Commentationes Mathematicae Universitatis Caroline

Ivan Korec
 Results on disjoint covering systems on the ring of integers

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 2, 365--368
Persistent URL: http://dml.cz/dmlcz/106311

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
[S] A. Syymański: Some applications of tiry eoquences, to appear.
[P] M. Talagrends Hon existence de relòrement pour certaines mesures inioment additiven et retractés de $\beta \mathbb{N}$, Math, Ann. 256(1981). 63-66.

SHORT_BRAKCHES_II_RUDII-PROLXK ORDER

 oblatum 27.4. 1984.

Rudin-Frolif order of types of ultrafilters in β II ham the following propertiess
(1) each type of ultrafilters has at most $2^{\text {KK }}$ predecessora, [2].
(2) the cardinality of each branch is at least 2^{50}.

Thus, in Rudin-Frolík order the cardinality of branohes oan be only $2^{r_{0}}$ or $\left(2^{\aleph_{0}}\right){ }^{+}$. It was mhown in [1] that there exinta a chain order - 1momorphic to $\left(2^{50}\right)+$. Hence, the exietence of a branch of cardinality $\left(2^{-50}\right)^{+}$is proved.

The following result solves the problem of the existence of a branch having smaller cardinality.
Theoren. In Rudin-Frolik order there exiats an unbounded ohain order-isomorphic to ω_{1}.

By the properties (1) and (2) the branch containing thiw chain has cardinality 2^{30}.
Referenoes: [1] E. ButkoviCova: Long chains in Rudin-Frolik or der, Comment. Math. Univ. Caroline 24(1983), 563-570.
[2] Z. Frolik: Sums of ultrafilters, Bull. Amer. Math. Soc. 73(1967), 87-91.

BESULTS_ON_DISJQINT_COYERING_SYSTEMS_ON_THE_RING_OR_INTEGERS

```
Ivan Korec, Department of Algebra, Faculty of Mathematics and
Physics of Comenius University, 84215 Bratislava, Czechoslovakia
oblatum 12.4. 1984.
    A system of congruence classes

```

will be called a disjoint covering systom (DCS) if for ovory
integer }x\mathrm{ there is exactly one i }\in{1,2,···., k} such tha

```

```

moduli of (1) and their least comon multiple will be called the
common modulus of (1).
If k> 1 then no two moduli of (1) are relatively prime.
Thi: condition can be expressed in the form
$\bigwedge_{i=1}^{k} \bigwedge_{j=1}^{k} \varphi\left(n_{i}, n_{j}\right)$

```
where \mp@subsup{\mathcal{F}}{}{\prime\prime}(x,y) is the formula
```



```
Consider more generally the formulae of the form
```


wish are true for all DCS (1) with $k>1$, where $\psi\left(x_{1}, \ldots, x_{j}\right)$ ia a firmt-order formula with the only men-lecical mybel "." fer multiplying. The main remult of [1] is that every muon formia (3) is a consequence of (2). Hence the oondition (2) in the ftrong ent amonc all condition of the form (3) mich hell fer all atile trivial DCS (i.e., DCS difforent from $\{2\}$). The preef unen proo duct-invariant relations, i. ©. the relationa whiah are iavariaut with reapect te all autemerpian of the mencroup (i, .).

hat the following preperty:
The union of any mbiet x of (4), $1<\operatorname{card}(x)<k$ is not a conquence clase (by any modulue).
All DCS (except $\{2\}$) with this proyerty will be called irredueibla DCS, abbreviation IDCS. There are IDCS whioh are not of the form (4). For example, the concruence classes 0,4 (mod 6) $1,3,5,9$ (mod 10), 2 (mod 15), 7, 8, 14, 20, 26,27 (yod 30) form an IDCS with the common modulus 30 (it in Porubsky a example of a nonnatural DCS in essential). In [2] many IDCS are constructed and it in proved that an IDCS with the comen modulue n exiets if and only if n is a prime (then only (4) can be obtained) or n is diviaible by at least three different primas. Further, an operation of aplitting ia defined which allew to obtain all DCS from the degenerated DCS $\{2\} \equiv\{0$ (mod 1) $\}$ and the IDCS. If only IDCS of the form (4) are ueed then so called natural DCS are exactly obtained.

