Commentationes Mathematicae Universitatis Carolinae

Miloslav Feistauer; Jan Mandel; Jindřich Nečas
Entropy regularization of the transonic potential flow problem

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 3, 431--443

Persistent URL: http://dml.cz/dmlcz/106318

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

25(3) 1984

ENTROPY REGULARIZATION OF THE TRANSONIC POTENTIAL FLOW PROBLEM
 Miloslav FEISTAUER, Jan MANDEL, Jindrich NEČAS

Dedicated to the memory of Svatopluk FUCIK

Abstract

A\) bound on the velocity of the flow and an ontropy condition define a compact subset s of $\mathbf{w}^{1,2}$, in which a weak solution of a variational inequality is sought. This inequality replaces the continuity equation and it has molution: which aolve the transonic flow problem provided they lie in the interior of S .

Ker wordes Tranconic flow, variationsl inequality, entropy condition.

Classification: 35A15, 35MO5, 49A29, 76HO5

1. Introduction. This paper is a further development of the approach of Feistauer and Hecas [4], where a weak solution to the trensonic potential flow problem is found as a limit of a generic sequence under some à posteriori assumptions on it involving the entropy condition. For more details and further references, see that paper, Glowinaki and Pironnesu [7], and Glowinaki [6].

Let Ω be a bounded, simply connected domain in $R^{H}, N=2$ or 3, dith a Iipschitz boundary $\partial \Omega$. The irrotational, steady, adiabatic, and isentropic flow of a non-viscous, compressible fluid in Ω is modelled by the continuity equation

$$
\begin{equation*}
-\operatorname{div}\left(\rho\left(|\nabla u|^{2}\right) \nabla u\right)=0 \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

where u is the flow potential, ∇u is the velocity, and ρ is the density of the fluid given by
(1.2) $\rho(a)=\rho_{0}\left(1-\frac{x-1}{2 a_{0}{ }^{2}} s\right)^{\frac{1}{x-1}}, 0 \leq s \leq \frac{2 a_{0}^{2}}{x-1}$

The constants S_{0}, a_{0} are the density and the speed of sound, reapectively, at zero velocity, and $1<\partial<2$ is the adiabatic constant ($\mathfrak{z}=1.4$ for air).

Equation (1.1) is elliptic for $|\nabla u|^{2}<\frac{2 a_{0}^{2}}{x+1}$ and hyperbolic for $|\nabla u|^{2}>\frac{2 a_{0}^{2}}{x+1}$. The flow is subsonic in the former case and supersonic in the latter case. The boundary between the subsonic and supersonic regions is not known in advance. Moreover, there are in general discontinuities of parameters of the flow on this boundary, the so-called shocks. Physical flows satisfy the entropy condition:
(1.3)

There cannot be an increase of the velocity in the direction of the flow through a shock.

Let $\partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup K$ with Γ_{1} and Γ_{2} open in $\partial \Omega$ and the surface measure $\mu_{N-1}(\tilde{R})=0$. Consider the boundary conditions
(1.4)
$u=0$ on Γ_{1},
(1.5)
$\rho \frac{\partial u}{\partial n}=g$ on Γ_{2}.

If $\Gamma_{1} \neq \varnothing$, define

$$
V=\left\{u \in W^{1,2}(\Omega): u=0 \text { on } \Gamma_{1}\right\}
$$

and for simplicity of notation let $g=0$ on Γ_{1}.

If $\Gamma_{1}=\varnothing$, define

$$
V=\left\{u \in W^{1}, 2(\Omega): \int_{\Omega} u d x=0\right\}
$$

and assume

$$
\int_{\partial \Omega} g d S=0
$$

We consider two formulations of the entropy condition.
The natural form, derived in [4], is
(1.6) $\int_{\Omega} \rho^{\prime}\left(|\nabla u|^{2}\right)|\nabla u|^{2} \nabla u \nabla h d x \leq M \int_{\Omega} h d x \quad \forall h \in D_{+}(\Omega)$, where

$$
\mathscr{D}_{+}(\Omega)=\{h \in \mathscr{D}(\Omega): h \geq 0 \text { in } \Omega\}
$$

The simplified form, used in $[6,7]$, is
(1.7) $\quad-\int_{\Omega} \nabla u \nabla h d x \leq M \int_{\Omega} h d x \forall h \in \mathscr{D}_{+}(\Omega)$.

