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SINGULAR SOLUTIONS TO LINEAR ELLIPTIC SYSTEMS
J. SOUCEK

Abstract: Discontinuous solutions of linear elliptic sys-
tems With bounded measurable coefficients are studied. A cons-
truction of an elliptic system, which has solutions disconti-
nuous on a dense set, is given. Further it is shown that gene-
ric solutions of De Glorgi type equations are singular.
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Classification: 35B65, 35D10

In 1968 De Giorgi (1] (see also [2]) constructed a linear
elliptic system with bounded measurable coefficients, which has
a discontinuous (and even unbounded) solution. His construction
can be expressed in the following simple terms. Let 31 be a unit
ball in R®, n23.

Lemma 1. Let b = (blj‘_), i,k = 1,...,n be a matrix of 12-

functions such that

(0.1) Jp, vi& 5 =0, V& e o RN,
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(0.3) & - bf - u}}i. uen' (8,,R%).

Let us suppose, moreover, that

(0.4) u d = uii &>o,
(0.5) ﬁ;—?a— <,

Then u is a solution of the elliptic system

(0.6) fB1 alig “l;i‘i’ 23 ix =0, Vb e c:" (B, ,RM.

Proof. By computation. The ellipticity and boundedness of

a’fs‘ follow from (0.5) and (0.4).

The example of Giusti and lliranda [2]1 corresponds to the

choice
(0.7 W@ = xlxl™,
(0.8) ¥ =izt (o + By x xg Ixi7H)

The solution (0.7) is discontinuous at the origin of R%,

In the first part of this paper we give a construction of
an elliptic system, which has solutions discontinuous on a den-
se set of points. This implies, in particular, that the vector-
valued quasi-minima for the Dirichlet integral [3, 7] need not
be even "partially" reguler. In the second part we show that
almost every solution to the equation of De Giorgi type is sin-
gular, or more precisely, the generic solution is singular. In
particular, we shall give a sufficient condition on the bounda~
ry data guaranteeing that the solution is singular. The first
part of this paper was already partly reported in (3, T]. Ve

would like to thank M. Giaquinta and J. Nedas for discussions
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and inspirations in connection with this work.

1. We shall consider the following situation (and notati-

on)

() @ mmy o, izl o =Gy - np,

(1.2)  f = £ (P + 1)( 0y + g, 1), F>0.

Then we have

(1.3) & ar ' Fay, + 6, ny), 6= r50,

(1.4)  aug =2 P@n-1),

(1.5)  @a=r2H Ha=Fn-1+ @+ DEEF2
We see that the coefficients (0.2) are elliptic, since
2 k kh . h 2
(1.6) A Ig1%4 §4 855 €7 £ A AE T
with
H

(1.7 .7L°+1, A1I1+m,
We shall use the following notetion for translated functions

k k
(1.8) u(y)(x) = nk(y)(x) = ui(x - ¥), Ty ()= tx - yl

k k
and similarly for bi(y)' di(y)‘
Let ( be a positive bounded Borel measure on B,. We can form
the superpositions using

(1.9)  a* . fB1 ul(cy) a@(y), B = fB, blit.(y) ey,

and similarly for a&. Finally, let us denote by
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kh kh 3{ ah:
(1.10) iy = Jid +‘l:3'
Theorem 1. The vector-function G* is a solution to the el-

liptic system
(1.11) _{‘ ‘kh“‘ X ‘x‘j &x =0, VP e CZ.

The ellipticity constants —.ﬂo. 11 of this system are related to
Aor Xy Izom (1.7) by

(1.12) A, =1, A, &2
Let us suppose that

(1.13) = h’Z" €y J'(’k). Ex”> 0y Y €By,

where d"(y) is ithe n-dimensional Dirac measure concentrated at
Xhe point y.

Then ¥ is disoontinuous at points y, and we can clearly choose
the set {y} %o be dense in B,.

Proof. Let us define functions S“(x). y,2€B, by
4
(1.14) l=- en(x) - ‘nk(y)(x) nk(’)(x)\ .
Clearly, O £ 6”,‘41. Then we have

-1 -1
Uy z) = Ty) T (Fa-1) + G 6,
(1.15) 3 " >
%) &) = T(y) () E - & Ey,)

and this implies

(1.16) W +3 = P(n-1)A + GB, 3.3 = HA - G°B,

where the functions A(x) and B(x) are defined by

(111 A = [0y Thdumaa(e), B = [ r)ril) € apmIap(e.
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The best ellipticity constant x1 can be expressed by

- 2
H-G B(x
(1.18) Ay =1+ oup, ¥ O () - o

The inequality X Z O implies that A, £ 2.,

Remark. The optimal choice of F gives the smallest possib-

le ellipticity constent

VT + A +1

2
n-2
(1.19) A1,0pt = NiwT PR ﬂ="'n—_1')—,

which corresponds to the known regularity results [4 - 6] for
systems with A,< .7t1 ,opt*

