prime} S\right)$ and hence, by (7),

$$
\mu(T)>\mu\left(S_{a}\right)+\mu\left(S_{b}\right)+\varepsilon
$$

Thus, there exist $u, v \in T$ such that
(8) $\mu(u, v, T)>\mu\left(S_{a}\right)+\mu\left(S_{b}\right)$.

We cannot have $u, v \in S_{a}$ for an a since then we would have (aee
3.6.2) $\mu(u, \nabla, T) \leqslant \mu\left(u, v, S_{a}\right) \leq \mu\left(S_{a}\right)$. Thus, there are a, b, $a \neq b, u \in S_{a}$ and $v \in S_{b}$. Choose an $X \in S_{a}$ and $a \quad y \in S_{b}$ such that $x \wedge y \neq 0$. Now, (8) and 3.6 yield a contradietion

$$
\begin{aligned}
\mu(u, \nabla, T)> & \mu\left(u, x, S_{Z}\right)+\mu\left(y, v, S_{b}\right) \geq \mu(u, x, T)+ \\
& +\mu(y, v, T) \geq \mu(u, v, T) .
\end{aligned}
$$

3.S. We will formulate one more condition concerning preo diameters f :
(3W): for a, b, c such that $a \wedge b \neq 0 \neq b \wedge c$, $f(a \vee b \vee c) \leq 2 \max (f(a), f(b), f(a))$.

Lemma: Let 1 satisfy (3w). Let x_{1}, \ldots, x_{n} be such that $x_{1} \wedge x_{1+1} \neq 0$ for $1=1, \ldots, n-1$. Then

$$
f\left(\sum_{i=1}^{n} x_{i}\right) \leqslant 2 \sum_{i=1}^{m} f\left(x_{1}\right)
$$

Proof by induction on n. For $n=1, f\left(x_{i}\right) \leqslant 2 f\left(x_{i}\right)$. Let the inequality hold for n, consider x_{1}, \ldots, x_{n+1}. Put $\alpha=\sum_{i=1}^{m+1} f\left(x_{i}\right)$ and take the first k such that $\sum_{i=1}^{\infty} f\left(x_{i}\right) \geq \frac{1}{2} \propto$. Then

$$
\sum_{i=1}^{n-1} f\left(x_{i}\right)<\frac{1}{2} \alpha_{1}, \quad \sum_{i=1}^{n+1} f\left(x_{i}\right) \leq \frac{1}{2}
$$

and hence, by the induction hypothesis,

Since also $f\left(x_{k}\right) \leq \propto$ we obtain, using (3w),

$$
f\left(\sum_{i=1}^{m+1} x_{i}\right) \leq 2 \alpha=2 \sum_{i=1}^{m+1} f\left(x_{i}\right) .
$$

3.10. Lemma: Let 1 be a star diameter gatisfying (3W), let μ_{f} be the function from 3.5. Then for any $S \in \operatorname{conn}$ (L)

$$
f(V S) \leq 4 \mu_{\rho}(S)
$$

Proof: Fix a $u_{0} \in S$ and an $\varepsilon>0$. For each $u \in S$ choose a sequence $x_{1}(u), \ldots, x_{n}(u) \in S$ such that $u_{0}=x_{1}(u), u=x_{n}(u)$, $x_{i}(u) \wedge x_{i+1}(u) \neq 0$ and

$$
\sum f\left(x_{i}(u)\right)<\mu_{p}\left(u_{0}, u, S\right)+\varepsilon
$$

Put $s(u)=V x_{i}(u)$. Evidently, $s(u) \wedge s(v) \geq u_{0} \neq 0$ and $u \leq s(u)$ so that
(9) $V\{s(u) \mid u \in S\}=V S$ and $\{s(u) \mid u \in S\} \in \mathscr{S}(L)$.

