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COMMENTATIONES MATHEMATICAE UNIVERSITA1IS CAROLINAE 

25,4 (1984) 

TRANSLATION OF NONSTANDARD DEFINITIONS 
TO STANDARD ONES 

Karel CUDA 

Abstract: An algorithm translating nonstandard definitions of 
notions to standard? version is given. Counterexamples proving that 
our algorithm is in a certain sense the best one are described?* It 
appears that in general this translation is much more complicated 
than in the case? when the notion of a limit (and other similar .no­
tions) is translated by £-cT method* 

Key words; Enlargement, standard, internal, external, monad, 
figura. 

Classification: Primary 03H05 

Secondary 26E35,54J05 

Introduction* The paper is the last of the series of three 

papers (ffilj ^t82I) using the same idea but applied in different 

branches of nonstandard- methods. We find a standard description 

of nonstandardly defined notions* Cauchy's t-cf criterion for li­

mits and Weierstrass' £-</* method" for exclusion of infinitesi­

mals may serve as the first results in this area* In the paper we 

shall describe an algorithm which finds for any nonstandard defi­

nition of a notion its standard counterpart. The algorithm can be 

used also for the natural generalisation of tha notion *to be in­

finitely small", namely for the notion "to ba an alement of the 

monad of a filter**". In this case we demand, however, the enlarge*. 
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ment to be compact and we give some counterexamples proving the 

importance of this assumption. The algorithm uses auxiliary va­

riables for subsets of the set we work at. Hence»in general, 

£ - a method does not suffice. An example proving this fact will 

be also given here. Notions used! in the counterexample are only 

by one step more complicated (from the syntactical point of view) 

than those ones of a limit, a derivation, etc. The counterexample 

proves that the given algorithm is from a certain point of view 

the best one - it uses namely auxiliary variables just from the 

power set of the "basic" set* This choice of variables is urgent 

and sufficient. The translation given inQJj uses auxiliary varia­

bles from increasing powersets of the basic set in dependence on 

the complexity of the nonstandard definition. 

Both translations are complicated enough and one cannot 

expect that they contribute to the better understanding of the 

nonstandardly defined notions. The author believes that the com­

plexity of the translation may point out the places that could 

be specific for nonstandard methods. Let us give here a notion 

of this kind* Let f be a sequence of real functions defined in 

a neighbourhood of a point x. We call a real number a to be a li­

mit point of the sequence f in touch to x iff {3 y ,y=-t)Cl/o-* >IL(<x)) 

(f«e(y)--a), where y=x means that y and x are infinitely close and 

IL(<-0 denotes that oc is an infinitely large natural number (for 

a correct definition see §0). Let us note that lim a^=a is equi­

valent with ( Voc ,IL(oc. ))(aac=a) but the given notion is not equi­

valent to (Ve )(3 yeo. (x))(lim fn(y)=a). Some examples of non-
** #t-#- o© ** 

standard notions (syntactically) similar to the given one can be 

found in fH] . 

In the middle part of the paper we shall "word by word" mo-

dificate (using the technique of compact enlargements) the mid-
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dTe part of [82J . Also the numbering of theorems and1 definitions 

is consistent with this paper* The author believes that the re­

placement of this part by a citation and instructions of modi­

fication of C82J would spare the author#s effort and some paper 

but could discourage possible readers* 

§0 Preliminaries* 

Definition 0.1; 1) A structured is called an enlargement of & 

far c iff c, (Pf^n{c) are from the language of l/ts9 *(X is an ele­

mentary extension of Vt and there is a*$fin(*)) (*( ^fin^
c)) 

being the interpretation of ̂ fin(c) in *W. ) such that ( Kx) 

( Ut I* x€c => *&*-* xsa ) # 

2) We call the interpretation *x of the element x of W in 

*\Jlj the enlargement of x. The elements of *6t being suoh in­

terpretations we call standard ones (St(x) » C-3 «)(x«%))# Ele­

ments of*UL we call internal and subsets of*VL we call extern 

nal. ( Thus e#g* N (more exactly {*n$n6NJ where N denotes the 

set of natural numbers) is an external setf©c6*N-N is an inter­

nal set ( every natural number n is the set of all natural num­

bers less than n ) and *N is a standard set ( but having nonstan­

dard elements)* 

Conventions 0*2:. Sometimes we shall omit if there is no danger 

of confusion ( which is in use in the literature)„ We shall omit 

* mostly in the case of habitual relations and functions. Thus 

we write 06 6*N (instead of <* % *N ), x+y (instead of x*+y) etc. 

