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ON SOME CLASSES OF COMPACT SPACES LYING
IN £ -PRODUCTS
G. A. SOKOLOV

Abstract: In this paper results on thg stpucture of per-
fect classes in the sense of A.V. Archangel skii [1] are pre-
sented. We give topologicel characterizations of compact spa-~
ces X for which the space C_(X) of all continuous functions

with the topology _of pointwise convergence is a X -analytic
space or a Lindelof = -space.

Key words: The space Cp(X), X -analytic spaces and Lin-
delof = -spaces, perfect classes of compacts.

Classification: 54C35

I. A.V. Archangel ‘skii [11 introduced the notion of the
perfect class of topological spaces and proved the following
remerkable theorem

(x) Let 7 be a perfect class, X be a compact, YC CP(X)
be a subspace separating points of X and Y € 5 , Then
Cp(X) e P.

Moreover, A.V. Archangel ‘skii 1] has shown that the class
('Pl of all X -analytic spaces and the class 3"2 of &1l Linde-
16 = -spaces [1, 3, 6] are perfect. We need here some
strengthening of the Archangel ‘skii ‘s definition of a perfect
class (in [1] somewhat weaker than condition (A3) below is re-
quired). We do not know whether our definition is equivalent
to the original one, but observe that all results of {1) hold
in the new gituation; the class (Pl and the class 3"’2 satisfy
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our modification and, actually, we are able to establish new
facts on the structure of "perfect" classes in this regard.
(See, for example, Remark 1.) Throughout this article we do not
use the Archangel ‘skil’s definition, fer this reason we venture
to preserve the same name "perfect" for the next notion:

A class P of topological spaces is said to be perfect if
it satisfies each of the following conditions.

(A1) P contains all compact spaces and the countable
discrete space N,

(A2) 12X ¢ P and Y is a continuous image of X or a clo-
sed subset of X then Y ¢

(3) 12X €P , ncN, then ”ngn e P,

If ® is a perfect class we denote by 4(7P) the class of
all compaot #paces X such that X ¢ ¢ () if and only if
cp(x) € ® ., The main section III of this paper is devoted to
a study of classes £, = €(P)) and ¢, = €(%,), where

3?’1 and 5’2 are as above., We give the characterization of

these classes which is similar to the Rosenthal ‘s one of Eber-
lein compacts [4] and obtain some consequences of our charac-
terization. Results in the section II are that the class #€(%)
is closed under some standard topological operations. We prove,
in particular, that if a Corson compact X is a countable union
of Eberlein compacts then X € ‘€1. The known example in this
regard (M. Talagrand [5]) states that there exists a Corson
compact with these properties which is not an Eberlein compact.

Our terminology and notations are standard and follow the
previous author’s and A.G. Leiderman’s paper [6]. In particu-
lar, we denote by = (T) the = -product of real lines having

T as an index set,
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II. Throughout this section ° demotes some perfect class.

Theorem 1. The class $® contains any countable union and

any countable intersection of its elements.

Proof. a) Let X be a union of its subspaces X, and
xn ¢® , neN. Then X is a continuous image of the disorete
sum Y 'm?N xn and Y is homeomorphic to the closed subspace

of (m,TnTN X,)= N, Therefore, we obtain X e ® by (A1) - (A3).
b) Let X be a common subspace of X € P , neN, and

X ',,‘,QN xn. Then X is naturally homeomorphic to the "diagonal™
in M’T;TN Xn, hence X can be identified with a closed subspace

of this product and X ¢ P by (A2) and (A3).

Remark 1., By (A1) and Theorem 1 K,;-Bpaces, hence by (A2)
'JC-a.nnlytie spaces belong to every perfect class . Therefo-
re 3’1 is the smallest perfect class. Is it true for perfect
clagses in the sense of A.V. Archangel ‘skii?

For a continuous mapping ar :X —> Y, the induced continuous
mapping aroscp(y)a cp(x) is defined by the formula m’o(f) -

=L og,

Theorem 2., The class ¢(J°) is closed under the follow-
ing operations:

a) countable products,

b) finite unions,

¢) countable intersections,

d) continuous images,

e) closed subspaces.

Proof. Let X be & product of X e %(T) and HX —>X,

be a projection for-each n<N. Then the set Y = /), wg(cp(xn))
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lies in cp(x) and separates points of X. By (%) and Theorem 1

we have (a). Assertions d) and e) follow from (x ), (A2) and
the next general fact: o is an injection (a surjection) iff
° 18 a surjection (an injection). To prove b) it is enough

to remark that the map £ +—> (flx1'f|12)’ where X = X,u X, and

recp(x), is a homeomorphism of cp(x) with a closed subspace of
cp(x1)x cp(xe). Finally, the seme reasoning as in the part b)
of the proof of Theorem 1 proves the point ¢). Q.E.D.

