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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
25,2 (1984) 

ISOMORPHISMS OF PRODUCTS OF INFINITE 
CONNECTED GRAPHS 

Vera TRNKOVA 

Abstract? We construct a connected countable simple graph 
G isomorphic to GyGxG but not to GxG, for X being the Carte
sian product or the normal product* 

Key wordst Products of graphs, connected graphs. 

Class i f icat ion: 05C40 

For simple graphs G . (VfE)f G ' . ( v ' f E ' ) f the following 

three types of products are examined in the l i terature (see e.g. 

H I ) : 

G x G ' . ( V x V ' f E 1 ) f 

G + G' . (VxV' f E 2 ) , 

G «G' . (Vx V'f B 3 ) , 

where E.j, E2, E^ are defined so that a pair | » (X,*'), £ » 

. (z,z') of distinct elements of V x V ' belongs to 

E.j iff {xfzlc B and - £ X ' , Z ' K E ' 

E2 iff either x • z and-fx',z'} e E ' or -fx,z}eE and x' . z' 

E«-k -5 E .t l ! E n # 

To be able to speak about all the three types of products simul

taneously, let us denote x by x , + by x and • by A • 

In the present paper, we investigate the following impli

cation (called the Tarski cube property)i 
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Gc-G x G x G = > G^G x G. 

Its validity depends on the class of investigated graphs. It is 

fulfilled trivially in the class of finite graphs. On the other 
A ± 3 

hand, It is fulfilled for none of the products x , x , x in 

the class of all countable simple graphs, see C7J. In the pres

ent paper, we investigate this implication within the class of 

aJ-3- connected countable simple graphs. The connectedness has 

been chosen because It changes arithmetic properties of products 

of some close structures (see e.g. C4] for cardinal products of 

relational structures, 1.2] for products of partial orders), so 

it could influence also the validity of the above implication. 

Let us state shortly that this is not the case for x and x # 

The proof of it is just the aim of the present paper. Let us de

note by '£., i = 1,2,3, the class of all countable simple graphs 

G isomorphic to G x G x G but not isomorphic to G x G. In the 

parts I and II of the present paper, we construct a connected 

graph In *€- and a connected graph in ctL«, 3n the part III, we 

present some related results which either can be seen directly 

from the const ructions in I and II or obtained from them by some 

modifications (we also present here a corrected proof of the the

orem in [6] characterising the chromatic number and the set of 

degrees of the graphs in *tf-j). Finally, let us state explicitly 

that we do not know whether c£ ? also contains a connected graph. 

I, Construction of a connected graph in ¥-

3 

1. In th i s pa r t , we inves t iga te only the product x f so 

we denote I t only by x (or TT for i n f i n i t e systems). 

Let IT be the se t of a l l non-negative integers., Let us de-
00 k note by T an in f in i t a ry t r e e , i . e . a graph ( \ r i u XJ N ,E) , 
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where E consists of a l l tr,nV with n e N - H and of a l l -Cp»q3 
y y.4.1 , 

with p e r , qe IT such that p i s the i n i t i a l segment of q (r 

i s ca l led the root of T). 

Let "Ip IneN^ be an increasing sequence of primes with pQ2. 

£ 2 . For each n e N , denote by Ĥ  » (Vn,En) the following graph: 

we start with vert ices 

^ c , a , 1 , . . . , p n - 11 and edges 

U a f o l $ u t t c f i i l i » 1 , . . . , p n - 1} 

and glue a copy T i of the inf ini tary 

tree T on the vertex i such that we 

identify i t with the root r^ of Tj , 

for a l l i » 1 f . . . t p n - 1 (where we suppose that a l l the T . f . . . 
•••t^n .. n &** d i s jo int , H~ i s v i sual ized on the p i c ture ) . Por 

u 
r map f e N is 

te the product 

n N 
any map f eK which i s not the constant zero (P f we iaves t iga-

p(f) - ~nr H * ( n ) , 

where H n
( n ) * H nx...xH n f(n)-times. Let us denote by H(f) its 

full subgraph consisting of all vertices x with all its coordi

nates equal to a except possibly a finite number. Since 

(TT H n
( n ))*(TT H : | ( n ) ) ^ - TT H n

( n ) + g ( n )
t H(f)x H(g) is isomorphio 

to H(f+g). 