On the other hand we extend the meaning of ^Vin(X) also for 

external sets X* We define $fin(
x) ~ w(V t€xKt6X)Jb*Fin(x)? „ 

Thus e.g. *(?fin(N) - £Pfin(N) c*(tf>fin(N)) - *<Pfin(*N). simi_ 
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larly we extend the meaning of c t r . f - etc. for external sets. 

Notations 0*3: We use nfmfkflf... for elements of N (here we 

also identify n with *n)* We use <x, (Z , >*,... for elements of 

*I. We use x,y,t,uf... for internal sets, X,Y,P,C*,... for 

external sets. There are also some exceptions. We use someti­

mes c instead of C for elements of % , but in this case sym­

bols *c or *( ̂ fin(
c>) occur in its nearness. 

Definition 0»4i 1) A natural number o*€*N is called: infinitely 

large ( IL(o6) ) iff od€*N-N. 

2) A real number x€*R is called infinitely siiall ( IS(x)) 

iff (3foi,lL(od))(|xI<l/o6). 

3) For c from UL we say that a set a€**((?j-.in(c)) such that 

cCa is c-infinitely large and use the notation IL (a). 

4) Let ?" from ^ be a filter on c. We put ̂ -*fx€*c; 

(i/X€!?")(x€*X)}. Q*S$ is called the monad o f ? . It would be 

also reasonable to use the notation ISg.(x) instead of xftj^as 

IS(x) s x€£U^if T denotes the neighbourhood' filter of 0. 

Note that if t/t- is an enlargement for 3* then M ^ / 0 also 

in the case that fl ̂ -=0. 

Lemma 0*5: 1) St(£) 5 (V<*,IL(oc))( &<<*) 

2) Let x€*c & *UL be an enlargement for c. St(x)&x€*c s 

s (VafILc(a))(x€a). 

Proof: 1) <$* is obvious asin<n. We prove **> . Let ot£ftm Put 

M-s{k;k-soc} . MSN and M is bounded from above (by /3 ), hence M 

has the maximal element. Let m--max(M). If m<©c then m+l-=o* and 

m+l€M which is in contradiction with m=-max(M). Hence m= o£ and 

St(od). 

2) 4> obviously holds. We prove <«. If ILc(a)&xtfc then 

ILc(a-{x}) ( see the definition of ILC). 
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Definition 0.6: An enlargement U is called compact for c (ce£C) 

iff for every internal set y the following property holds: 

(Va>ILc(a))(a«y) => (3 aft60>fin(c))( V ae*( <Pfin(c)) ,a Z aQ) 

(aey). 

Saying that *l/l is an (compact) enlargement we mean that 

*l1t is an (compact) enlargement for every element of (&• 

Fact: Every enlargement for N is compact for N. 

The hint of the proof: Vf . | n (N) can be coded in N (e.g. using 

the dyadic expansion (see e.g. f82])). Moreover, a subset is 

standard iff its code is standard. Further for every IL(oi-) 

there is /3<o6 such that /3 codes an IL*- set. For the proof of 

compactness use the co-overspreed lemma (consider the least 

of codes for sets in y from the definition of compactness). 

Now we suppose that Vt> has a set structure* too. By that 

we mean that € belongs ta the language of Ui and extensionali-

ty holds ( sets are equal iff they have the same elements ) . 

Hence c , n , V »- have usual boolean properties. Furthermore we 

suppose that for every cslA we have (Pfin^ 6^* 

Theorem 0.7: If *VL is an enlargement compact for c and iP is 

an internal formula ( only internal sets can be used as para­

meters and quantified - Kf is a formula in the sense of *U0 ) 

then the following equivalence holds ( V a,IL (a))(V x) 

(3bfILc(b))^(tfa,b>x,t) 5 Ct/b06^fin(c))C3ao6^finCc)) 

(V a*aQ)(Vx)(3 b2>b0)U?(tfmfbfxf~t)* Furthermore,, if "? are 

standard then the righthand side of the equivalenee can be un­

derstood in the standard' sense ( as a usual formula of the 

strueture UL) •> 

Proof: see [&]m 

Note that if we use an analogous equivalence for IL(o<), 

- 619 -



we obtain £-<jf translations of notions (uniform) continuity, 

(uniform) limit, derivation etc. (see f8J). 

