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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
25,2 (1984) 

ADEQUATE FAMILIES OF SETS AND CORSON COMPACTS 
A. G. LEIDERMAN. G. A. SOKOLOV 

Abstract; In this paper we construct an example of a Cor
son compact X for which the space C (X) fails to he a Linde
lof 22 -space. This example gives the negative answer for one 
problem of A.V. Arhangel skii. The notion of an adequate fami
ly is used. We establish its connection with the classes of 
Sberlein and Corson compacts and also with some set theoretic 
problems. 

Key words and phrases; Corson compact, Eberlein compact, 
adequate family of sets, partially ordered set, Lindelof 2 -
space. 

Classification: 54C40 

1. Introduction. The main result of this paper is the fi

nal solution of the problem of A.V. Arhangel 'skii 11]i are the 

following conditions 

(1) X is a Corson compact* 

(2) The space C (X) is a Lindelof .2-space; 

equivalent for a compact space X ? 

The most general results concerning the Lindelof property 

of the space C (X) were obtained by K. Alster, R. Pol t 53 and 

S.P. Gul'ko £2j who proved that C (X) ° is Lindelof for every 

Corson compact X. R. Pol L63 constructed an example of a com

pact space X with the properties that C (X) is Lindelof and X 

is not a Corson compact. 
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In aooordanoe with M. Talagrand 173 • we denote by *i 

and ^g the ola0000 of all compact spaces X for which C_(I) io 

X-analytic and a Lindelof 2!-opaoe reopeotivwly. 

It is worth while mentioning that the clasfl *£2 e i a c t l : y 

consists of the compact spaces X, the Banach space C(I) of 

which L. Vasax [43 calls WGD. 

For classes of Eberlein and Corson compacts we use the 

symbols *£ and 7C respectively* 

M. Talagrand [83 proved % c ^ and oho wed in £93 that 

these classes are striotly different. It is well known that 

%+ c ^p* but the question about the coincidence of these o la fl

ees is still open. K. Alster and R. Pol [53 construoted an ex

ample showing that *£.- 4» % . The inclusion ^ a 3C (--»••• im

plication (2) =--> (1) wao proved by S.P. Gul'ko [3J. Hotice 

that the same conclusion easily follows from the L. VaSax's 

work [41. 

In this paper we show that the converse inclusion (i.e. 

implication (1) -=-.> (2)) does not hold. The notion of an ade

quate family of sets is essentially used throughout the paper. 

The definition of bushes is given as a natural generalization 

of trees. We construct once more an example of an Eberlein 

compaot which is not a uniform Eberlein compact. This example 

is much simpler than the analogous one of Y. Benyamini and T. 

Starbird C103. 

All the results with the exception of Example 5.2 are ob

tained by the first author. 

2. Terminology and notation* Our terminology io 0tan~ 

dard. The symbol H stands for the set of natural numbers* .R 
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i s the real l ine* | T | denotes the cardinality of a s e t T* o.>.j 

i s the f i r s t uncountable ordinal t 3) • •{0 tl5 stands for the 

two-point discrete space* 

For a compact space X we denote by C (X) the space of a l l 

real-valued functions on X endowed with the pointwise topology* 

for a topological space X l e t d(X) be the density of X and 

e(X) be the Souslin number of X* The closure of a subset Ac X 

I s denoted by lAlj* 

Recall that Corson, Eberlein. strong Bberlein and uniform 

Eberlein compacts are the compact subspaces of 

S(IR tT) « * x c E T j I supp x I 6 JK0?, 

where supp x « ^t € T t x ( t ) 4 5 0 } | 

c 0 ( R tT) . { x e lRfj Kt € Ttb-(t)l> *> i I -* *Q V& > °h 

6(S) ,T) - 4 x 6 S T i I supp x | < J « 0 h 

£>(K,T) mUsKTi±£r\ x ( t ) ! 2 * 00} 9 

respectively* 

A completely regular space Z i s a Lindelof 2!-space i f the

re i s a countable co l l ec t ion of closed subsets \f^ n€$ s w n 

that for each z s Z the se t &% - r . i lV^»zi** » n ? l f l nonempty 

and contained in Zt where (5 Z i s the Stone-Seeh compactifica

t ion of Z. We can assume that the co l l ec t ion ^y}nts i s o l o s e < i 

under f i n i t e in tersect ions , therefore, i f U i s any neighborhood 

of B^ in Z then B%c I c U for some ne H* 

If (T f-4) i s a part ia l ly ordered s e t , then p ,q€T are 

compatible i f there e x i s t s s c T such that s * p f s ^ q , otherwi

se p and q are incompatible* (T f-£) i s oec i f T does not eon-

tain an uncountable subset of pairwise incompatible elements* 

Elements p ,qcT are comparable i f p<Tq or q£ p holds, otherwi

se p and q are incomparable* Every to ta l ly ordered subset of 

(T t £ ) i s ca l led a chain* 
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3* Construction. The following def init ion introduced In 

17J plays the key ro le . 

