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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
25(3) 1984

CHARACTERIZATIONS OF BESOV SPACES VIA VARIABLE
DIFFERENCES
M. GEISLER, H. TRIEBEL

Dedicated to the y of Svatopluk FUCIK

Abstract: The paper deals with equivalent quasi-norms in the

Besov spaces B; q(Rn) with 0<p£oco , 0<qg&eo and 8>
’

4
m(—— -4
<W'ﬂ\-(?)4) >'
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1. Introduction
In recent times several authors studied function spaces of Besov-

Lipscnitz-Sobolev type on manifolds, in particular on Lie groups.
An approach to Sobolev-Besov spaces on compact Lie groups via
(non-commutative) interpolation will be given in [1,2] . Ag far
as Lie groups are concerned one would try to give intrinsic des-
criptions of Sobolev-Besov gpaces, e. g. on the basis of (left or
right) invariant vector fields and related flows. However it is
convenient (maybe even necessary) to reduce some problems for func-
tion spaces on Lie groups to corresponding problems on Rn' We re-
call that norms of functions f(x) in Besov spaces B;,q(Rn) with
8> 0, 14p £c0 and 1£q £c0 can be characterized via M-th
differences (A'l £)(x), where xe R, and heR,. The above mentio-
ned reduction of Besov spaces on Lie groups on the corresponding
spaces B:,@(Rm.) on R yields norms where the "constant" differenc-

M
es (& £)(x) are replaced by "veriable" differences (& .;(gm{)(’”
A L g
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where &£(x,h) is a smooth perturbation of h. There are two possib-

le interpretations of these variable differences: Let g(x) = h +
£ (x,h) (where we assume that h is fixed at this moment).

(i) Let x and M be fixed, and let

@ (BB = (af e,

i. e. only y is considered as a variable and one has the usual
M-th differences with respect to the fixed step-length g(x).
Afterwards one specializes y by y = x.

(ii) Ogewy 18 considered as en operator which maps f£(x) into
£f(x + g(x)) - f(x). We denote this operator by A;g , 1. e.
(25 (Dghdony = foregony - Lo,

Then &5? is the M-th power of dhg . For example,

(3 (A"gg)oc) = (Dgf)xeguey - (&gfrem
= ,g(r*goe) € Q(¥+g0e) - 2 L (r+gem) + £00).

The plan of the paper is as follows. The necessarypreliminaries
are given in Section 2: Definition and properties of the spaces
Bg,q(Rn) (inclusively the case O0< p4 1), discussion of the general
assumptions for the above vector-function £ (x,h). Section 3 and
Section 4 deal with the characterization of the considered Besov
spaces Bg,q(Rn) via variable differences in the sense of the first
and the second interpretation, respectively.

We use the notations from [41 « A modified version of Section
3 of this paper will be incorporated in the Russian edition of [4]
(as Subsection 2.5.14). Section 4 (and some modifications) are the
basis of the studies in [1,2] .

By the usual abuse of notations ¢, ¢', ¢. etc. stand for po-

gitive constants which may differ from formula to formula.
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2. Preliminaries

2.1. Besov Spaces
We use the notations from [4] . As usual R, stands for the real
n-dimensional Euclidean space. S = S(Rn) denotes the Schwartz
space of all complex-valued rapidly decreasing infinitely diffz-
rentiable functions on Rn. Let S' be its dual, i. e. the space oI
tempered distributions. (We omit "Rn" because all spaces under can-

sideration are defined on R ). Let 45 be the collection of all
systems ¢ = N> X ad with the following properties:
y g ={q o 4o C S g prop

(1)  supp ¢, c x| \*1 €23
() supp ‘?‘S c {"'l 25"‘ LX) £ z*”} 4:{ $=123...