Por every prime p denote $\mathcal{F}(p)=p-1$, and extend the function \mathcal{F} to the et N by the formula $\mathcal{F}\left(x_{0} y\right)=\mathcal{F}(x)+\mathcal{F}(y)$. The Mycielski conjecture stated $k \geqq 1+\mathcal{F}\left(n_{1}\right)$
for overy DCS (1) and every $1 \in\{1,2, \ldots, k\}$. The main result of 3 is that for all DCS which are not natural (hence e. E. for all IDCS which are not of the form (4)) it holds
(5) $\mathbf{k} \geqq 6+\mathcal{F}\left(n_{1}\right)$.

The proof is rather complicated but elementary. The oonetant 6 in
(5) is the best poseible. We stated the hypothesis that the modulum n_{1} in (5) can be replaced by the common modulus of (1).

The IDCS with the comon modul pqr (where p, q, r are diftinct primes) are completely deacribed, and the number of thom ia determined, in [4].

References:

[1] I. Korec: Disjoint covering systems and product-invariant relations. To appear in Mathematica Sloveca.
[2] I. Korec: Irreducible disjoint covering mytems. To appear in Acta Arithmetica.
[3] I. Korec: Improvement of Mycielaki's inequality for nonnatural disjoint covering systems of Z. Sent to Discrete Mathemation.
[4] I. Korec: Irreducible diejoint covering syatems with the comon modul consisting of three primes. To appear in Acta Math. Univ. Comen.

Zdentr Frolik (Z̆itna 25, 11567 Praba 1, Xeakonlerencko), oblatua 27.5. 1984.

The ain of thim, and the mubsequent note, is to announce a eslection of results presented at the Colloquium on Topology held in Iger in Auguet 1983, and at the Semeter of Topology in Banach Center in April 1984. I feel that it is time to prove deeper resulte about Susin mets derived from Borel sete in compact apom ces.

1. By a space we mean a completely regular T_{2} topological space. We denote by $\mathcal{P}(M)$ the colleotion of Susiln sets derired from the collection of sete m. Recall that $\varphi(\varphi(m))=\varphi(m) \rho$ $=m_{\sigma} \cup m_{\delta}$. We denote by $S_{\mathrm{d}}(m)$ the sete in $\left.\mathscr{(}\right)(m)$ with disjoint Sumlin representation. Denote by Σ the apace ω^{ω} with product topology where ω ham the discrete topology. Iemase 1. Let Y be a aubset of a epace X. Then
(a) $I \in \mathscr{S}$ (closed(X)) iff mom closed set in $X \times \Sigma$ projects onto Y.
(b) $Y \in \mathcal{S}(\operatorname{open}(X))$ iff some open met in $X \times \Sigma$ projects
onto Y (a) $Y \in \mathscr{P}$ (open(X) \cup closed(X)) ($=\varphi$ (Borel(X)) iff the intersection of a closed set and a G_{δ} set in $X \times \Sigma$ projects onto Y.

Hote that (a) is classical, and (c) is essentially due to Fremlin [Fre].
2. Theoren 1. The following conditions on a space X are equivalents
(1a) Some Cech oomplete subspace of $X \times \Sigma$ projects onto X.
(1b) If X is a subspace of Z then $X \in \mathscr{C}$ (Borel(z)).
(1.c) X is obtained by Sualin operation from locally compact seta in mome $Z=1$.
(1d) There exists a complete equence of 6 -relatively open oovers of X .

A pace I gatisfying the equivalent conditions in Theorem 1 will be called Cech-analytic (following [Fre]). To be mure note that a cover u of X is called σ-relatively open if $u=$ $=U\left\{u_{n} \mid n \in \omega\right\}$ much that each u_{n} is an open cover of $u u_{n}$. It was proved in $\left[\begin{array}{l}Z \\ Z\end{array}\right.$ that if $X \in \mathcal{C}(B o r e l(K))$ for mome compactificetion of X, then it holds for ang compactification of X. Fremin FFrelintroduced impliaitly (ia) and showed the equivalence.with Zolkov a definition. If the mpace X is hereditarily Lindelof then (1d) implies that X has a complete sequence of countable covers, and hence it is ω-analytio (K -analytic in Choquet and Sneider terainology) by [F]. The following result in a solution of a problem of Fremlin.
Theore 2. A space X is ω-analytic iff it is Čech analytic and there exists an usco-compact correspondence from a separable metric apace onto X.