Here $M>0$ is some constant. Define

$$
\left.\begin{array}{rl}
S_{\text {nat }}=\{u \in V: u \text { satisfies (1.6) and } \\
& |\nabla u|^{2} \leq s_{1}<\frac{6 a_{0}^{2}}{1+x}
\end{array} \quad \text { a.e. in } \Omega\right\}
$$

and

$$
\begin{aligned}
& S_{s i m}=\{u \in V: u \text { satisfies (1.7) and } \\
&\left.|\nabla u|^{2} \leq s_{2}<\frac{2 a_{0}^{2}}{x-1} \text { ace. in } \Omega\right\}
\end{aligned}
$$

Here s_{1} and s_{2} are some constants.
Put
(1.8)

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}\left(\int_{0}^{|\nabla u|^{2}} \rho(t) d t\right) d x
$$

Then the Gâteaux differential of Φ is

$$
D \Phi(u, h)=B(u ; u, h)
$$

where
(1.9) $B(u ; v, w)=\int_{\Omega} \rho\left(|\nabla u|^{2}\right) \nabla \nabla \nabla \nabla d x$.

The problem (1.1) with the boundary conditions (1.4) and (1.5) has now the weak formulation
$u \in V ; B(u ; u, v)=\int_{\partial \Omega} g \quad v d S \quad \forall \quad \nabla \in V$ and we look for physically meaningful solutions which should lie in the set $S_{\text {nat }}$ or $S_{\text {sim }}$ according to the form of the entropy condition. So, consider the following regularized problems:
1.11. Problem. Minimize $\Phi(u)-\int_{\partial \Omega} g u d S$ over $S_{n a t}$.
1.12. Problem. Find a solution of the variational inequality
$u \in S_{g i m} ; B(u ; u, v-u) \geq \int_{\partial Q} g(v-u) d S \quad \forall \nabla \in S_{\text {gim }}$.
It will be proved that these regularized problems have alweys solutions. A solution u of (1.11) or (1.12) is a solution of the transonic flow problem (1.10) if

```
\(\forall \nabla \in \tilde{V} \exists \varepsilon>0 \forall t \in(0, \varepsilon): u+t v \in S_{e}\)
```

where $S_{e}=S_{\text {nat }}$ or $S_{e}=S_{\text {sim }}$, respectively, and \tilde{V} is a dense subset of V.
2. Auxiliary propositions. Compactness results which follow are based on Theorem 1 of Murat [10]. We present direct proofs here.
2.1. Lemma. Let Ω be a bounded domain in R^{N} with a Lipschitz boundary and let $G_{n} \rightarrow G$ weakly in $\left(W^{1,2}(\Omega)\right)^{*}$. Let $G_{n}(h) \geq 0$ for all $h \in \mathscr{D}_{+}(\Omega)$. Then $G_{n} \rightarrow G$ strongly in $\left(W^{1}, P(\Omega)\right)$ for each $p>2$.

Proof. Let $\Omega_{1} c \bar{\Omega}_{1} c \Omega$ be a subdomain of Ω. There exists $\psi \in \mathbb{D}_{+}(\Omega)$ such that $\psi(x)=1$ on Ω_{1}. For $h \in \mathscr{D}(\Omega)$ with supp h $\subset \Omega_{1}$ we have
$-\|h\|_{L^{\infty}(\Omega)} \psi \leq h \leq\|h\|_{L^{\infty}(\Omega)} \psi$,
hence
(2.2) $\quad\left|G_{n}(h)\right| \leq G_{n}(\psi)\|h\|_{L^{\infty}(\mathbb{O}} \leqslant c\left(\Omega_{1}\right)\|h\|_{L^{\infty}(\Omega)}$. Define $u_{n}, u \in W_{0}^{1,2}(\Omega)$ by

$$
\int_{\Omega} \nabla u_{n} \nabla h d x=G_{n}(h), \int_{\Omega} \nabla u \nabla h d x=G(h) \quad \forall h \in W_{0}^{1}, 2(\Omega) .
$$