It should be mentioned here that a generalization of the
point b) of Theorem 2 for countable unions 1s false, Indeed,
let X = bN be & compactification of N whose remainder BN\ N is
homeomorphic to the one-point compactification of the uncount-
able discrete space. Then X is the union of BN\ N and single-
tons {n%, neN; all of these sets are Eberlein compacts and the-
refore they are elements of “21. It is evident that X is sepa~
rable and nonmetrizable, hence, X is not a Corson compact and
by [7] X & ‘51. However, if we add to conditions on X to be a
Corson compact then the generalization mentioned above is true.
To prove this essertion we need scme new facts concerning Cor-
son compacts.

Let us fix a Corson compact X and some embedding of X into
2 (T). One can consider the point x , % ¢ T, and one can
suppose that x(% ) = O for every x e (1), Moreover, we may as-
sume that X separates points of T v i{x} . We equip the set
P u{x}? with the weakest topology for which any x€X is conti-
nuous. We denote the topological space determined in this man-

ner by ’I‘x. It is obvious that the next assertion holds.

Lemma 1. The mapping 2 :Ty ——»cp(x) defined by 9e(t)(x) =

= x(t), teTy, xeX, is a homeomorphism.
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Lemma 2, There exists an open cover -('T;".oc € A} of the
set Tx\{*} consisting of at most countable discrete disjoint
subsets of TX such that

1) sets [ (Tf )Jcp(x)\ {0} ere aisjoint in C (X),

2) if PcTy, x € P and |PADCI£1 for every o c A then
2¢(P) 1is closed in CP(X).

Proof. Since X is a Corson compact by assumption, it fol-
lows from Gul ko s theorem [23 3] that there is a linear injec-
tion u:cp(x) —> 31 (S) for some set S. Observe that ueo (%) =
=0 and put 2 = u o 'ae('l‘x). The topology of the space Ty is
such that TI\U is finite or countable for any neighbourhood U
of the point % . It follows that sets 2  ={z€2;z(s)+ 0},
s¢S, are at most countable, Letting o¢4(s) = 48}, by induction
we define

Lpyq(8) = Ulsupp 23262, s’e < ()3, nz1,
x(8) = ‘oo (s), ses.

It is easy to see that the sets oc(s) are countable and either
disjoint or coincident. The last fact means that the sets
zec(e) = U4 Zs,;s'e o< (8)} are open end either disjoint or coin-
cident, too. Finally, we put T5(%) = (u ¢ s)~"! Z (o) It 18
easy to examine that the family of sets T;(a)is desired.
QeE.D,

Take now {t:;ne N3} - some enumeration of T;' end put
Y= {t;‘; o¢ € AY. The set T 1s discrete and 2 (Ty) v{01 1s
closed in cp(x) by Lemma 2,

Theorem 3. Let X be a Corson compact. Then there exists
a subspace Yc cp(x) which separates points of X and which 1is

a union of closed (in cp(x)) sets Y, such that Yn\{O} is
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discrete for each ne N end the sets Yn\{OI are disjoint.

Proof. It suffices to put Y = oe(Ty) and Y = oe(T}) v
v ‘(0} L] neN. QcE-Do

Since u(Tx) separates points of X, we infer from (k) and
Theorem 3:

Theorem 4. If X is a Corson compact then cp(x) e P 1ife

':IefP.

Definition 1. A set X c = (T) is said to be order closed
if it satisfies the next condition: x€X and |y(t)|l 4 | x($)!
for every tc T imply y< X. The order envelope oe(X) of X c = (T)
is the smallest order closed subset of = (T) containing X.

Lemma 3, If X ¢ = (T) is compact then oe(X) is compact,

too.

Proof., One can consider spaces X and oe(X) lying in R T
end verify that oe(X) is closed in R T, Notice that X (and the-
refore oe(X)) in fact lies in some product of intervals

[—at,at], t €¢T. This proves our assertion.

Lemma 4. If a compact X ¢ = (T) is order closed then
“(TX) is closed in cp(x).

Proof., It easily follows from definitions of topologies
in CP(X) and in Ty.

Theorem 5. Let X be a Corson compact and X € % (4°). Then
for any embedding X into = (T) the order envelope oe(X) belongs
to €(F), too.