2. In the next constructions, we use copro ducts of graphs. 

If $M.|ieI$ is a system of graphs with pairwise disjoint sets 

of vertices, then their coproduct, denoted by .JJL M., f is the 

graph with the set of vertices being the union of the sets of 

vertices of all the M. 's, all the M^ 's are full subgraphs of 

it and it contains no other edge. If the sets of vertices of 

^M. I ±el\ are not pair»wise disjoint, we replace them by isomo

rphic graphs {HiA±el\ which already have this property and then 
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we form the co pro duct as before (hence .11 If., i s defined up to 
I € I x 

isomorphism). 

3 . For f f g c N f we already used in 1.1 the addition f + g 

defined by (f + g)(n) » f(n) + g(n). Now, for any B f C £ l r f we de

fine B + C by 

B + C • -tf + gtf e B , g e C?. 

By E51f there ex i s t s a countable s e t A9N such that (9 £ A and 

A + A + A a A but A + A-*-A. We define a graph H as a co pro duct 

of i£ copies of the graph 

JUL H( f ) . 
* € A 

I t can be seen eas i ly that H i s isomorphic to HxHxH. Since A = 

- A + A + A and H f f ^ x H i y x H t ^ ) i s isomorphic to H(f., + f2 + 

+ f - ) f each component of H i s isomorphic to a component of H>tHxH 

and vice versa. Since H contains each of i t s components in jf»0 

copies , i t must be isomorphic to HxHxH. 

4 . We show that H i s not isomorphic to HxH. Clearly, HxH 

i s isomorphic to a coproduct of -rt copies of the graph xl H(g). 
0 c^eA-rA 

H(f) f f € A, are just the components of H and H(g) f g e A + A, are 

just the components of HxH (each contained in the graph in &0 

copies) and A 4-A + A, i t i s suff ic ient to prove the following im

plicat ion: 

H(f) ci H(g) -=!> f = g. 

5. For an arbitrary countable graph M and its arbitrary 

vertex x, we denote by c(Mfx) the supreme of the sets C of ver

tices of M such that 

a) each element of C is joined by an edge with x and 

b) no two distinct elements of C are joined by an edge. 
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If we inspect the graphs H(f), we can see the following: 

e(H(f)yz) - 1 iff z has all its coordinates equal to a; 

c(H(f) z) » p iff z has all its coordinates equal to a 

ezoept precisely one, which is equal to c and 

this coordinate is on a place corresponding to H^. 

Hence f(n) is precisely the number of the vertices z of H(f) 

with o(H(f),z) • p n. This is valid for each n e H , hence f can be 

recognized from H(f)f the above implication follows. 

6. The constructed graph H is not connected. Now, we embed 

it in a connected graph. First, we choose a fiz isomorphism <p 

of H onto H x H x H . Let us denote by G a graph obtained from H 

by adding one new vertez, #ay £ , and this new vertez is joined 

by an edge with every vertez of H. We eztend the isomorphism cp 

to 9 o , G 0 - - * G 0x G Qx G0 by putting y 0( f ) - ( f , f f f ) , so that 

<3> 0 ia an embedding of G0 onto a full subgraph of G.j • G x G Q X ; 

x GQ. We investigate the sequence 

G0.-Jk*. d^ JL> G2--i^G3-2--^... 

with Gk+1 . G^xG^Gj^ and o>k+1 » 9 ^ ^ g>kx g>k for a l l k e H . 

Let G * (VfE) be i t s col imit , i . e . 

where (Wk,Fk) * Gk and Yj-.*^—* G are maps such that ip*k « 

• Yk+1 ° 9*k f o r a 1 1 k € K » 

It can be verified easily that G is a connected countable 

graph such that GeiGxGx G. 