(ii) For every multi-index <[ there exists a positive number ¢

‘ol
such that
Bl 5 2 for all j = 0,1,2 d all xe=®
(5) 2 an'(r)‘ = c’d, or j = s 1,250 8NA & Xe.‘n ,
(1i1)
oo
- (6) > P;00) =4 for every xeR,
a':o
We may assume that
#) ‘(’4,("‘) = Y, (Z’h*‘ f‘), b= 42,...

holds. F and F !

on S', respectively. If f& S' then F'h(d Ff = F'1[_¢5Ff] makes

stand for the Pourier transform and its inverse

sense, and by the Paley-Wiener-Schwartz theorem it is an analytic
function which we denote by (F~' ¥ Ff)(x). Finally if O<¢p éw
then
4
gLl = ( S Vgom Yo ) ¥

Rm
has the usual meaning (modification if p = oo ). Now we are in

the position to define the Besov spaces B,sm‘ = B;&(RA‘_): Let
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co0<B<0 ,0cpsco and 0<q % oo .Let<ye<§ . Then
4
( s P & 3%, 4 4

@) I’;:w= $418eS , 0LIB N =(;z=_°2 \F QJFQ\L“’“‘V) < oo§

(usual modification if q = oo ), cf. |4, 2.3.1] . This is a quasi-
Banach space (Banach space if 1$p<oco and 1< q € 00 ). It 18
independent of the choice of e cP (in the sense of eaivalent
quasi-norms). In this sense we write (f | Bg'q I instead of
[ ol B;’q ¥ in the sequel. We mention that B;.q with 8> 0, 1<
P oo and 14q ¢ o0 coincides with the classical Besov spaces.
Purthermore, @5 = Bsm, 00 with 8>0 are the well-known Hblder-
Zygmund spaces. Details may be found in [47 .

Next we formulate a crucial assertion which we need in the se-
quel. First we recall that

3) (A‘kﬁ yery = Lereh) =L  amd A" = 544\ A:‘-"

&
with hGRn, xGRn and M = 2,3,... are the usual differences. Let
N 1
@ Spen(L— -a)
¢ © ( mAm (pr") b

cf. 14, (2.5.3/8)] . In [4, Theorem 2.5.12] the following asser-

tion is proved: Let 0<p 400 , 0<q ¢ o0 , 8> 6, , M>8s (where

»
M is a natural number) and A > O. Then

1
s ° - -59, ™M 9. k&
11 “g\B‘P-‘V I M “£‘LV““'(§\ (:\\ K A’Z»{‘L‘P ( a_‘“) o
al<
(modification if q = 60 ) is an equivalent quasi-norm (norm if

> > .
p21and q21) in Bp,q

2.2. The Perturbation §& (x,h)

We formulate some general assumptions for the vector function
£(x,h) e R, from the Introduction. Let A > O and M be a natural

number, and let E(x,h) be a continuous mapping from
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{(x,h) | xeRy, heRy, |hig N}

into Rn such that the components of €&(x,h) have continuous first

derivatives with respect to the variables XyseeesXpe It is assum-
ed that for fixed he Ry with (hl ¢ N and = 1,...,M,
2y  yo=PUr(x) =x+ e E(x,h), x€eR,
yields an one-to-one mapping from Rn onto itself and that
(4%

[ ¢ey)
det ’B_%Z;{_*‘__ ‘ (the absolute value of the Jacobian of (12))

can be estimated from below by a positive number which is indepen-

dent of x, h, and . Let x = xh'r“(‘y) be the inverse mapping
r'.

of (12). Then it follows from the Inverse Function Theorem (cf.

&
e. g [3, p. 35]) that det—a—(%———j—(’;ﬂ is uniformly bounded

from above with respect to ye R.» heR, with lhisX , and
1ye00,M.