Proof. oe X-topology on T U ixX} is a priori finer than
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X-topology; but on T; U{x? these topologies coincide, beceuse
‘!i‘ is discrete and every oe X - neighbourhood of X contains
some X-neighbourhood. Thus the spaces '.L‘x and Too(x) are count-
able unions of the same subspace I’xl vudx} , neN. The desired

conclusion follows from Theorems 1 and 4.

Theorem 6. Let X be a Corson compact and X be a countab-
le union of elements £ (% ). Then X € £(%).

Proof. Let us fix an embedding X ¢ = (T) and put

I, = 6,(T) ={x e =(T); | supp x141%, Then X  is homeomorph-
ic to the one-point compactification of the discrete space T,
therefore X  is an Eberlein compact and X & % (%) by Remark
1.1t X = IyX,andX 6 ¢£(P), we can aspume that X cX,C
CX,C o.o by Theorem 2(b). Every space X,» n = 0,1,..., separa-
tes points of T u £{x} and these spaces give the increasing
sequence of topologies on T u {x} having X~topology as their
upper bound., It follows that the diagonal product of mappings

w 1T —> Ty , neN, is the homeomorphic mapping of Ty onto a
n' X X, X
closed subset of ”N Ty . Using (A2), (A3) and Theorem 4, we
me xn

complete the proof.

Corollary 1. If a Corson compact X is a countable union
of Eberlein compacts then X & ‘61.

III. We begin this section with some characterizations
of X -analytic spaces and Lindel5f X -spaces,

Definition 2. Let X be a topological space and 7 be a
family of open sets. The subset Yc X is said to be y'-compact
1f some finite subfamily of 7 covers Y.
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Theorem 7. &) The space X is X -amalytic iff for every
nc¥ and every n-tuple (k, .....kn) of integers there exists
the closed subdset Ak"””h.c X such that X 'LVN Ay,

Ay yeeesky = Y M,k ,x @04 the following 1a fulfilleds

for sny open cover 7 of X and for any sequence '"h‘nel of in-

tegers the set ‘k "nh T -ocompact for all sufficiently

1reces
large nc K,

b) The space X is a Lindelof X -space iff there exists
a countable family (A of closed subsets of X such that for
any open cover 2 of X the subfemily {A ¢ X j A is 3 -compact}

covers X,

Proocf. We prove only the part (b), because the part (a)
ocsn be verified by the ssme mammer. If X is a Lindelof =-spe-
ce, there is a countable family & of closed subsets of 3X
(AX is the Stome-Zech compactification of X) such that B, =
= N4{B ¢ B 3xcA}cX for every xcX. Ve can assume that B
is closed under finite intersections. The family U ={BnIXy
B &« B3 satisfies all our requirements. Indeed, let 3~ be an
open cover of X and x€ X, There are G,.....Gn from 3 , for
which &xc G4V .U Gye It 1s evident that we have 3,:! c
c G,v ...an for some B ¢« B , therefore, A = BnX is 7~
compact and contains the point x. It completes the proof.

Definition 3. The family o« 1is called weakly € -point-
finite if there 1s « c « such that for every x&X we have
< = U{acn;nslxi where N s{nch <, is finite at the
point x}. The family o is called T -separating points of X
if for any two 4different points there is & o containing
only one of theam.
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The next two theorems are suggested by the well-known Ro-
senthal ‘s theorem [41.

Theorem 8. Let X be a compact. Then the following are e-
quivalent:

a) Xe ‘(2,

b) X has a weakly & -point-finite T -separating family
of open Fy subsets,

c) there is the embedding of X into =(T) and T c? for
each nc ¥ such that T = U -(.'!n;nt lx‘! for every x& X where
L ={nch T,Nnsupp x is finitel,

Proof. &) =p b). Since X is a Corson compact we can assu-
me that X is embedded in X (7) in such a way that 0£x(t)<1
for all x¢X and tc T, We can also assume (by Theoreams 2(d) and
5) that {x € X (?); | supp x1€13c X and X is order closed. Let
Q be a set of all rational numbers and define

ok = U{ecr;r¢Qn(o,1)};

ooy m{U 43t 6Ty

U, ={xeX3x(t)>ri.