2. Before stating the general theorem about singular solu-
tion, we shall consider its special case in R3-, so from now on
n = 3, Let us consider the elliptic system (0.6) with coeffici-
ents (like in 12])

kh kh ko-h k
(2.1) afy = d’ija + ByBy, By = d‘ki + 2nyn .
We shall use test functions of the form
(2.2) ®¥ = t(r)n, tecP(0,1),
where n, = xkr"1, r = | x|l. We heve
h -1 .
(2.3) ij =T fd.h;j + (£ -1 f)nhnj
and after & calculation (using 1.1)), we obtain
kh h
(2.4) (aij ) xj)xi = h(r)n,,
where the function h(r) is a second-order differential expressi-

on in f(r) given by

(2.5) h = 10(£" + 2r7'2°).
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Integrating equation (0.6) by parts we obtain
k
(2.6) f31 unh dx = 0

Now we can introduce the spherical mean value of u

@1 w) = [va0ax? [ ovas, v

", By
Equation (2.6) then reads

(2.8) fe v hdx = f; r® n(r) ar aé v(r,Q) dQ =0
1 L2

o that, using (2.3), we arrive at the ordinary differential e-
quation for w(r) (using 2.5))

1 -], o0
(2.9) j;rz w(tn + 2r7'2") ar =0, VYtec?.

This equation is equivalent to
(2.10) 2w+ r W =0

and the basis of its solutions is

(2.11) wy, = const., w, = const. r".

The second solution v, does not correspond to the H‘-tunction
(this ie a general fact, that there is only one H1-solution, ot~
herwise the uniqueness in the Dirichlet problem would be viola-
ted).

Let us consider the Dirichlet boundary value problem with
the data

(2.12) u¥ = oF at 33,

end let uk be the solution, If the data are such that

(2.13) @ = a‘£ g% n, as+o0,

1
then w(1) = o and thus w(t) = @ , Vte (0,1). It implies that
the solution uk cannot be continuous at the origin, as we shall
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show, If uk is continuous at the origin then we can write u.k =

= u¥(0) +T, 1Tl < 1in B, . We obtain

8 .k
(2.14) w(d’)é‘&gﬁu(o)dx+3e_éad'd_ﬂ-éce

and this contradicts w(o') = w =#*0.

Equations (2.7) and (2.11) mean that the mean flux of the
field uk through aBr is constant and thus uk cannot be regular
at the origin provided this flux is nonzero. The solution can

be regular only if «w= 0. There are regular solutions, e.g.

(2.15) uf = ¢ kim 8, X, 8 = constents,

where zkm is the Levi-Civita tensor, This raises an interest-

ing question: are all solutions regular, if w=0 ?

Let us now consider the more general problem in Rn. nz3
for equation (0.6) with coefficients given by (2.1), where
(2.16) B}ic = Py, + Gnn,, F, G = constants, F>O0,

We shall assume that this equation has a radial solution of the

form
(2.17) uiad = g(r)nk,

which is discontinuous at the origin.
Under these circumstances we can state

Theorem 2. If u¥ is a solution to the system (0.6), (2.1)
and (2.16) such that w= j‘;Bq uk n, ds+0, then uk is discon-

tinuous at the origin.

Froof. It is analogous to the one in 3-dimensional case
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discussed above., We write the equation (0.6) with the test func-
tion of the form (2.2). Then we shall obtain equation (2.4),
where h(r) is a function depending on f, ¢’ and f", perhaps more
complicated than (2.5). Equation (2.6) remains true and in the
equations (2.7) and (2.8) r® has to be replaced by r® ', In this
way we get a second-order differential equation for w, amalogous
to (2.9) and (2.10). But g(r) from (2,17) must be a solution of
this equation, because the spherical mean Yrad of u]:-ad is equal
to g times the area of the unit sphere. It can be shown that this
equation is of the Euler type, so that g must be proportional to

a power r=<

ly one H‘-solution; thus w is proportional to g. Then the discon-

s o¢ Z O, We have already noted that there may be on-

tinuity of uk follows by the seme argument as above,

Remark., If we parametrize solutions by their boundary data,
then the space of discontinuous solutions contains the open den-
se subset of the set of all solutions (the same is true in the
B‘-norm on B1). Thus the discontinuity of a solution is a gener-
ic property.

Let R be a subspace of regular solutions to the De Giorgi
system (0.6), (2.1) and (2,16) with A,Z ?ti’opt. One could ge-
nerally expect that R is dense in the space of all solutionsy in
particular, that the singular solution may be approximated by
regular ones (with H1-noms converging to + c0 )., This is exclu-
ded by Theorem 2.

Conjecture:
(1) R is closed in H1-norm.

(11) R has a finite codimension in the space of all solu-

tions.
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[11

[2)

{3)

41

[5)

{6]

7

(1ii) This codimension is one if a, is sufficiently small.

(iv) The standerd Holder-continuity estimate is true on R.
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