’4-

Remark 1. These are our general assumptions for the vector-function
£ (x,h). Sometimes it is sufficient to have the above informa-
tions for yh"" only for special values of r o For example, in

Section 4 the above assumptions with =1 are sufficient. But

on the other hand in the same section we need that the components

of €£(x,h) have higher derivatives which are uniformly bounded

in Rn.
Remark 2. It is easy to formulate sufficient conditons which ensure

the above general assumptions. For example, let

(13) ‘g;%_(*,&)‘ ¢  for xeR end heR, with lhl & X
[

where j = 1,...,n. We claim that the above assumptions are satis-

fied if > O is small: This is clear as far as the assertions

L
for \de(: %‘L‘é—g‘ﬁfﬁ}i are concerned, which shows that the mapping
*)

(12) is locally one-to-one. Furthermore, for small values of &

we have |p||EGF\R)-e0h AN 4§ Ix* x*| and consequently,
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(1%) ‘yh’r“'(f)-yh’r'(x%l 2 1 x' - x|,
This shows that the mapping (12) is globally one-to-one. By (14)
1% follows also that yh’r‘ (x) maps R, onto a set of R which is

toth open and closed and which coincides, consequently, with Rn.

™M
3. Characterizations via Ag& with gz‘(m= L+ €00, 4)
3.1. The Basic Proposition

iet the general assumptions for £(x,h) from Subsection 2.2 be
satisfied. Let 9“(;:) =h + &(x,h). In Section 3, A‘:(*'&) and
,:;;A“) have the meaning of (1) with & and 9"" instead of g,
respectively.

Proposition. Let OCKCp 400 , 0<q £0c0 and 8> 3’:, , cf. (10).
Lat M > 0 and let M be a natural number with M >s. Let the above
hypotheses for £(x,h) be satisfied. Let m > 0 and let M, end
M.', be non-negative integers with M1 2 1 and M1 + M2 = M. Then there
exists & positive number d = 5( m ) with the following property:
It

%) |€(x,h)[£ dln( for ell xeR, and all heRy with (hl £X
then

)

A
- 59, ™M M2 T oAl \ Y
ey (5 T A lOMIL TR e 1B L

TSN
holds for all f¢ Bg q (modification if q = o0 ).
’

Froof. Without essential restriction of generality we always assume

that q <0 and X\ = 27K, where X is an integer. Let {@, 00} ¢ & .
h -ﬁ;o

For sake of convenience we put L?k(x) =0 if k = -1,~2,... Let

273714 (h1¢ 273 with § = K, K+1,... If £¢ B)q then we have

(-]
un foos= X (¢ G FEY O
mz ~ O
and
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M, M, 00 M, A M, v o
“é (AE(ﬁ&\ A-k"e)(ﬂ= 2 (Ag(rle\)F Vi*MFA&£>(’“= z "'Z..

Mz - 00 mz - 00 mNeA
where the natural number N will be chosen later on. Let mg¢ N.

Then we have
(1) |( Ay F GemF ALDR | ¢ s [ (a7 Fagf)o|
£, &) PRz A geRm | 9 Va'm 'y
QLed2?

"N

My - M
8yt e ) [P g F 8 24080
T

M, -4M -
Csé ‘2 e 2 |(F 4%'*"- FE) | )
e-4lg ¢, 278 tai=h

us

where all the above c's (and also the following ones) are indepen-
dent of & , N, J, m etc. We use a maximal inequality and a Nikol's-
kij inequality, cf. the scalar case of [4,(1.6.2/1)] (which works
algo for p =00 ) and [4,(1.3.2/5)] . With let| = M then we have

et o moy % g
“ ?:":‘éd-,' & ‘f,-*me)(‘a)I\L? | ¢ ' (e IDE g FILy

M(gtm) -1
(20) £ (4427 2 TN g W B Itel
where a is a number with a ) '-'-1; . By (19) and (20) it follows that
M,

~ M, Mwm -1
@ | (AE(*,{]F4(?3'*”!FAA2£)‘X)(L?“ P A - Ciem 4 [ Lyp (.