By 3.9 we have

$$
f(s(u)) \leqslant 2 \sum f\left(x_{i}(u)\right)<2 \mu_{f}\left(u_{0}, u, S\right)+2 \varepsilon \leq 2 \mu_{f}(S)+2 \varepsilon
$$

and hence, by ($*$) and (9),

$$
f(V S) \leq 2 \sup \{f(s(u)) \mid u \in S\} \leq 4 \mu_{p}(S)+4 \varepsilon
$$

3.11. Theorem For each star diameter 1 satisfying (3w) there is a metric diameter d such that

$$
\frac{1}{8} f(x) \leq d(x) \leq f(x)
$$

Proof: Consider first the function d_{f} from 3.7. Let S be in conn (L), $x \leq V S$. By 3.10

$$
f(x) \leq f(V S) \leq 4 \mu_{P}(S)
$$

and hence $d_{f}(x)=\inf \left\{\mu_{f}(S) \mid V S \geq x\right\} \geq \frac{1}{4} f(x)$.
By 3.8, d_{f} is atar additive so that our atatement now follow: from 3.4. \square

4. (Dia)metrization of uniformities

4.1. A u-basis (resp. wu-basis) \mathcal{A} such that $\mathcal{K}=\boldsymbol{U}$ (see [6; 3.3, 3.5]) will be referred to as a basis of the uniformity (reap. weak uniformity) U.

It is said to be meet-closed if

$$
A, B \in \Omega \Rightarrow \exists C \in \Omega, C \prec A \wedge B
$$

Obviousiy, if A is meet-closed then

$$
A \in U \text { iff } \exists B \in \mathcal{R}, B \prec A
$$

4.2. For a u-basis (wu-basis) \mathcal{A} put $m \mathcal{A}=\left\{A_{1} \wedge \ldots \wedge A_{k} \mid A_{1} \in \mathcal{A}\right\}$.
By [6; 3.4] we ses that $m \mathcal{A}$ is a u-basis (wu-basis) again. Obriously it is meet-closed. Thus, we make an

Observation: If U has a countable basis, it has a countable meet-closed basis.
4.3. Lemma: Let a uniformity (resp. a weak uniformity) \mathcal{U} have a countable basis. Then it has a meet closed basis $\mathcal{A}=$ $=\left\{A_{0}, A_{1}, \ldots, A_{n}, \ldots\right\}$ such that $A_{0}=\{e\}$ and, for each n,
$A_{n+1}^{* *} \prec A_{n}\left(\right.$ resp. $\left.A_{n+1}^{(2)(2)} \prec A_{n}\right)$.
Proof: Take a meet-cloaed basis $B=\left\{B_{1}, B_{2}, \ldots, B_{n}, \ldots\right\}$
of U. Put $A_{0}=\{e\}, A_{1}=B_{1}$. Let A_{0}, \ldots, A_{n} be already defined so that
(α) $A_{k+1}^{* *} \prec A_{k}\left(\right.$ resp. $\left.A_{k+1}^{(2)(2)} \prec A_{k}\right)$ for $k<n$,
(β) $A_{k} \in B$ for $k \leq n$,
(γ) $\quad A_{k} \prec B_{k}$ for $k \leqslant n$.
There is a B_{r} such that $B_{r}^{* *} \prec A_{n}$ resp. $B_{r}^{(2)(2)} \prec A_{n}$ and a $B_{B} \prec B_{r} \wedge B_{n+1}$. Put $A_{n+1}=B_{B}$.
4.4. Proposition: For each uniformity (resp. weak uniformity) U there is a system ($U_{i} \mid i \in J$) of uniformities (resp. weak uniformities) with countable bases such that

$$
A \in U \text { iff } \exists i \quad A \in U_{i} .
$$

Proof: For an $A \in U$ choose inductively $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ so that $A=A_{1}, A_{n+1}^{*} \prec A_{n}$ (resp. $A_{n+1}^{(2)} \prec A_{n}$). Put $J=U, A_{A}=$ $=\left\{A_{i} \mid i=1,2, \ldots\right\}, u_{A}=\mathcal{A}_{A}$.
4.5. Por a weak diameter d put

$$
U(d)=\{A \mid \exists \varepsilon>0,\{a \mid d(a)<\varepsilon\} \prec \mathbb{A}\} .
$$

More generally, let \mathfrak{D} be a system of weak diameters. Put
$U(D)=\widetilde{\mathcal{A}}$ where $\mathcal{A}=\{\{a \mid d(a)<\in\} \mid d \in D, \varepsilon>0\}$
(using \mathcal{A} has been necessary to ensure the meet property; in the case of one d this is automatio).

