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A NOTE ON REFLECTIVE SUBCATEGORIES
DEFINED BY PARTIAL ALGEBRAS
Jené SZIGETI

Abstract: By using a gemeralized partial P-algebra a full
subcategory of a certaim comma category will be defined. Them
a sufficient condition will be given to provide the reflecti-
vity of this subcategory.

Key words: F-algebra, generalized partial F-algebra, com-
ategory, Ifree completion of a g.p.a.

Classification: 18A25, 18440, 18B20

1, Preliminaries, Givem an endofunctor P:A —>A on the
category A ome can defime the category A(P) of F-algebras (see
e.g. im [1 = 5]). Let Us:A(F) —> A denote the canonical forget-
ful functor.

A generalized partial P-algebra (a g.p.a) in the sense of Kou-
bek and Reiterman is a disgram Pa<—E x 95 a in 4 (of.[5]).
In the present paper we shall consider the full subcategory
(aVUFP*@ of the comma category (alU) which can be defined in
a natural way by means of a g.p.a. Thus the free completion
problem for the g.p.a.Pae-P_x -9 ;a (see (3, 5]) will be equ-
ivalent to the existence of an initial object in (attlP+q?,
The main aim of this note is to establish conditions providing
the reflectivity of (adU)<P»@ in (alU). Since the reflection
functor sends (alU)-initial objects to (adU)<P+97_1nitial ones
we shall also obtain oriteria for the existence of the free
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completion.

2. Reflective subcategories in (alU). Given & g.p.a.
’ler—-x—q-—ya define the objects of the full subcategory

(alm)<PsQ? 4p (alU) by requiring the commutativity of (2./1).

Fae P b 4 a a
(2./1) e l £
b

v

In other words: {<b,ud, £>e|(adu)<P+?| 12 (2./1) commutes.

Now we are ready to formulate our main result.

2,1, Theorem, Let <<b,ud, £>&|((ajU)| be an object and
suppose that A(F) has coequalizers of all pairs., If there are
initial objects in the comma categories (xiU) and (blU) then
there exists an initial object in ({{b,u?, £>J E), where E is
the natural (lrW)@'qZ—>(a$U) embedding.

Proof. Let x —E>5<% ¥b and b —B 5D <25 represent
initial objects in (x) and (biU) respectively. Clearly, the-
re exist unique A(F)-morphisms p°,q%: ¢,8> —><(P,T) and r1
: {5,8>—><b,u? making the diegrams (2./2-4) commute.

(2./2) x—2—Fa—Fm—2 b
g l l g
U<E,T > = »U <B,1>
Up

- 320 -



_—g__.a—f__.'h

3 ?
(2./3)
U (F,G)—;‘E‘——'U (F,H >
q
b
(2./4) £ 1

b
U <'5.t!>-m;——'u <v,ud

0
- 0 o
Porm the coequalizer (b.'\'i):%(b,u) —2,(v%,u%) 1in A(P).
roq

We claim that €°: <(b,ud>,2>—>E {(b°,u®>,e%2> 1s initial in
(«bud 2> E)e u®o(Pe®)o(PL)op = e®ouo(PL)op =

%0r0q°og = e%oroFofoq =

= e%rofouo(Pt)op = ¢®orop®oE = e
= e%foq proves that <<v°,u®>,e%z> 6| (adu)<P* | ag required.
For a morphism e :{{bud, ) —>EKDb ,u”>,2” in (alU) we have
(U(e “orop®))oE = e oropof = e oroBouo(Pt)op = e ouo(Ff)op =

= u’o(Fe)o(PL)op = u'o(Ftdop = £0q = e‘otoq = e oroffotoq =
= e 0roq®og = (U(e “oroq®))oE.

The (xiU) initiality of <<b,u),g> immediately gives that

« ‘orop® = e oroq®. Hence there is a unique A(F)-morphimm t:

c {0%,u%> —><( b ,u’> with toe® = ¢’. But easily can be seen
that for a morphism t: < b°,u®>—><(b’,u’) the condition t0e° =
= ¢ is equivalent to the commutativity of (2./5).H
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B<<1%,u°) , 6%f)

e

(2./5) Kbuy 2> Et

E<<D,uty 20>

The next theorem is an obvious consequence of 2.1,

2,2, Theorem. Let A(F) have free algebras (i.e. — U) and
coequalizers of all pairs. Then

(1) for each g.p.a. PacP—x—95a the full subcategory
(alU)$P29” 14 reflective in (all);

(i1) each g.p.a. Pae? x93 a has a free completion in
A(R).

2.3. Remark, The (ii) part of the above theorem improves

a result of Koubek and Reiterman ([5] p. 220). Indeed, if A is
cocomplete, E-co~well-powered and F:A —> A preserves E of an
image factorization system (E,M), then A(F) has coequalizers of
all pairs (see [1 - 3]).

2.4. Remark. The reflection of an (AlU)-object
a—Lobe™ Pb in (alU)$P*9” algo can be obtained by using
certain free completion. Take the g.p.a. Pbixlll‘b—ﬁ—»b
where x |l Fb denotes an A-coproduct with injections jx' er and
'ﬁojx = (Pf)op, Fojpy = 1p, defines P end §oJ, = foq, Foip, = u
defines . The free completion (2./6) of this g.p.a. yields the
required reflection: k: << b,ud,f>—> << b°,u’>,kot7.
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o—ﬁ’—-qub-—"I—)b
(2.76) Fk k
P ——y
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