Let 0<p £1. Then (21) yields

g My My -4 4
“f‘tw Doty B0 F Gem FE b
N My My« L 4
(22) 3 Z I Ag(x\&) &, F ‘ft'*.,‘ F£ 1 L,f; i
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‘e 3"‘*’2"“" 2~g‘s1° i 2«(M-°)v25c5+m31-

- r
[ F T, om FL L
Py I F " gjem FE Ll
If 14 p ¢ oo , then the counterpart of (22) reads as follows,
(23) My “‘z
“ Z_ AE(*,'\) AA 3_‘,“ { l L’P “
m= - 00

. N .
‘¢ c JMZN«Z%S Z me s) Zszam) I F-«‘%w‘ =4 L'P“ .

mz= ~ 00

Let m2 N+1. If O<p £1 then we have

ST SN P A T

e NeA £(x, &)
-2 ™M, 4
€CZ “Aa(*A)F "Yarm £“—’1°“
mz V€A
Mo

nh

S M S VAT TR R I

m=Nt1 ¥v=0

%

" > | F“‘q)t.‘_m F{ 1L, \\'a

me=NEA

ut

where in the last estimate we used our assumption about the mappin

properties of x — x + £(x,h), cf. (12). If 14p ¢ oo then
the counterpart of (24) reads as follows,

M4

@ |y a
m= Nt

My

-4
T S T Fiibel

cc i i Fdﬁ'.m FLiLp .

m= Nt

We summarize our estimates: If h with 2 4 £lhl <2 e is given,
then we have (22), (24) for 0<p <1 and (23), (25) for 1<p < oo
Let again O<p <1. Then (18), (22) and (24) yield
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MICHIRNS NI

ut>
n
.Mg
N
IXY
“w
Y

M:. Y
gk 3“ (Aw 6 e Bdn by !
3= ¥ 27 mtle 27

m(M-35)g (N-m)6q 5(3+~u)q,

49 _Na F F&“- ((
e M‘!r ‘\'Z z 2 2 2

a-rm

x = ~wmsq,  (m-N)6q i ew) -
dSS T, 254 ¢ "Ojim FE Ly |
é:K mz N1

where 6 > O is an arbitrary number. We choose ¢

such that 0¢¢
<8<8+6 < M holds. Then we have

2%) S M M " il
S - 4 ll(Aw,“%\ﬁ)ml'—@ I R
g 27

N(M-9) -Ns ¥ <
’.;c(cSmZNQZ_ rZ ) \\’ngf;q,“qr.

If we choose N large and afterwards d

small, then we obtain (16).
If 1<p ¢ o0

, then (27) follows in the same way from (23) and
(25). The proof is complete.

Remark 3. The above Proposition is the basis for our considerati-

ons in Subsection 3.2 (Theorem 1). However in Section 4 we need a

modification of this proposition which we describe now. We shall

Obtain s modified estimate (19) where we have on the right-hand
side of (19) the additional term

- 423 -



-4M
(tsr) ey 1T awp 2 N(SF e, FOp|

\r-glﬁc.,z'?' ocluleM
v S PUE Y Pl 0T
a (20) and (21) it follows that the factor ] Cjem {1y
on the right-hand side of (22) must be replaced by

- (4 -
(12) (8" 4 27T g PR L I
with some & > O (and similarly in (23)). This shows that we have
the additional term
M- -
vy < 2VEY N g Byt

on the right-hand side of (27). Let 8-#> 6% . By (11) (with 8-k

instead of s) we have

1B W e TURIBL |+ cp gLyl
where T > O is a given positive number. In other words, if we
have the additional terms (19') on the right-hand side of (19),
then we obtain an estimate of type (16) with the additional term
Cy |(f|Lp I on the right-hand side.

3.2. Theorem
We recall that in the following theorem A:* Em"‘)muxs*l; be under-
stood in the sense of the interpretation from (1).
Theorem 1. Let O0<p S oo , 0<¢q £00 and s>%; . Let A\> 0 and
let M be a natural number with M> s. Let the general assumptions
for &(x,h) from Subsection 2.2 be satisfied. Then there exists

a positive number J = J (s,p,q4M, N ) with the following proper-

ty: If

&) {g(x,h){ & J (bl for all xeR, and all heR, with {h|4 A

then )
s & _ -5 ™M T \¥

(29) W{IB, "n,x ={iL,l +( § ™y A,uwe.&)f Lol le“)

IRTEN
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|is an equivalent quasi-norm on B‘g’q (modification if g =00 ).