Obviously, $U(d), U(D)$ are weak uniformities. If d resp. all the members of D are star diameters, $U(d)$ resp. $U(D)$ is a uniformity.
4.6. Theorem: U is a uniforitity with a countable basis iff there is a metric diameter such that $U=U(d)$. (Note that this fact provides the formal definition of metrisability in [3] with a more concrete contents.)

Proof: Consider the basis $A_{0}, A_{1}, \ldots, A_{n}, \ldots$ from 4.3 and define $f: L \rightarrow \mathbb{R}_{+}$by putting

$$
f(x)=\inf \left\{2^{-n} \mid x \leqslant a \text { for some a } \in \mathcal{f}_{n}\right\}
$$

Obriously, f is a promdameter. How, let S be as in $\mathscr{P}(L)$ and let $d(a) \leq 2^{-(n+1)}$ for all $a \in S$. Thus, we have for each $a \in S$ a $b(a) \in A_{n+1}$ such that $b(a) \geq$ a. Hence, $V S \leq V\{b(a) \mid a \in S\} \in \mathbb{A}_{n+1}^{*} c$ $\subset A_{n+1}^{* *} \prec A_{n}$ so that $V S \leq b$ for some $b \in A_{n}$. Thus,
$f(a) \leq 2^{-(n+1)}$ for all a<S implies $f(\vee S) \leq 2^{-n}$
and hence $f(V S) \leqslant 2$ mp $\{f(a) \mid a \in S\}$ so that f is a star diameter.

How, let x, y, z be auch that $x \wedge y \neq 0 \neq y \wedge z$. If $f(x), f(y)$, $f(z) \leqslant 2^{-(n+1)}$, whe have $a, b, c \in A_{n+1}$ such that $x \leq a, y \leq b, z \leq c$. Hence, $a \vee b \in \mathbb{A}_{n+1}^{(2)}$ and $a \vee b \vee \in \in \mathbb{A}_{n+1}^{(2)(2)} \subset A_{n+1}^{* *} \prec A_{n}$, hence $f(x \vee y \vee z) \leqslant 2^{-n}$ and we conclude that also (3 w) is matisfied. Thus, by 3.11 there is a metric diameter d such that

$$
\frac{1}{8} p \leq d \leqslant 1
$$

We oneak easily that $U=U(f)$ and that $U(f)=U(d)$.
On the other hand, obviousis every $U(d)$ has the countable basis $\left\{\left\{a \left\lvert\, d(a)<\frac{1}{n}\right.\right\} \ln =1,2, \ldots\right\}$.
4.7. Theorem: For every uniformity U there is a set of metric diameters D such that $U=U(D)$.

Proof: follows easily from 4.4 and 4.6.
4.8. Remark: The constructions of Section 3 have served the purpose of crossing the gap between the atar diameters and the metric ones (of course, this has to be done if we wish to have a generalization of the well-known metrization theorems see Section 2). To prove just that
U is a uniformity with a countable basis iff there is a star diameter d auch that $U=U(d)$
(and a similar weaker analogon of 4.7) one needs the first half of the proof of 4.6 only, without any reference to Section 3.

Similarly, one immediately obtains that
U is a weak uniformity with a countabie basi iff there is a weak dianeter d such that $U=U(d)$, end that

For every weak uniformity U there is a set of weak diameters \mathscr{D} such that $U=U(D)$.

There seans to be a problem of some interest as to whether the weak diameters in these statements can be replaced by additive ones.

Reference

[1] B. BANASGEETSKI and C.H. MULVEY: Stone-Čech compactificam tions of locales I, Houston J. Math. 6(1980), 301-312.
[2] Z. FROLfK: Internal oharacterizations of topologically complete apaces in the sense of E. Čech, Czech. Math. J. 12(87)(1962), 445-456.
[3] J.R. ISBEL\& Atomless parts of apaces, Math. Scand. 31 (1972), 5-32.
[4] P.T. JOHSTONE: The point of pointleas topology, Bull. of the AMS (New Series) 8(1983), 41-53.
[5] J.K. KELLEY: General Topology, Van Nostrand 1955.
[6] A. PULTR: Pointless uniformitiea I. Complete regularity, thi: journal 25(1984), 91-104.

Matematicko-fyzikalni fakulta, Univerzita Karlova, Sokolovské 83, 18600 Praha 8, Czeahoalovakia
(Oblatum 17.1. 1984)