Let $q>N$. Since the imbedding $W_{0}^{1}, q\left(\Omega_{1}\right) \subset C\left(\Omega_{1}\right)$ is compact, it follows from interior estimates by Agmon, Douglis, and Nirenberg [1] and from (2.2) that for every subdomain $\Omega_{2} \subset \bar{\Omega}_{2} \subset \Omega_{1}$, $\left\{u_{n}\right\}$ is compact in $W^{1}, q^{\circ}\left(\Omega_{2}\right), \frac{1}{q^{\prime}}+\frac{1}{q}=1$. So the interpolation inequality

$$
\left(\int_{\Omega_{2}}|m|^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}} \leqslant\left(\int_{\Omega_{2}}|m|^{2} d x\right)^{\frac{\theta}{2}}\left(\int_{\Omega_{2}}|m|^{q^{\prime}} d x\right)^{\frac{1-\theta}{q^{\prime}}}
$$

with $\frac{1}{p^{\prime}}=\frac{\theta}{2}+\frac{1-\theta}{q^{\prime}}$ gives that the same is true in all $w^{1}, \widetilde{p}\left(\Omega_{2}\right), 1<\tilde{p}<2$. Let $h \in W_{0}^{1}, p(\Omega)$. Then

$$
\begin{aligned}
\int_{\Omega} \nabla\left(u_{n}-u\right) \nabla h d x & =\int_{\Omega_{2}} \nabla\left(u_{n}-u\right) \nabla h d x+ \\
& +\int_{\Omega \backslash \Omega_{2}} \nabla\left(u_{n}-u\right) \nabla h d x
\end{aligned}
$$

and we have

$$
\begin{aligned}
& \left|\int_{\Omega \backslash \Omega_{2}} \nabla\left(u_{n}-u\right) \nabla h d x\right| \leq\left(\int_{\Omega \backslash \Omega_{2}}\left|\nabla\left(u_{n}-u\right)\right|^{2} d x\right)^{\frac{1}{2}} \\
& \quad\left(\int_{\Omega \backslash \Omega_{2}}|\nabla h|^{p} d x\right)^{\frac{1}{p}}\left|\Omega \backslash \Omega_{2}\right|^{\frac{1}{2}-\frac{1}{p}}
\end{aligned}
$$

Since $\left|\Omega \backslash \Omega_{2}\right|$ can be made arbitrarily amall, we obtain

$$
G_{n} \rightarrow G \text { strongly in }\left(W_{0}^{1}, p(\Omega)\right)^{*}
$$

This is another proof of Theorem 1 in Murat [10], cf. also the remark by Brezis [3] to that paper. Note that we did not
use the assumption that Ω has a Lipschitz boundary up to now.
For $h \in \boldsymbol{m}^{1, P}(\Omega), p>2$, put
$h=h^{1}+h^{2}$, where $\Delta h^{1}=0$ in Ω and $h^{2} G w_{0}^{1,2}(\Omega)$.
By Meyers [9], there exists $p_{1}>2$ such that the mappings $h \mapsto h^{1}$, $i=1,2$, are continuous from $\boldsymbol{m}^{1, r}(\Omega)$ to itself if $2 \leqslant r \leq p_{1}$. Without loss of generality assume that $p \leq p_{1}$. Since the imbedding $\nabla^{1-\frac{1}{P}}, P(\partial \Omega) \subset w^{1 / 2,2}(\partial \Omega)$ is compact, it holds that the set $\left\{h^{1}:\|h\|_{W^{1}, p_{(\Omega)}} \leq 1\right\}$ is compact, and, consequent1y,
$\|h\|_{W^{1, \eta}(\Omega)} \sup \left|\left(G_{n}-G\right)\left(h^{1}\right)\right| \rightarrow 0$. Since $G_{n} \rightarrow G$ strongly in $\left(W_{0}^{1}, P(\Omega)\right)^{*}$, we get the result.

Lemma 2.1 is a direct extension of Theorem 6 in Murat [10], where the stronger positivity condition

$$
G_{n}(h) \geq 0 \quad \forall h \in \varepsilon(\bar{\Omega}), h \geq 0,
$$

has been assumed.
We are now in the position to prove the fundamental properties of the sets $S_{n a t}$ and $S_{s i m}$. Let $u s$ begin with the simpler case.
2.3. Theorem The set $S_{\text {sim }}$ is convex and compact (in the $W^{1,2}(\Omega)$ norm $)$.