7. It remains to prove that G is not isomorphic to G x G . 
IT 

If z i s a vertez of Gk « G x . . . x G 0 (3 -times) such that at l e 

ast one coordinate of z i s equal to £ then o(Gk,z) » 4Co 
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(because H has infinitely many components). Hencef for any ver
tex x of G \ tir (H)t we haTe c(Gfx) « JK . If x is a Tertex of 

* o r * o 

Gk such that none of its coordinates is equal to f f i.e. x » 

« <yk Q(y) for some Tertex y of H (where 9>k 0 • y^0*** 

### o 9.J o y Q ) , we can see that c(Gk§x) » o(Hfy). (In factf sin

ce £ is joined by an edge with any Tertex of Ht any vertex % « 

» (z1t...fz k) of G\ cpk o(H) is joined by an edge with any Ter

tex z' » (ẑ ,... tz'k) obtained from z by replacing eaoh its j: -

coordinate by any Tertex of H (all the other coordinates remain

ing unchanged). Hence such Tertices cannot influence the Talue 

of q.) We conclude that for any Tertex x of tf0(H) t the eouation 

c(Gtx) « c(y0(H)tx) is fulfilled. If we proceed analogously with 

G x G t we see that 

c(GxGfx) « c( y (G) x y (G) fx) for any Tertex x of 

ro(Go)xl*ro(Go)» 
c(GxGfx) « j* otherwise. w o 

8. Now, we "recognize" the set A from G and the set A + A 

from GxG by the following procedure. 

For a graph Mf let us denote by *J(M) the set of all Terti

ces x of M such that c(Mfx) » 1 and for any x 6 ̂ (M) and each 

n€N, by *x(n) the number of all the Tertices y which are joined 

by an edge with x and c(Mfy) « p . Finally, let us denote by 

F(M) the set of all t% with x £^(M). If we use the conclusion 

of 1.7 and repeat the reasoning of I.5f we see that 

IF(G) « At F ( G x G ) « A + Af 

hence G and Gx G cannot be isomorphic. 

II. Construction of a connected graph in -̂j 

restiga 
- 308 

1. In this partf we inTestigate only the product x t so 



we denote i t only by x or» TT . 

Let N and T be as i n 1 .1 . Let K be the graph (N uip f q$ f E) , 

where 

E « U * p f i } t U , q i l i € W i . 

For every n e N , n ^ 2 f we denote by (Vn ,En) the following graph: 
Vn * ^aiD>ct<->n5o>-il , 2 f . . . f n} 

En « U a , b l , i b , o H u 4 C c f i j f ii,*^ I i - 1 , 1 , . . . , n l . 

Denote by HV a countable simple graph sa t i s fy ing a l l the condi

t ions 06) - £ ) below. 

oC) (V n tE
n ) i s i t s f u l l subgraph; 

£ ) a, b f c i s the unique path of the length 2 from a to 

c i n y 
X) c f i , d , where i « 1 , . # # , n , are the only paths of the 

length 2 from c to d n in Hn; 

cf) Hn i s b i p a r t i t e ; 

s ) fo r every pa i r xf y of v e r t i c e s of II with d(x,y) =- 2 

(where d(x fy) denotes the length of the sho r t e s t path from x to 

y) such tha t 4x,yl: +-£ a, c i and -fxfyj 4= "£ c , ^ } there are i n f i n i 

t e ly many paths of the length 2 from x to y in H ; 

£ ) the degree of each ver tex of H i s equal to -B . 

The graph H can be constructed so tha t we s t a r t from (V ,E ) 

and glue a copy of the i n f i n i t a r y t r ee T on each i t s ver tex ( i -

dentifying i t with the roo t of the copy of T) and then glue a 

copy of K on each path yQ , y-j, y 2 with yQ4-.y2, which i s d i s t i n c t 

from the paths af b f c and cf i f 6^ for a l l i =- 1 , # # # ,n (by the 

i d e n t i f i c a t i o n of the path yQf y.| f y 2 with the path p f 0f q of 

the copy of K); we repeat t h i s procedure over a l l na tu ra l numbers. 

2 . Let - l p n l n6Ni be an increas ing sequence of primes, pQZ 2 . 
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We denote .5 • H and we construct H 6 ^ by means of the sys 

tem i l l | n € H } rather analogously to I . If f e F , f*t*Q 9 we da-

note 

p(<> - ^ A . , + 0 <Cn)< 
<n,€N.Afr-)*0 

Let A£ HK \ CO} be as in I . 3 f i . a . A « A + A + Aand A#-A + A. 

Let us denote by P(A) a coproduct of & cop ies of each P(f) 

with f& Af say, 

P(A) •tx.±L N ( P ( f ) ) k . 