Definit ion 3 . 1 . Let T he a aet . A family OL of i t e sub-

setB i s cal led an adeouate (n-adequate) i f i t s a t i s f i e s the f o l 

lowing conditions: 

i ) OL contain* a l l one-point subsets of T. 

i l ) A subset A of T belongs to OL i f f every f i n i t e (k-

point , k«6n) ©ubset of A belong© to OL . 

I t follows from the definit ion of 01 that i f A 6 OL 9 BcA9 

then B m OL . Put I • -*#•• 1 % A*A € GC J c 2* t where ^ ^ i s the 

characterist ic function of A. As observed in 111, i f OL i s an 

adequate family, then X i s a compact space. We ca l l X an adequa

te oompaot in th is case. Evidently, X i s the Corson compact i f 

OL cons is ts of at moat oountable seta . 

The above constructed oompaot space on the 2-adequate fa 

mily of seta coincides exactly with "the spaoe of complete sub

graphs of a graph*1 defined by M. Bel l [111 . 

The property to be a remainder of the countable discrete 

space whioh he invest igates i s apart from the subject of our 

paper. 

A family of a l l ohains of an arbitrary part ia l ly ordered 

aet i s the most useful example of adequate famil ies . 

.Definition 3 . 2 . A part ia l ly ordered se t (Tf -O i s cal led 

a bush If for every t e T the se t t « - i s e T : s < t t i s t o ta l l y or

dered* A bush i s cal led an A-bush i f i t does not contain an un

countable ohain. A pairwise incomparable subset of a bush i s 

ca l led an antiohain. .finally 9 en A-bush i s an S-bush provided 

\t\ m *... and i t does not contain an uncountable antiohain. 
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The notion of a hush naturally generalizes the known con

cept of a tree which we should obtain if we demand that the 

sets t art well ordered. In this case, under the additional as

sumptions that all levels are nonempty and countable 9 any A-bush 

is an Aronszajn tree and any S-bush is a Souslin tree. An Arons-

zajn tree which is a union of a countable family of antichains 

is called special [133* 

4* Results. Henceforth, X • X ^ is an adequate compact; Ci 

is an adequate family of subsets of T. Consider the subset of 

C (X) \&x :teT I ui®\ , where cTt(x) « x(t)f xc X and O 

is the constant zero-valued function. It is known [73 that this 

set is closed in C (X) and is homeomorphic with the space T* * 

• T ui*\ endowed with the following topologys T is the disc

rete subspace of T* and every neighborhood of the point i* I 

is the complement of finite unions of members of 0% • 

The fact that T* is closed in C (X) and separates the 

points of X yields 

Proposition 4.1. L7.1. The space C (X) is a Lindelof 52-

space if and only if T* is the same. 

Theorem 4.2. Let (T,^) be a bush. Let d be a family of 

its chains and X * X^ be an adequate compact. Then C (X) is a 

Lindelof -S -space if and only if T is a union of a countable 

family of antichains. 

Proofj (if). Assume that T » C ^ Tn„ where every T n is an 

anti chain. Then I u { * l is the one-point compact if icat ion of 

the discrete space T n for every neN, hence, T* has the type 

K^ . Consequently, in this case C (X) has the type K^- (cf. [7J) 
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and, moreover, i t i s a Lindelof 2C-space. 

(only i f ) . If C (X) i s a Lindelof Z?~apaoe then,mccord-

ing to Proposition 4 . 1 , the space T* i s the same. By the de

f i n i t i o n , there la a sequence of s e t s ^ ^ - ^ w a n d a colleetiom 

of compacts B , 3 t for each point t € T so that , for every neigh

borhood U of the se t B t , there I s n g l suoh that B^c f & c U. De

note by At - T * \ ( t \ B t ) f t e T and ? n - 4 t c T j t € ? n c k£, n € l . 