Proof. Clearly $S_{\text {sim }}$ is bounded, convex, and closed. Let $u_{n} 6 S_{\text {sim }}$ and without loss of generality

$$
u_{n} \rightarrow u \text { weakly in } w^{1,2}(\Omega)
$$

Define $G_{n}, G \in\left(W^{1}, 2(\Omega)\right)^{*}$ by

$$
\begin{aligned}
& G_{n}(h)=\int_{\Omega} \nabla u_{n} \nabla h d x+M \int_{\Omega} h d x, \\
& G(h)=\int_{\Omega} \nabla u \nabla h d x+M \int_{\Omega} h d x .
\end{aligned}
$$

We have $G_{n} \longrightarrow G$ weakly in $\left(w^{1,2}(\Omega)\right)^{*}$ and $G_{n}(h) \geq 0$ for all $h \in \mathscr{D}_{+}(\Omega)$, so from Lemma 2.1,

$$
G_{n} \rightarrow G \text { strongly in }\left(W^{1, \infty}(\Omega)\right)^{*} .
$$

Now

$$
\begin{aligned}
\int_{\Omega} & \nabla\left(u_{n}-u\right) \nabla\left(u_{n}-u\right) d x \\
& =\left(G_{n}-G\right)\left(u_{n}-u\right) \rightarrow 0,
\end{aligned}
$$

hence $u_{n} \rightarrow u$ strongly in $w^{1,2}(\Omega)$. \square
2.4. Theorem. The set $S_{\text {nat }}$ is compact (in the $W^{1,2}(\Omega)$ norm).

Proof. Clearly $S_{n a t}$ is bounded and closed. Let $u_{n} \in S_{\text {nat }}$ and without loss of generality

$$
u_{n} \rightarrow u \text { weakly in } w^{1,2}(\Omega) .
$$

Define $G_{n} \in\left(w^{1,2}(\Omega)\right)^{*}$ by

$$
a_{n}=\mu \int_{\Omega} h d x-\int_{\Omega} \rho^{\prime}\left(\left|\nabla u_{n}\right|^{2}\right)\left|\nabla u_{n}\right|^{2} \nabla u_{n} \nabla h d x .
$$

We can suppose $G_{n} \rightarrow G$ weakly in $\left(W^{1,2}(\Omega)\right)^{*}$. Since $G_{n}(h) \geq 0$ for all $h \in \mathscr{D}_{+}(\Omega)$, Lemma 2.1 implies

$$
G_{n} \rightarrow G \text { strongly in }\left(w^{1, \infty}(\Omega)\right)^{*} .
$$

Now

$$
\begin{aligned}
& -\int_{\Omega} \rho^{\prime}\left(\left|\nabla u_{n}\right|^{2}\right)\left|\nabla u_{n}\right|^{2} \nabla u_{n} \nabla\left(u_{n}-u\right) d x \\
& +\int_{\Omega} \rho^{\prime}\left(|\nabla u|^{2}\right)|\nabla u|^{2} \nabla u \nabla\left(u_{n}-u\right) d x \\
& =\int_{\Omega} F_{n}(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =G_{n}\left(u_{n}-u\right)-M \int_{\Omega}\left(u_{n}-u\right) \\
& +\int_{\Omega} \rho^{\prime}\left(|\nabla u|^{2}\right)|\nabla u|^{2} \nabla u \nabla\left(u_{n}-u\right) \rightarrow 0 .
\end{aligned}
$$

Because $\left|\nabla u_{n}\right|^{2} \leqslant s_{1}$, it holds $|\nabla u|^{2} \leqslant s_{1}$ (the set of v such that $|\nabla v|^{2} \leq s_{1}$ is convex and closed, hence weakly closed) and we get from

$$
\mathbf{s}_{1}<\frac{6 a_{0}^{2}}{1+x}
$$

that

$$
\begin{aligned}
(2.5) & -\rho^{\prime}\left(|\xi|^{2}\right)|\xi|^{2} \xi(\xi-\xi)+ \\
& +\rho^{\prime}\left(|\xi|^{2}\right)|\xi|^{2} \xi(\xi-\xi)>0
\end{aligned}
$$

for all ξ, ξ such that $|\xi|^{2} \leqslant s_{1},|\oint|^{2} \leqslant s_{1}, \xi \neq \S$. Consequently, $F_{n}(x) \geq 0$ and we can suppose that $F_{n}(x) \rightarrow 0$ in $z \subset \Omega$ with $|\Omega \backslash z|=0$ and $\nabla u_{n}, \nabla u$ defined in Z. We claim that

$$
\nabla u_{n}(x) \longrightarrow \nabla u(x) \quad \forall x \in Z .
$$

Take $x \in Z$. There exists a subsequence such that $\nabla u_{n_{k}} \rightarrow \xi$. If $\xi \neq \nabla u(x)$, we get by (2.5) a contradiction with $F_{n}(x) \rightarrow$ $\rightarrow 0$. Hence $u_{n} \rightarrow u$ strongly in $w^{1,2}(\Omega)$.