The proof is based on the following
Lemma 2. Let f be a perfect mapping ot X onto a metrizable apace Y, and let $\left\{U_{n}\right\}$ be a sequence of families of open sets in X.
There exists a factorization $f=h \circ g$ guch that $g: X \longrightarrow S, h: S \rightarrow$ $\rightarrow Y$ are perfect, S is metrizable, and for each n
$\left\{y \mid g^{-1} \subset \subset \cup U_{n}\right\}=U\left\{\left\{y \mid g^{-1} y \subset U\right\} \mid U \in U_{n}\right\}$.
3. Theorem 3. The following conditions on a space X are equivalent
(2a) Some čech complete subapace of $\bar{X} \times \Sigma$ injectively projects onto x.
(2b) If X is a subspace of Z then $X \in \mathscr{S}_{d}$ (Borel(z)).
(2c) X is obtained by the disjoint Sualin operation from locally compact subsets in some $Z 工 \bar{X}$.
(2d) There exists a complete sequence $\left\{\cup\left\{m_{s} \mid s \in \omega^{n_{j}}\right\} \ln \in \omega\right\}$ of covers such that each m_{s} is an open cover of $\mathbf{M}_{s}=\cup m_{s}$, $\mathbf{u}_{\mathrm{s}}=U\left\{\mathrm{~m}_{\mathrm{si}} \mid 1 \in \omega\right\}$ for each s , and if $\sigma \in \Sigma, \mathbf{u}_{\mathrm{n}} \in m_{\sigma \mid n}$ then $\cap\left\{\overline{\cap\left\{u_{1} \mid i \leqslant n\right\}} \mid n \in \omega\right\} \in \cap\left\{u_{\sigma \mid n} \mid n \in \omega\right\}$.

A space satisfying the equivalent condition in Theorem 3 Will be called Cech-Luzin. Any Cech-Iuzin space X is absolutely b1-Suslin (Borel), and I do not know whether or not the converse holds.

The basic stability results follow oasily from (ia) and the fact that any countable $(\neq 0)$ power of Σ is homeomorphic to Σ. Reforences: [Pre] D. H. Fremiln: Čech-analytic spaces. Unpublished.
[P] Z. Frolik: 1 survey of geparable demoriptive theory of sets and spaoes. Czech. Math. J. 20 (95)(1970), 406-467.
[乞̌) S.JU. Zolkov: O Redonovych prostranstrach, Dokl. Akad. Nauk SSSR, 262(1982), 787-790.

DISTINGUISHED SUBCLASSES_OF XECH-ANALYTIC_SPACES

Zdenêk Frolík (Ž̀itná 25,11567, Praha 1, Čeakoslovenako), oblatua 27.5. 1984.

This is a free continuation of $\left[P_{3}\right]$. Recall that if ${ }^{5}$ is a set of families of subsets of X then ${ }^{3}$ a family $\left\{X_{a}\{a \in \Delta\}\right.$ in X is called $\mathcal{F} \sigma$-decomposable if there oxiet families $\left\{\mathrm{I}_{\mathrm{an}} \mid a \in \mathbb{A}\right\}$ in $\mathcal{F}^{\prime}, n \in \omega$, such that $X_{a}=U\left\{x_{a n} \mid n \in \omega\right\}$ for each a. So it is clear what is meant by discretely σ-decomposable. We shall call a family $\left\{X_{a}{ }^{2}\right.$ in a topologioal space uniformly discrete if it is discrete in the inest uniformity inducing the topology. A family $\left\{X_{a}\right\}$ is called isolated if it is discrete in U\{ $X_{a}^{\}}$.

Following [$\left.P-\mathrm{H}_{1}\right]$, if x is an infinite cardinal then a apa$0 \cdot X$ is called x-analytic (or topologically x-analytic, abb. T x-analytic) if there exists an usco-compact correspondence from the metric space $x \omega$ onto X such that the image of each discrete family (equivalently, disoretely deoomposabie family) is uniformly discrotely (or discretely, resp.) σ-decomposabie. If the values are disjoint, then the space is called re-Iuzin (or topologically x-Luzin, resp.), and if the values are singletons or empty then we speak about point-x-analytic etc. spaces. Analytic means x-analytic for some x, and similariy Luzin etc. The theory of analytic and Luzin spaces was developed in $\left[\mathrm{F}-\mathrm{H}_{1,2,3}\right.$. A discussion of topologically analytic apaces appeared in $[\mathrm{H}-\mathrm{J}-\mathrm{R}]$.