The set A* i s open and contains B . , hence, i t i s clear that the 

family { V \ -« covers T. Observe that the compact B. does not 

contain an i n f i n i t e discrete subset, therefore, I t follows from 

the def ini t ion of the topology on T* that for eaoh t £ T the 

set B.J. does not contain an i n f i n i t e chain. From this we conclu

de that the se t ?nT w i s f i n i t e , because Y w c ? w c A 4 and t n V c 

n ' n n % n 
c t r i B t for every tfcVn . Denote by 

Wn m * ^ t e V
n * I tr»Vn . • mf n€H f m • 0 f 1 f . . . J . 

The set I m is an antichain, because it follows from ti < t0, nf m * i d9 

where t . U ? . that I %* A V- ( < l%r.?J. Thus T - JjA U rt W m 1 * d np I n d n m-s-1 mv.*v nfm 
and every W„ ̂  is an anti chain. * nfm 

Corollary 4.3. Let (T f^ ) be an Aronssajn tree. Then 

C (X) is a Lindelof & -space if and only if (T f£ ) Is special* 

Corollary 4.4. Let (T9£) be an S-bush (in particular, a 

Sou si in tree). Then X is a Corson compact, for which C (X) is 

not a Lindelof 2?-space. 

Notice that every S-bush contains a Souslin tree. The proof 

of this statement, in fact, could be easily extracted from £127. 

Thus we have 

Theorem 4*5. The existence of an S-bush is equivalent to 

the Souslin problem. 
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I t i s known that , by the theorem of J. Baumgartner, i f 

Martin axiom plus 2 ° >.K.|(MA + 1CH) i s assumed, then every 

Aronszajn tree i s special . A s l i ght generalization of the W. 

P le l s sner ' s proof [ 1 3 , p. 183 allows us to e s tab l i sh the analo

gous assert ion for A-bushes. 

Theorem 4 .6 . (MA + 1CH). Let ( T 9 ^ ) be an A-bush and 
tr 

I Tl< 2 ° . Then T i s a union of a countable family of antichains. 

M 
nevertheless , there i s an A-bush ( T 9 ^ ) with ITl • 2 ° and 

which cannot be decomposed into a countable family of ant i -

chains. I t i s the matter of Example S .1 . 

An adequate compact constructed on an S-bush has some more 

properties. 

Theorem 4 .7 . Let (T,^.) be an S-bush. Let (X be a family 

of i t s chains and X - X^ • Then d(X) * 4*»19 c(X) - «s*0. 

Proofs X i s a subspace of 3 , then d(X).£ ITl • .K-j. The 

converse inequality follows from the nonmetri stability of X* In 

order to prove the remaining part, according to [11 9 3*33 , I t 

suff ices to show that the part ia l ly ordered set ( P , ^ ) cons is t 

ing of a l l f i n i t e elements of C£ , part ial ly ordered by A.£B 

i f f BcA, i s ceo. Suppose, otherwise, that \kt/^\tA<c> i s an un

countable co l l ec t ion of pairwise incompatible elements of 

(?,<£)• Denote by m^ « max -Ctstc A^} • Since (T9.tf) contains 

no uncountable antlohain, there are d i s t inct aC 9 /X-rfi). such 

that maC< m^ • Because i ^ i s a to ta l ly ordered subset of 

(T , -£ ) , i t follows that A^ U A- c m̂  and the elements A^ , A^ 

are compatible In ( P , - * ) . The contradiction proves the theorem. 

- 239 



As was shown by l .V. Arhangel'skli ( c f . U J ) the construc

t ion of suoh a Corson compact in the framework of ZFC i s impos

s i b l e . 

Theorem 4.8 . Let X be an adequate compact. Then X i s an 

Eberlein compact i f and only i f there i s a part i t ion T - ' V N ^ I 

such that 1 supp x r. T, \ <r jc for each x e X and 1 € N. 

Proof: ( i f ) . Denote by ar̂  the projection of X onto T... 

Then the diagonal product hst^iT —^"H^ ^ ( X ) i s the homeo-

morphic embedding of X into the countable product of strong E~ 

berleln compacts. Hence. X i s an Eberlein compact. 