In the sequel, we shall use the following generalization of the secant modulus inequality taken from Mandel [8], which for $\propto=1 / 2$ and $B(u ; u, h)=D \Phi(u, h)$ was proved by Nečas and Hlaváček [12] and by Fučík, Kratochvíl, and Nečas [5] in the case of equations ($K=H$).
2.6. Lemma. Let H be a Hilbert space, K a closed convex subset of H, Φ a functional on H with the Gâteaux differential $D \Phi(u, h)$, and $B(u ; .,$.$) a symmetric, bounded, H-elliptic$
bilinear form on H for each $u \in H$ and such that with some con$s \tan t \alpha$

$$
\begin{aligned}
&(2.7) \propto B(u ; u-v, u-v) \geq \Phi(v)-\Phi(u)- D \Phi(u, v-u) \\
& \forall u, v \in K .
\end{aligned}
$$

Let $f \in H^{*}, \Psi(u)=\Phi(u)-f(u)$.
If w is defined for a given $u \in K$ as the solution of the variational inequality

$$
\begin{equation*}
w \in K ; D \Phi(u, v-w)+B(u ; w-u, v-w) \tag{2.8}
\end{equation*}
$$

$$
\geq f(\nabla-w) \quad \forall \nabla \in K,
$$

then it holds

$$
\Psi(u)-\Psi(w) \geq(1-\propto) B(u ; u-w, u-w)
$$

Proof. Add (2.7) with $v=w$ and (2.8) with $v=u_{0}$
3. Solution of regularized problems. With the theorems of the preceding section at our disposition, the proofs of our main results are quite straightforward.
3.1. Theorem. The problem 1.11 has a solution.

Proof. The functional Φ is continuous and the set $S_{\text {nat }}$ is compact.
3.2. Theorem. The problem 1.12 has a solution.

Proof. The bilinear forms $B(u ; .,$.$) defined by (1.9) are$ uniformly bounded and uniformly V-elliptic for all $u \in S_{\text {sim }}$ * Hence the variational inequality
(3.3) w $\in S_{s i m} ; B(u ; w, v-w) \geq \int_{\partial \Omega} g(v-w) d S \quad \forall \quad \forall \in S_{s i m}$ has a unique solution for any $u \in S_{s i m}$ and the mapping $u \mapsto w(u)$ is continuous. Since solving the problem 1.12 is equivalent to
the fixed point problem $u=W(u)$ and $S_{\text {sim }}$ is convex and compact, the Schauder fixed point theorem applies.

As in [4], a very natural approach is to find a solution to the problem 1.12 as a limit of the sequence $u_{n+1}=w\left(u_{n}\right)$, where the mapping $u \mapsto w(u)$ is defined by (3.3). This is the secant modulus method for variational inequalities $[8,12]$.
3.4. Theorem. Let $u_{0} \in S_{\text {sim }}$ arbitrary and $u_{n+1}=w\left(u_{n}\right)$. Then $u_{n+1}-u_{n} \rightarrow 0$ strongly in $W^{1,2}(\Omega)$ and any infinite subsequence of $\left\{u_{n}\right\}$ contains a subsequence convergent strongly in $\nabla^{1,2}(\Omega)$. The limit of any convergent subsequence is a solution of the problem 1.12.

Proof. With Φ and B defined by (1.8) and (1.9), respectively, we have (2.7) with $\alpha=1 / 2$ (see [4]), and Lemma 2.6 with $f(u)=\int_{\partial \Omega} g u d S$ yields
(3.5) $c\left\|u_{n+1}-u_{n}\right\|_{V}^{2} \leq \Psi\left(u_{n}\right)-\Psi\left(u_{n+1}\right) \rightarrow 0$
using uniform V-ellipticity of the bilinear forms $B\left(u_{n} ; .,.\right)$ and the fact that $\Psi=\Phi-\mathcal{I}$ is bounded from below on $S_{s i m}$. Compactness of $\mathrm{S}_{\text {sim }}$ yields immediately the existence of convergent subsequences. From the continuity of the mapping $u \mapsto w(u)$ and from (3.5), the limit u of any convergent subsequence of $\left\{u_{n}\right\}$ satisfies $u=w(u)$.