I t can be seen eas i ly that P(A)x P(A)x P(A) i s isomorphic to 

P(A)f but for the next reasoning we need en isomorphism with so 

me special properties . Since A i s countable and A - A + A + Af 

the set B(f) - 4 ( f 1 f f 2 f f 3 ) 1 fj.fi A for i - 1 f2 f3 and f̂  + fg + 

+ f3 « f 3r i s non-empty and countable for each f e A . Thus the 

se t s B( f )x HxH)*-H and 4fJxH have the same cardinality so that 

we can find a bisect ion 

p : (AxH)x (AxH)x (AxH)—> AxH 

with the following properties: 

(a) for every k1 fkgfk-»a H and f . - L j i - e A there ex i s t s me 

€H such that f>((f-, 9k^ ) f ( f 2 # k 2 ) f lt^9k^)) » (f.j + f2 + f 3 f a)» 

(b) for every f €A there ex i s t s (f1 ffr>ff3) e B ( f ) such that 

c ? ( ( f 1 , 1 ) f ( f 2 f 1 ) f ( f 3 f 1 ) ) . ( f , 1 ) and J D ( ( f 1 f 2 ) f ( f 2 f 2 ) f ( f 3 f 2 ) ) -

- ( f f 2 ) . 

The bisect ion $> determines an isomorphism 

<5 i P(A) x P(A) x P(A) —> P(A) 

such that ( P ( f 1 ) ) k x ( P ( f 2 ) ) k x ( P ( f 3 ) ) k i s sent to (P(f1 + f2 + 

+ t*))m by the co l lect ing of coordinates only. 

3. For each f c A f l e t us denote by PQ(f) the f u l l subgraph 

of P(f) consisting of a l l the vert ices x with a l l the ooordina-
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tes equal to the same vertex zeia.b.c} exoept possibly for a 

finite number of coordinates and put 

P o ( A ) - ^ A « H ( řo ( ř ) )lC 

so that P (A) is a full subgraph of P(A). Let H be the smallest 

full subgraph of P(A) such that 

(1) H « JJ. (H(f)L f where H(f) is a countable full 
(4,IOe/.xN k 

subgraph of P(f) containing P ( f ) f 

(2) the domain- r a n g e - r e s t r i c t i o n of 6'sP(A)x P(A)x P(A)-> 

—> P(A) i s an isomorphism of H x H x H onto H. 

(The graph H can be constructed by the following enlarging 

procedure: P.j (A) i s the smallest f u l l subgraph of P(A) of the 

form a k H A x N ( p i ( f ) ) k containing PQ(A) u 6 (PQ(A) xPQ(A) x 

x P Q ( A ) ) u Q , where Q i s the smallest f u l l subgraph of P(A) 

such t h a t Q 0 * Q 0 * Q 0 ^ 6f" (P Q (A)); we repeat t h i s onr all n a t u m l 
oO 

numbers and H «-.̂ -J0 P^(A). In it63 and Lllf this enlarging pro

cedure is described more in detail.) 

4* To prove that H e <?... f it is sufficient to show that 

H is not isomorphic to HxH. 

for an arbitrary graph Mf let us denote by ^(M) the set 

of all vertices x of M for which there exists a vertex x* such 

that 

(i) d(xfx) m 2 and there is a unique path of the length 2 

from x to x and 

(ii) if y is a vertex of M with d(xfy) » 2 and y-#xf then 

there are infinitely many paths of the length 2 from x to y. 

Por each x € $<M) and each neN, let us denote by f (n) 

the number of all vertices z of M which fulfil the following: 

(iii) d(xfz) m 2; 

- 311 -



( iv) there ex is ts a vertex z" suoh that 

a) d(zf~z) » 2 and there are precisely Pn paths of 

the length 2 from z to z; 

b) i f y i s a vertex of M such that d(z fy) » 2 and 

y=Kz~ then there are e i ther one or inf in i te ly many 

paths of the length 2 from z to y. 

Let us denote by F(M) the se t -Cf^xe ^(M)j. We show that 

F(H) - A and F(HxH) « A + A. 