Proof. If xe€ Rn and heRn with lhl£€ X\ are fixed then we have

(o ) = (F(e AP0 e g) e
(39) = (F”‘ [eLE&—A + eég{(edge"\)]MFf ) 4)

with g£= g(x,h). By this formula it follows that
M
™ ™M M, M-M
() (8= (8B T ¢ (67 8 F) ML)
M=

holds with some coefficients Cp. * We put y = x. We assume with-
1

out restriction of generality that q<eo . Then (16) yields

- 59 M ¥ A
a2) S T A“u,,’u{“-v\\ e
RUEN

- ™M 9 i I3 3
¢ c} X FU PTG ccfRIBE N
1R ¢

Consequently,
33 (£ 1By, {(; NERAE 1 Beq

cf. (11). In order to prove the reverse assertion we put
™M
M ™M My N—H.‘
) g fre= (8, 0o - 2:4 Cu (B 8y #)rrMyR)
M2

(cf. (21)) in (11). We use again (16) and obtain that

35) (41 BE, 0 £ cldiBhel

-]

M A
¢ c £ B:,$ “:; N M (£ \B:’,q, f\

holds, where M > O is at our disposal. Let m be small. Then we

arrive at £
(36)  WEIBgoll £ <ML I Bie M,

The proof is complete.
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M
4. Characterizations via Ao with g&‘(x) = h + g(x,h)

4.1. Two Preparations
™M M ™M
We wish to replace Ags = Dgagew, &) 1n Theorem 1 by V'S PN

where the latter stands for the second interpretation of iterated

variable differences as it has been described in the Introduction,
ef. (2) andi (3). We wish to use the same ideas as in the proofs

of the above Proposition (inclusively Remark 3) and Theorem 1. How-
ever there are several technical difficulties. It is the aim of
this subsection to handle two of them.

A Representation Formula. First we look for preparations which at
the end substitute the formulas (18) and (19). For this purpose we

M
describe the structure of (A?f) (x), where M is a natural number

and the vector-function ¢= g(x) = ( Q(x)yeee, 9“(1:)) has infi-
nitely differentiable components. (As a matter of fact it would be
sufficient to know that the components of g(x) have continuous

derivatives up to the order M-1). For smooth functions f(x) we have

4
(A"?g)m): S %{_{(r+tg<n\)a&
]
4 m 9
(3%) =S Z. (5_%\(:+tgws)gd(x)dt, *E R
o
and

(848300 = o (&of)oretgonas

QL—""a gL a
oL—a

3‘1 {gé[x+tg(x)+’lfg(t+tgw))] 93- (r+tgcn>)ga(€o(t.

n
(38) =2
3=
2
i)
However, 3-(&{ 3 is the sum of terms of the typeg_ga%ﬂ:.,.) 98‘(-..)315..)“

and ,:—{% ¢ S’Q(--') H where ... indicates appropriate arguments
[
and H stands for a general function which differs from term to

term and where first derivatives of the 91'5 are involved. Iteration

-426-



M
yields a corresponding representation formula for (Agf)(x) via
terms of the type
Lo\ NGB (eerY).nn .
6 DU 0 g
where Ht,w, ¢y
of the components of g and its derivatives up to the order M-1

> H with o<latl g ™M,
Ql)"')e(d\

is a sum of products of at least M - [d| factors

(with appropriate arguments). We discuss the omitted arguments in
(39). Let g = g (x,h) where xe€R, and he R, with, eay, |nl & 1,‘
and let

o) 190e, 8| ¢ 141 amd lb":gc»,&)[ £ A4l ‘{ 1ol & M~1,
Then the arguments in the involved functions in (39) are represen-
ted by points which are contained in the ball {ylix-yl ¢clhl},
where ¢ is independent of h. Furthermore we have

M ™M o |
(4 A Y| ¢ e 1™ s > (D4 ( d!
> 1t go,&){ l ¢ x-#14 C AL Qclodi€M

where ¢ and ¢' are independent of § and h (but depend on A in
(40)).