Note that using the particular properties of the problem at hand, we proved in Theorem 3.4 the existence of solutions of the problem 1.12 without recourse to the Schauder theorem. Anyway, existence of solutions of 1.12 also follows from the simple fact that any minimizer of $\Phi(u)-\int_{\partial \Omega} g u d S$ in $S_{s i m}$ is a solution of 1.12. We choose the fixed point approach, be-
cause it leads naturally to the secant modulus method, which is a promising mumerical method.
4. Extensions. All propositions and proofe remain valid when the entropy condition (1.7) is replaced by its abstract form
$-E(u, h) \leqslant M(h) \quad \forall h \in D_{+}(\Omega)$,
where E is a ∇-elliptic bounded bilinear form and $M \in\left(w_{0}^{1}, 2(\Omega)\right)^{*}$.
Symmetry and V-ellipticity of the forms $B\left(u_{i}, \ldots\right)$ is in fact not needed in Theorem 3.2. It is sufficient that $B\left(u_{;} ., .,\right)$be u niformly bounded and have the continuity property
$\forall \nabla \in V: B\left(u_{n} ; V,.\right) \rightarrow B(u ; V,$.$) in V^{*}$ if $u_{n} \rightarrow u$ in V.
The proof follows by an application of the Scheuder theoram to the continuous mapping $u \mapsto w(u)$ defined by

$$
\begin{aligned}
\bar{w} \in S_{s i m} ; & (\bar{w}, v-\bar{w})_{V} \geq(u, v-\bar{w})_{V}-B\left(u_{q} u, v-\bar{w}\right) \\
& +\int_{\partial \Omega} g(v-\bar{w}) \text { dS } \forall v \in S_{\text {sim }}
\end{aligned}
$$

Theorem 3.4 remains valid for more general problems as long as the assumptions of Lemma 2.6 are satisfied with some $\alpha<1$ and $D \Phi(u, h)=B(u ; u, h)$. For conditions implying (2.7), see Mandel [8].

The compactness of the sets $S_{\text {aim }}$ and $S_{\text {nat }}$ makes it possible to use the concept of discrete compactness (see Anselone and Ansorge [21), which yields strong convergence of subsequences of solutions of suitable finite dimensional approximate problems to a solution of the regularized problem. This will be studied in following papers.

References
[1] S. AGMON, A. DOUGLIS, and L. NIRENBERG: Estimates near the boundary for solutions of elliptic partial differential equations aatiafying general boundary conditions I, II, Comm. Pure Appl. Math. 12(1959), 623-727, 17(1964), 35-92.
[2] P.M. ANSELONE and R. ANSORGE: Compactness principles in nonlinear operator approximation theory, Numer. Funct. Anel. Optimiz. 1(1979), 589-618.
[3] H. BREZIS: Remarque sur 1 article précedent de F. Murat, J. Math. pures et appl. 60(1981), 321-322.
[4] M. FEISTAUER and J. NEČAS: On the solvability of transonic potential flow problems, Z. für Analysis und inre Anwendungen (to appear).
$[5]$ S. FUČÍK, A. KRATOCHVfI, and J. NEČAS: Kačanov-Galerkin method, Comment. Math. Univ. Carolinae 14(1973), 651-659.
[6] R. GLOWINSKI: Lectures on Numerical Methods for Nonlinear Variational Problems, Springer-Verlag Heidelberg 1980.
[7] R. GLOWINSKI and O. PIRONNEAU: On the computation of transonic flows. In: H. Fujita (Ed.): Functional Analysis and Numerical Analysis, Japan Society for the Promotion of Science, 1978.
[8] J. MANDEL: On an iterative method for nonlinear variational inequalities, Numer. Funct. Anal. Optimiz. (Submitted).
[9] N.G. NEYERS: An L^{p} estimate for the gradient of solutions of second order elliptic divergence equations, Ann. S.N.S. Pisa 17(1963), 189-206.
[10] F. MURAT: L'injection du cône positif de H^{-1} dans W^{-1}, q est compacte pour tout $q<2$, J. Math. pures et appl. 60(1981), 309-321.
[11] J. NEČAS: Les méthodes directes en théorie des équations elliptiques, Academia, Praha 1967.
[12] J. NEČAS and I. HLAVÁČEK: Solution of Signorini's contact problem in the deformation theory of plasticity by secant modulus method, Apl. Mat. 28(1983), 199-214.

Katedra aplikované matematiky MFF UK (M. Feistauer and J. Nečas), Výpočetní centrum UK při MFF UK (J. Mandel), Malostranské néin. 25, 11800 Praha 1, Czechoslovakia
(Oblatum 9.7. 1984)