If f e Au (A + A) and we inspect the graph H(f) f we can see that 

a vertex x of H(f) f u l f i l s ( i ) and ( i i ) i f f a l l i t s coordinates 

are equal to a. And a vertex z of H(f) f u l f i l s ( i i i ) and ( iv) 

with respect to th i s x i f f a l l the coordinates of z are equal to 

a except precisely one which i s equal to c; and t h i s coordinate 

i s on a place corresponding to the graph H .̂ Thus, there are pre

c i se ly f(n) suoh ver t ices in H(f) . Since t h i s i s true for eaoh 

x 6 f̂-(H) and each x e J-(H.xH) and each n € N , we conclude that 

F(H) - A and F(H*H) « A4-A. 

5. Now, we embed H in a connected graph by a procedure ana

logous to 1.6. We denote by G a graph obtained from H by adding 

a new vertex | and this new vertex is joined by an edge with 

each vertex of H. We extend the isomorphism €f"" to Q> * G — > Q K G K 
J O o o o 

*GQ by putting g> (€ ) « ( £ » f > § ) *&& invest igate the sequence 

with Gk+.. » Q^x G x̂ Ĝ  and 9*k+i » 9'k>< ^^SPj- .* We denote i t s 

colirait by G - (VfE)f i . e . V » ^ Yk(Wk) and E *JjQ (<y^<yk) 

(P, ) as in 1.6. Then G i s a connected countable simple graph and 

G i s isomorphic to GxGxG. 

6. I t remains to prove that G i s not isomorphic to GxG. 
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Both G and GxG have the following property* 

r any two d i s t inc t ver t i ces can be joined (*) -I 
t by a path of the length 2. 

For an arbitrary graph M, l e t us denote by D(M) the se t of a l l 

vert ices x such that M\-ixJr f a i l s to have the property (<* ) . I t 

can be seen that 

D(G) • -t^} andD(GxG) • * ( - £ , ^ ) i» 

where % « yQ ( | ) . (In f a c t , i f a., i s chosen in (H(f))., and Sg 

in (H(f)) 2 for some f € A , then, by 11 .2(b) , y k 0 ( a 1 ) cannot be 

joined with <pk Q (a 2 ) by a path of the length 2 in Gk \ g>k 0 ( f ) 

[where g>k Q » <yk* ... o cpQl so that f 0 (a . . ) cannot be Joined 

with < f 0 (a 2
) b Y a P a t h °* t h e length 2 in G \ i U $ l and analo

gously for GxG.) 

Now, the f u l l subgraph of G (or GxG) consisting of a l l the 

vert ices joined by an edge with the unique element of D(G) (or 

D(GxG)) i s isomorphic to H (or HxH, respect ive ly) . Since H i s 

not isomorphic to HxH, G i s not isomorphic to GxG. 

I I I . Concluding remarks 

1. Let (S,+) be a commutative semigroup. We say that a sys

tem 4 G ( s ) ( s e S \ of countable simple graphs i s i t s representation 

by the product x ( i = 1 ,2 ,3 ) , i f 

(a) G(s + s') i s always isomorphic to G(s) x. G(s') and 

(b) i f s-j*s , then G(s) i s not isomorphic to G(s ) . 

(If G c < € i , then *G(0),G{1)t with G(1) » G and G(0) • G x G form 

a representation of the cyck l ic group c2 « t0 ,1} of order 2 by 

the product x. •) Every countable commutative semigroup has a 

representation by each of the products x , x , x , see 173. 
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Moreover, i t can he required that each of the representing graphs 

has a giTen countable simple graph aa i t s f u l l subgraph. The 

techniques deTeloped in C3J, 15J,E6J,[7J admit to strengthen a l -

00 the preTioue constructions and to obtain e .g . the following 

resu l t s i 

- erery countable simple graph can be embedded aa a f u l l 

subgraph in 2 ° non-isomorphic connected graphs from *€<\ 

(or 9?3 , reopectiTely); 

- eTery semigroup embeddable in a countable d irect product 

of f i n i t e cyc l ic groups (particularly each f i n i t e l y gene

rated Abelian group) has a representation by the products 
4 1 4* 

x and x by connected grapha (there are 2 ° non-ioomor-

phio such representations, a l l the representing grapha 

contain a giTen graph ap a f u l l subgraph, they have the 

prescribed chromatic number 2: 3 and some other proper

t i e s ) . 