(only i f ) . Clearly, X i s the zero-dimensional compact, for 

the zero-dimensional Eberlein compact X the space C (X,$ ) has 

the type Kg as i t was observed by many authors (C51»C7J). T* 

i s olosed in C (Xy3>), hence, T* also has the type Kg . Then 

T* « . U T^ u -t#l and every T^U-C-KI i s compact. This means that , 

i f AcT4 and A e Ol § then U i ^ J* . l o 

Theorem 4 .9 . Let X be an adequate compact. Then X i s a uni

form Eberlein compact i f and only i f there i s a part i t ion T « 

« . CL T. and an integer-valued function H(l) suoh that 

1 supp x n T i \ < N ( i ) for each x e X and i e N . 

Proof: ( i f ) . The argument i s the same as in the proof of 

Theorem 4.8 with the s l ight difference that ^ ( X ) in th is case 

i s a uniform Eberlein compact. 

(only i f ) . We may assume that for each t c T the function 

j r^ eX. Then the se t S - i %#.$ t€rj. i s disorete and has a uni

que l imit point © in X. According to t10 t Lemma 3]» there i s 

a part i t ion T « U^ P and neighborhoods U^ for each ;#.$$*» 
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t d T in I such that if t.j ft2,.. „ ftn+1 e P are distinct, then 

iv+4 . 
C\ U, • 0. Without loss of generality we can assume that 

eaoh Ut is basic, i.e. 

Ut « 4 y 6 X i y ( t ) « 1 f y|M m 0 j f where Mtc Tf I Mt \ < 4<Q. 
t 

Thus P„ « U n r„ m, where P « {te n^ilM+l « «|. Renua-n /wv.»o nfmr nfm
 l n t • * 

bering r n fflf we obtain the partition T « •Vg'tf-M and integer-

valued functions n(i) and m(i) such that Ut «-CycXty(t) « 1f 

yjM m 0\9 where MtcTf lMtl • m(i) for each t£ T^9 and 

/ V Ut • 0 for arbitrary distinct t.j ftpf... $*n(±)€ ^±» This 

partition is required. The function N(i) may be chosen as fol

lows: N(i) » 0^.2» w h e r e m " ( m ( i ) + 1 ) 2 + 1» n - n(j-)» To 

prove this, suppose on the contrary that there exist x€ X and 

i£ N such that I supp xnTil>N(i). For every Ac supp xnT. with 

lAl » n(i) there are distinct t,scA such that UtA U • 0, ot

herwise, ^ A ^ X ^ A U V *•*- contradiction with .Q Ut • 0# Refor

mulate the situation to the language of the graph theory. We 

have a graph of N(i) vertices. The vertices t and s are joined 

by an edge iff U..r.UM « 0. This graph has the property that 

for every n(i)-tuple of vertices there exists the pair of ver

tices which are joined by an edge. Then the ErdSs-Szekeres s 

estimate for the Ramsey problem £15f p. 30] yields that there 

is a complete subgraph with m vertices. Since m « (m(i) + 1) + 

+ 1, it is easy to conclude that for some vertice tf IM..I > 

>m(i) holds. This is a contradiction with our assumptions and 

the theorem is proved. 

5. Examples. As has been noted, every adequate compact 
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is zero-dimensional. But any zero-diraensional Corson compact is 

not necessarily a compact constructed on some adequate family of 

sets* fo see this it suffices to take a nonmetrizable first-co

untable zero-dimensional Corson compact, for instance, the Ale-

xandroff double of the Cantor cube 3) • If it were adequate, 

then in consequence of nonmetrizability, it would contain a one-

point oompaotlfication of the uncountable discrete space in con

tradiction with the first axiom of countability. 

Example S. 1. Let Q be the rationale. By e'Q we denote the 

set of all bounded well ordered subsets of Q ordered as follows: 

s<t iff S is a proper initial segment of t. e'Q is clearly a 

tree without uncountable chains. Then by 114, Theorems 2.4, 3.3 

(ii)3 it follows that SQ is not special. 

The second example described below is obtained by the "dou

bling" of the space constructed in 153. 