It is clear that each U, is an open Fy set and < is T,~sepa-
rating. Moreover, it is easy to cheock that o¢c is a weskly &-
point-finite family as any <, is the same. Let M X — X be a
mapping defined as followss Ilr(x)(t) = x(t) 1f x(t)z r, other-
wise lr(x)(t) = 0, It is evident that lr(x) is a compact 8nd
K.(X)c X, Thus M.(X) is a olosed subset of X, hence, M.(X) < ¢,
and ’l,.(l)e ®, by Theorem 4. By Theorem 6(b) there is the coun-

table family 0, =$A_snecN} of closed subsets of r,r(x) such

that
%)) Ufa e Uy Ais 7 -compact} = T%(I)
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for any open cover  of Tlg.(x)‘ We put o o ={U,, € xy

teAm} and show that the sequence < pn satisfies all condi-
tions of Definition 3., To this end let us fix x€X and an open
cover ¥ of TM (x) 88 follows: <~ consists of the set

T
TMT(X)\ supp M.(x) end eingletoms {t}, % e supp M (x). Then the

family of all ¥ -compact sets Lnr covers !Mr(x). However, it

1s eesy to check that A is 7 -compact iff A_ n supp M.(x)
is finite 1ff < o 18 finite at the point x. Therefore, the
condition (1) is equivalent to the equality

oy m U4y o€ 1s finite at the point x},

as required.

(b) =+ (¢). Let £,:X—>00,1] be a continuous function such
that £3'(0) = X\ U for each U € . Define ar:1X—> =i (a¢) by
a(x)(U) = fu(x). Then o is a homeomorphism. It is easy to see
that or , T = 9~ and T = o¢,, neN, satisty (e).

(¢) = (&), If X satisfies (c) then oe(X) satisfies it,
too. We will assume that X is order closed itself, It remains
to verify that T; € P,. To this end define sets Az = N{ T
k 6§ 6% where 6 runs over the set L of all finite subsets of
N. Let 3 be any open cover of Tx. By the definition of the to-
pology in '.I.‘x we can assume that 7y consists of the set

rr

m
Ty N o4 BuPp X, and singletons 1tY, ¢ €, supp X for some

XyseeesXy in X, For te Ty by (c) we can find n € ¥ such that

Tnkn supp x; is finite for k = 1,...,m, Denoting &= ing 4000

...,nm’{ we have teA, and Ay 1s 7 -compact. Thus, we get a
cover of Tx consisting of 7 ~compact sets, By Theorem 7(b) it

suffices for the proof,
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The main stages of the following theorem are similar to

Theorem 8 and for this reason its proof is omitted.

Theorem 9. Let X be a compact, Then the following &re e~
quivalent:

a) X € ‘%1,

) X has a To-separating ferily 7% of open Fy subrets
and subfamilies Trpennk, & for any n-tuple (kq,...,k ) of

integers such that
-, U = U
R P Thqeooky "N (AN S'S
2) for every xe¢ X and any sequence Qk]_} neN of interers

there is n, such thet 'X’k1 " is finite at the preint x for
eeok

nz n,e

¢) There is an embedding X into = (T) in such a way thst
for some subsets Tk "'knc T, the following conditions are ful-
filled:

1) 7= U

v
weN T Tkqeelk, T

N Thqe kK
2) 1t &kn\ is e sequence of integers and x€ X then the

set Tk1...kf\supp x 1is finite for all sufficiently large e.
n

Remark 2. It should be noted that part (c) of Theorems 7

end 8 give us a new information even for Eberlein compacts.

Corollary 2, Let X € “&2. Then there exists a countable
tamily (X' of closed subsets of X such that N{ A € X 3xe A}

is an Eberlein compact for every xe X,

Troof., We cen assume that X satisfies (c) of Theorem 8,
i.e. there is T and T c T for ne W such that X c =(T), T =
= ULT ineN 1 for every xe X where N is the set of all n&N
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for which T,Nnsupp X is finite. We can assume that X separates
points of T uix} . Let R, be a retraction im X (T) defined
by R (x)(%) = x(t) if t€ ¥, otherwise R (x)(t) = 0. Denote
6,(?) =fx e (D), | supp x| £ xland A « {R]' &, (Dsncy,
kcN3}, It is evident that all elements of CL are compact. If
x6¢X snd nc¥N,, thn R maps O, =N{A el 3xcA} 1nto a
&'-product of real lines, therefore, R ( XU ) is an Eberlein
compact. Simce T = U {!‘;nelx}, the femily of mappings R ,
2N , separates points of A , It follows that the diegonmal
product of R is a homeomorphiss of (  into the countable
product of Eberlein compacts R ( (), ne X, hence, a‘ is an
Eberlein compact too, as it is required.

Corollary 2 allows us to state next questions:

(1) 1Is the condition of Corollary 2 sufficient for
I ek,

(2) (S.P. Gul ko). Given X € %¢,, do there exist Eberlein
ocompacts Hk and Corson compacts xn such that In N xnk and
X is a contimuous image of a closed subset of m.g“ I,
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