On the other hand, a characterization of the semigroups which can 

be represented by x or x or x by connected graphe i e not known 

(for any of these products). 

2. Let us denote by i£(G) the chromatic number of a graph 

G and by S)(G) the se t of the degrees of a l l i t s Tert ices . In 

[63 , the following theorem i s presented* 

Theorem! Let o&H vi&Q\ and D S H u - f * ^ be,giTen. Then 

there ex i s t s G «- ^ such that £(G) > c and 3 (G) • D i f f c ^ 2 

and D f u l f i l s the following condition (+)• 

* 0 C D ; if DN*Of M o i * 0 , then 1 £ D% 

i f d 1 ,d 2 €Dr .N, then d1 • dg t N. 

V. Pud found a mistake in the proof of th is Theorem giTen 
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in £63„ lowerer, the Theorem i s correct , l e t us present here a 

oorreotion of the proof* If 0 « *ty f than necessarily o£ (0) Z 2 

( t h i s i s erident) and 3>(G) f u l f i l s the condition (+) - th i s i s 

proTed correctly i n [6J and we do not repeat i t hare. ConTerse-

l y f l e t o and D with the above properties he given. We have to 

construct 0 t y 1 with ^(G) - o and SD (G) * D. Let us mention 

that i f o • 2 and D • i&Q\9 then the graph H constructed In 

11*3 has the required properties. Al l the next cases w i l l be mo

dif icat ions of th i s construction (therefore the constructed graph 

with ihereouired properties) will bs denoted by H). l>r an arbitrary 

o z 2 f we proceed as follows: we choose a countable simple graph 

H such that x$*) * c t **** degree of each i t s vertex i s equal to 

& and for eaoh pair x f y of Tertioes of H such that d(x fy) • 2 

there i s an i n f i n i t e number of paths of the length 2 from x to y 

in H ( i t can be constructed so that we s tar t from an arbitrary 

graph with the chromatic number o and glue a oopy of K on eaoh 

path of the length 2 of i t and repeat this procedure Inf in i te ly 

many times). 

(a) Let us suppose that D » i&£ • for erery n€H f n2r2f 

l e t H^ be as in I I . 1. Let -tpn \n€Hi be an increasing sequence 

of primes, pQ> 0. We denote 

and for eaoh f € F% f 4* O , we put 

Let I S r be as in 1 .3 . for each f c A . l e t us denote by PQ(f) 

the f u l l subgraph of P(f) consist ing of a l l Tertioes x with a l l 

the coordinates equal to the same vertex % 6-[a fb fcju H except 

possibly for a f i n i t e number of coordinates and put 
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P0(A) - U 4| (* Q ( f ) ) k 

Proceeding as in II.3» we obtain a graph H isomorphic to H X H K E 

with ^(H) - $(H) and g> (H) - 4>0J • The proof that H i s not i -

somorphic to HxH i s the same as in II .4* 

(b) Let us suppose Da(H ui&>Ji) \ i O t and 1 eD« Let H be 

as above. For every * € D* « D \ -C.11 -*01; denote by M̂  the graph ob

tained from the graph « 0 t 1 1 . . . t t } t -HOpi!! i - 1 t . . . t t $ ) by the 

glueing of a copy of the inf ini tary tree T on each vertex i m 

1 t . « . f t . We denote 

н j ^ J J . JL. . 

Let H be a countable simple graph satisfying all the conditions 

oc) - e) in II. 1 and £ ) is replaced by 

£/) deg(a) m 1 and deg(x) * 1KQ for each vertex x-f a. 

(To obtain It*, an evident modification of the construction of 

11*1 can be used.) Let -Cp lneH$ be an increasing sequence of pri

mes, p Z 2. For each n€N, put 

rs* 0 « — , 

"a Pn 

The construction of H e Sf̂  is now quite analogous to (a). (The 

proof that H is not isomorphic to H x H is easier, we can use the 

vertices with the degree equal to 1. These are precisely the ver

tices with all coordinates equal to a.) 

c) If D contains zero, we use the case (a) or (b) for the 

set D\£0^ and then add an infinite number of isolated vertices 

to the constructed graph. 
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