Example 5.2, Let T be an arbitrary subset of the real line 

E with |Ti -s .y».j. It can be well ordered by the type a)-. De

fine the partial ordering on Ts s< t iff s is less than t in 

both the reals and the ordinals order. Denote by Ol^ and Ot 2 

the families of all chains and antichains of (T,.fc) respective

ly. It is well known [13, p. 8J that C/C a Ot 1 u Oi^ consists 

of at most countable sets, hence X » X ^ is an adequate Corson 

compact. Let us observe that, according to the Ramsey theorem 

£13, p. 71, every infinite subset- of T contains an infinite sub

set which belongs to the family Ot . Show that T* and conse

quently C (X) fails to be a Lindelof S -space. Suppose on the 

contrary that there is a family of compacts 4FJ m^ from the 

Stone-Cech compactification (3(T*), closed with respect to fini

te intersections, and such that for each point x e T * the set 
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B^ = fMF :x e F n , n e N} i s nonempty and contained in T*. Every 

se t B^ i s compact, therefore i t i s f i n i t e , and since jTi * «tf.j i t 

i s easy to see tha t some B i s d i f fe ren t from any F . We can sup

pose tha t Bx - O N F n . » w h e r e ^JcH and \ ^ \ + ^ *n+*X 

for each i c N. Pick up points -*-!<£-?n \ -?n • The s e t \x£ i e N 

i s i n f i n i t e , hence, i t includes some i n f i n i t e subset which be

longs to OC . Without l o s s of gene ra l i ty we can assume tha t 

the se t ix£ i € N has i t s e l f t h i s property. Then, on the one hand, 

"*x^ i£N i s a di-301*6*6 subset of T* and, on the o ther hand,from 

i t follows tha t the se t -ix^ i € N has a l i m i t point i n T* . This 

con t rad ic t ion proves the a s s e r t i o n . 

Example 5 .3 . Denote by IX the se t of a l l o rd ina l numbers 

l e s s than a)., and put T - i l x i l . P a r t i a l ordering on T i s : 

(oC-j, p>^)< (<>C2, ft2) i f f o C j ^ <*2» #1 > fi2*
 E v e r y chain of 

( T , ^ ) i s f i n i t e . Indeed, i f -Ct^ i € N i s a chain, where t^ » 

«• ( <-^if f^jt), then we can assume tha t <=C^ <<oc2< m.m t hence /3-j >-

> P>2> ••• n°--ds, which i s impossible. (T, &) has the following 

property: for any i t s p a r t i t i o n a t a countable family of subse ts 

a t l e a s t one of the subsets contains chains with any f i n i t e 

l eng ths . Let us prove t h i s claim. I f T » LĴ  A for each <~C & I I , 

n 6,N, denote b y A ^ . » - f P e j Q . : ( o C , l 3 ) e A T . Then Uw A? - H and n " n* ox 6 ri n 

&> <• » sup sup A^. One eas i ly sees t ha t for each oC 6 XL t h e r e 

e x i s t s n6N such tha t sup A?" « o>^9 Consequently, the re ex i s t 

P c II , IPi 3 j<;1 and n Q eN such tha t sup JL£ - o>1, for eve-
o 

ry oc e f .We claim that for every natural k the set An con

tains a chain with the length k. To prove this let us re^^ber 

naturally the first k elements of P : U^ < aC2 < # # # oCk. ^^oose 
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a point fl^ e A£ . Then sup A^ • <*>-j Implies the existence 
. , 0 o 

of /&£ - j * ^ with (hy, 1 -=*" /S-̂ . Proceeding by induction we ob-

° «± 
tain the finite sequence ft, < P̂ .-j < ... < P«| * where /^c A. . 

Clearly. -$(ocif / S . ^ ) } ^ is the chain and is contained in A n . 
o 

If X i s an adequate compact constructed on the family of 

a l l chains of (T,-£ ) then, eviden t ly . X i s a strong Eberlein 

compact but i t i s not a uniform Eberlein compact by virtue of 

Theorem 4 . 9 . 

The same example shows that for an arbitrary part ial ly or

dered set Theorem 4*2 i s not true. 

The authors express their gratitude to S.P. Gul'ko for nu

merous helpful discussions and encouragement. 

Remarks* Recently we have been informed that K. Alster 

and R. Pol proved that their example from [53 has the same pro

pert ies as our Corson compact in Example 5*2. 

Also, after this paper had been prepared for print , we d i s 

covered that D. Kurepa, in the paper Ensembles Ordonnea et Rami

f i e s , Publ. Math. Univ. Belgrade 4(1935) , introduced the notion 

of pseudotrees which coincide with one of our bushes. But our 

c lasses of bushes are investigated with other purposes. 
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