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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
25,2 (1984) 

SINGULAR SOLUTIONS TO LINEAR ELLIPTIC SYSTEMS 
J. SOUCEK 

Abstract: Discontinuous solutions of l inear e l l i p t i c sys ­
tems with bounded measurable ooeff ic ients are studied. A cons­
truction of an e l l i p t i c system, which has solutions d i scont i ­
nuous on a dense se t , i s given. Further i t i s shown that gene­
r i c solutions of De Giorgi type equations are singular* 

Key words? Regularity of solutions, e l l i p t i c systems* 

Class i f icat ion: 35B65, 35D10 

In 1968 De Giorgi £11 (see a lso C2j) constructed a l inear 

e l l i p t i c system with bounded measurable coe f f i c i ent s , which has 

a discontinuous (and even unbounded) solution. His construction 

can be expressed in the following simple terms. Let B.j be a unit 

bal l in Rn
f n Z 3 . 

Lemma 1. Let b » (bp» * i k • 1»• • • t n M S matrix of L -

functions such that 

(0.1) -*B. ^ X i " 0 ' V * « C ~ ( B 1 , R n ) . 

Let us denote (the summation convention i s assumed) 

& _,h 
kh (0.2) a S - ď,,cf ďjs** + hJL 
1 3 1 3 *fi 

where 
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(0.3) <-| "• b* - u£ , ueH 1(B 1 fR
n). 

Let us suppose, moreover, that 

(0.4) u^-d • u^ d|>O f 

(0.5) Ą - * M. Ъ.d 

V 
Then u is a solution of the elliptic system 

(0.6) f^ a i } « £ « x ** • °» V * € C ^ (B1fR
n). 

Proof. By computation. The elliptic!ty and boundedness of 

a ^ follow from (0.5) and (0.4). 

The example of Giusti and Miranda 121 corresponds to the 

choice 

(0.7) uk(x) . xklxr
1, 

(0.8) b* . | x r 1 (ncTik + jSy Xjj, x^xl"2). 

The solution (0.7) is discontinuous at the origin of Rn. 

In the first part of this paper we give a construction of 

an elliptic system, which has solutions discontinuous on a den­

se set of points. This implies, in particular, that the vector-

valued quasi-minima for the Dirichlet integral[3, 7J need not 

be even "partially" regular. In the second part we show that 

almost every solution to the equation of De Giorgi type is sin­

gular, or more precisely, the generic solution is singular. In 

particular, we shall give a sufficient condition on the bounda­

ry data guaranteeing that the solution is singular. The first 

part of this paper was already partly reported in C3, 7J. V/e 

would like to thank M. Giaquinta and J. Necas for discussions 
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and inspirations in connection with this work. 

1. We shall consider the following situation (and notati­

on) 

(1.1) uk(x) » n̂ . - ̂  f r - ixlf u£ » r~1 ( o ^ - nk n^, 

(1.2) bk » r*"1(F + D ( c f k l + 5 - 3 - n^ x^), F > 0 , 

Then we have 

(1.3) dk - r - 1 ( F d - k i + G nfc n ^ f G - | ^ - + 1 > 0 f 

(1.4) d.u^. « r""2 F(n - 1 ) f 

(1.5) d-d - r~2 Hf H » F
2(n - 1) + (P + 1)2(n^-)2. 

We see that the ooeffiolents (0.2) are ellipticf since 

(1.6) A ^ f l 2 . * f*a*} fj ̂ . t f ' 2 

with 

(1.7) A 0 + 1. A. .1 + p - l - T T . 

We shall use the following notation for translated functions 

(1.8) u(y)(x) •
 nk(y)*x) " u ^ x " y)» r(y)*x)* * x ~ y' 

k k 
and similarly for k£( y )»

 a i ( y ) * 
Let {ii be a pos i t ive bounded Borel measure on B... We can form 

the superpositions using 

(1.9) u k - / B u^y) d ^ ( y ) f bk . 4 b k
( y ) d<u(y)f 

—k and similarly for d£. Finally, let us denote by 
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,k-.h 
d.10) i g - c r i j £ f ^ + ^ I i 

—k 
Theorem 1. The veotor-function u i s a solution to the e l ­

l i p t i c system 

(1-11) 4 ^ 5 ^ * x3 -*-<>. v»« c 
The elliptiolty conatanta H Q f 3.̂  of this system are related to 

A.0t 3l1
 from (1.7) by, 

d.12) a0 « i f a 1 •; x 1 

Let us suppose that 

(1.13) f*-JkA*k ^ (yk ) . ek>O fykeB1f 

where cf/y\ i £ the n-dimensional Dirao measure concentrated at 

the point y. 
—k Then u i s diaoontinuous at points yk and we can c lear ly ohoose 

the se t -ty-^ to be dmar in B.|. 

Proof. Lot us define functions 6 (x) f y f seB.] by 

(1.14) 1 - S y ^ x ) - In-^yjOc) - ^ ( ^ ( x ) ! 2 . 

Clearly, 0 -£ ^ v x ^ l - Then we hare 

M j ) , d ( « ) " r ( y ) r ( » ) ( F ( n - 1 ) + a*y>* 
(1.15) 

and this implies 

(1.16) U ^ d • P(n-1)A + GBf d.d « HA - G
2Bf 

where the functions A(x) and B(x) are defined by 

(1.17) A » /r(J)r^)de4,(y)dft(s6)f B - / '(J)*(l) ̂ -fSfd(u,(y)d^(a). 
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The best ellipticity constant XjCan he expressed by 

(1.18) X, - 1 % - u p ^ -^.T) G!f ̂  , 2(x) - ffg-. 