An Inequality, Next we look for a preparation which replaces (30)
and (31). It heRn then Th denotes the usual trenslation operator,
1. e. (T,2)(x) = £(x+h). Then (2) yields

(%2) /N Tk + By

and

Driec,gy = Pec,

M = a" 1= A R,
6 By, PatECTS g 1= Ba R,

where [...] indicates products of Ty &, and Au.’g) -We assume
that for some A > O
ey LEGa )€ SRl amd (DUEr Q| € ALRL

*e€R, , heR, |, &l 4N amd ldl g M-1.
holds. Then it follows in the same way as in (37) - (41) that

“s) Ry 4)om| ¢
cal"(8 e 5 (Bheplr s T Sepl)

eyl € (Al iz (remg)4 (4] 0<iicm
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holds, where ¢ and c¢' are independent of § and h (but depend on

A in (44)).

4.2. Theorem

After the above preparations we are in the position to prove the
counterpart of Theorem 1 with AM&*-E(','R) instead of A’:wu-,k)
Theorem 2. Let O<p£eco , 0<q4ge and e>6‘1, . Let X> 0 and
let M be a natural number with M> s. Let the general assumptions
for £ (x,h) from Subsection 2.2 be satisfied. Let additionally
the components of &£(x,h) be M-1 times continuously differentiable
(with respect to xeRn) with

ey D £t 0| ¢ ALRL L #€R,  [ALE X and 1ol ¢ M-1

for some positive number A. Then there exists a positive number d
(which depends on s,p,q,M, A and the number A in (46)) with the
following property: If

3 | £oe r( € 3 141 for all #ERy andl AR, aoith (1€

then

X 1
(e #) (““B:,w“n,x,i2(‘{&"‘“( §« ‘;\M i ALE(-.““L'“”%“)‘
(L1

is an equivalent quasi-norm on B:.,Q, (modification if q = e ).
Proof. Step 1. Let Rﬁ be the remainder term from (43). It is a 1li-

near operator. Let M > O be given. Then we claim that

A
4 \ oty gn Yok 9
(49) (“‘S‘il I(R,\zmll.v\l mﬂ) t¢m uﬁg,;wu e W Lyl
holds for all fe Bil% provided that the positive number d in

(47) is sufficiently small (modification if q =oo ). The proof is
the sene as in the above Proposition: Let again A\ = 2'K y q <oo

(without restriction of generality) and 2-3-4.2 (h1£2°% with j=
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K, K+1,... We use (17), the splitting (18) with Rﬁ instead of
M, M, -1
and (45) with F . Ff inctead of f. Then the coun-
A&(r,&)A“k q‘-&ﬂ
terpart of (19) reads as follows: There exists a constant ¢ such
that for integers m (with m £N)
. o
M -4 -iMrs ((DEq:, FLyy
F o, F2)or 2 s .2 Qivm 9|
[ (R F jumFEIO |4 e [ e 2E J

(50) + sap > \(D*FM?,-,..\ FQ)“{M)

x-mlec'27d oorai<M
holds. This is the modification which we treated in Remark 3, cf.
(19'). Let m% N+1. We recall that Rﬂ is the sum of iterated diffe-
rences, cf. (42), (43), with iterated smooth one-to-one mappings
x —» x+h and x —» x+ g(x,h) of Rn onto itself. The iterations of
the latter mappings are also one-to-one mappings of Rn onto itself.
This yields obvious countervarts of (24) and (25). The rest is now
the game as in the proof of the Proposition and the considerations
in Remark 3. This proves (49).
Step 2. We use (43) and (49). Then the above theorem follows in

the same way as at the end of the proof of Theorem 1.
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