The inequality 2 ? 0 implies that Xj £ X^. 

Remark. The optimal choice of ? gives the. smallest possib­

le ellipticity constant 

>/l + X + 1 /„ Qx2 
(1'19) xi..pf .7TT5...' ^ ^ 

which corresponds to the known r e g u l a r i t y r e s u l t s [ 4 - 6 3 fo r 

systems with A-j < X^ op^» 

2 . Before s t a t i n g the genera l theorem about s ingu la r so lu­

t i o n , we s h a l l consider i t s spec ia l case i n R ; so from now on 

n . 3 . Let us consider the e l l i p t i c system (0.6) with coe f f i c i ­

ents ( l i k e i n I21) 

(2.1) a*J . cTy J k h + B*Bj, B* - cfki + 2 n k n r 

We s h a l l use t e s t functions of the form 

(2.2) $ k . f ( r ) n k , f e C ^ ( 0 , 1 ) f 

where nk • x k r~ 1 , r • | x \ . We have 

(2.3) 4^-r-1f«fhJ + U ' - r - 1 f ) n h n j 

and a f t e r a ca l cu l a t ion (using 1 .1 ) ) , we obtain 

«kh * h 

where the funct ion h( r ) i s a second-order d i f f e r e n t i a l express i ­

on in f ( r ) given by 

(2.4) Í«B*ÏЛ« - ћ ( г ) n k. 

(2.5) h « 10(f« + 2 r ~ 1 f ' ) , 
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Integrating equation (0.6) by parts we obtain 

(2.6) /& u ^ h dx -= 0 

Now we can introduce the spherical mean value of u 

(2.7) w(r) * / v d X l m r""2 / v dS, v - ukn, . 

Equation (2.6) then reads 

(2. 8) / v h dx « / r2 h(r) dr / v(r,IX) d H * 0 

so that, using ( 2 . 3 ) , we arrive at the ordinary di f ferent ia l e-

quation for w(r) (using 2 .5)) 

(2.9) / ' r2 w(f" + 2r" 1 f ' ) dr * 0 , V f ec£° . 

This equation i s equivalent to 

(2.10) 2w' + r w" m 0 

and the basis of its solutions is 

(2.11) w.j » const., Wp • const, p" • 

The second solution Wp does not correspond to the H -function 

(this is a general fact, that there is only one H -solution, ot­

herwise the uniqueness in the Dirichlet problem would be viola­

ted). 

Let us consider the Dirichlet boundary value problem with 

the data 

(2.12) uk » g?k at 3B.J 

and l e t u be the solution. If the data are such that 

(2.13) o> * / <yk nk d S * 0 , 

then w(1) * o> and thus w(t) « o , Vte(0,1). It implies that 
k the solution u cannot be continuous at the origin, as we shall 
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k k 
stow. If u is continuous at the origin then we can write u • 
» uk(0) + u k

f 1 u
k I < e in B^ . We obtain 

(2.14) w(oT) ̂  Jf JL- u
k(0) dx + 3 6 f dil-^ce/ 

and this contradicts w(oT) » o> =1=0. 

Equations (2.7) and (2.11) mean that the mean flux of the 

k k 

field u through &B is constant and thus u cannot be regular 

at the origin provided this flux is nonzero. The solution can 

be regular only if -Os 0. There are regular solutions, e.g. 

(2.15) u * e a-, x f a, • constants, 

where e is the Levi-Civita tensor. This raises an interest­

ing question: are all solutions regular, if O » 0 ? 

Let us now consider the more general problem in Rn, n23 

for equation (0.6) with coefficients given by (2.1), where 

(2.16) B k • -?cfki +
 Gnvni» -?»<*• constants, P>0. 

We shall assume that this equation has a radial solution of the 

form 

(2.17) u£ a d = g C r ) ^ , 

which is discontinuous at the origin. 

Under these circumstances we can state 

Theorem 2. If u is a solution to the system (0.6), (2.1) 

Jdt>4 
tinuous at the origin. 

Proof. I t i s analogous to the one in 3-diraensional case 
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discussed above. We write the equation (0.6) with the test func­

tion of the form (2.2). Then we shall obtain equation (2.4), 

where h(r) is a function depending on f, f and f", perhaps more 

oomplioated than (2.5)* Equation (2.6) remains true and in the 

equations (2.7) and (2.8) r2 has to be replaced by rn~ • In this 

way we get a second-order differential equation for w, analogous 

to (2.9) and (2.10). But g(r) from (2.17) must be a solution of 

this equation, because the spherical mean * r a d of u r a d is equal 

to g times the area of the unit sphere. It can be shown that this 

equation is of the Buler type, so that g must be proportional to 

a power r*"**, o c s O . We have already noted that there may be on­

ly one H -solution; thus w is proportional to g. Then the discon-

tinuity of u follows by the same argument as above. 

Remark. If we parametrize solutions by their boundary data, 

then the space of discontinuous solutions contains the open den­

se subset of the set of all solutions (the same is true in the 

H -norm on B .j) . Thus the discontinuity of a solution is a gener-

io property. 

Let R be a subspace of regular solutions to the De Giorgi 

system (0.6), (2.1) and (2.16) with ^ 2 A-, t. One could ge­

nerally expect that R is dense in the space of all solutions; in 

particular, that the singular solution may be approximated by 

regular ones (with H -norms converging to + oo ). This is exclu­

ded by Theorem 2. 

Conjecture; 

(1) R is closed in H -norm. 

(il) R has a finite colinension in the space of all solu­

tions. 

280 -



( i i i ) This codimension i s one i f &^ i s su f f i c i en t ly small , 

( iv) The standard Ho lder-continuity est imate i s t rue on R. 
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