Theorem O.T may he considered as a first form of a trans** 

lation algorithm* The form is suitable for the translation of 

notions similar to the notion of limit. 

Let us consider (on the other hand) the formula (Vo6,IL(^)) 

CJJ m,IL ta)Kcard(a) <c <*). This formula holds in any compact 

enlargement* But an eicample proving that there is an enlarge­

ment in which the given formula does not hold can be found in 

fL] (it follows the/lemma 2.7.8). Hence to the? given formula 

there is no standard counterpart which is independent on the 

enlargement. 

Similarly: Let M be a set of ultrafliters on N described 

bj the following nonstandard definition: ?eM 5 (Vo* ,IL(c*)) 

(36 ,G*oc){3 f,f;*lf->*N&St(f))(KX€^&StU))(f(a HX). (No­

te that £* * Fil(f( 6 )) in the notation from fCH H] ).In the 

case of compact enlargement M contains all the ultrafilters. 

In the general case M depends on the enlargement. That is the 

reason why we restrict ourselves;, in finding the translation, 

to the case of compact enlargements. It is not known to the 

author if there is a natural parameter and a translation algo­

rithm for the general case. In the case of nonstandard models 

of arithmetic we use, as such a parameter, the standard system 

of the model (see ffi2j). 

§1 Set considerations. 

Lemma 1.1 (Quantifiers changing lemma): Let *Fin(a), let £>Sa 

be mn external set and let if{tt?) be a set formula. There is 

an external set 0* £ 0fin(a) and a set formula f{ttt) such 

that (Vt*S>)f(tft)
 s(3^€6-)(|/(t,?)# 
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Moreover,G i3 definable from P,a by the operations ^fin»"» 

Proof: Put 6"= *<?finU) - *<?«,/a-$>> . f (t »*) s ( ̂  t*t) ̂ >(t/i> 

and consider the internal set {tea; (̂t,"?)}.. 

Corollary, 1*2: Let cP(t,St,«) be a normal formula (only the 

quantification of internal set3 is allowed) using the predica­

te St for elements of *c. A set formula (j/{t,x,3,2,^ can be 

found (by an algorithm) such that for any suitably defined ex­

ternal set <S*cu and suitably defined parameters "S,u we have 

u?(t,St,"it) s (J xe(T)^(t,x,?,u,u).6" is defined from c (the 

external set of all the standard elements of the standard set 

*c), and from an arbitrary a such that ILc(a) using the operas 

tions ^fin* * >"**' Parameters u,u are defined from a using the 

operations ^fin* *• 

Proof: By the induction based on the complexity of the formula* 

a?. For induction steps let us note the following hints: St(t)« 

= (3 xsc)(t=x)«. For conjunction use, in an obvious manner, car­

tesian product. For negation use the dual formula and Q#ch»l. 

(L.l#l)» For a quantifier use the commutative law for the same 

type of quantifiers and Q.ch.l» if necessary* 

Remarks: 1) The lemma and it3 corollary can be generalised for 

several "small** external 3eta (instead of c) aad corresponding 

"large" sets as parameters (see [82J)* As an example let us men­

tion the iterated ultrapower where "small" means enlargements 

with small indices and "large" enlargements with large indices, 

2) If St occurs only in the prefix of (f then it ie suffi~ 

cient to modify only the prefix. In this case the modification 

and the definition of 0* and $ are dependent only on the syn­

tactical form of the prefix of ifi •» 
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§2 Topological considerations. 

Definition 2.1- Let o/ be an equivalence relation. 

1) '̂fr'v W 5 ( ̂ x,y)(x$X&y/vx *& y*X) (we say that X is a 

figure in A/ J. 

2) Fig<v(X) ~ {y;(3 xeX)(yvx) (the figure of X). 

3) ̂ v(x) -Fig<v/({x}) (the monad of x). 

Fact; Sty, (Fig(X))# 

Definition 2.2: 1) We use >*t for words defined by the following 

inductive definition: (i) The empty word .A is a word1. 

(ii) If S^i/2 are words, then (x^-X^) is a word1. 

(iii) If ̂  is a word then (PMU is a word. 

(iv) Bach word is obtained by finitely many applications 

of (ii) and (iii) on empty words. 

2) For ae ( ̂ fin(c)) (standard or nonstandard) and for a 

word MI* we define the set u* and the (external) equivalence 

== on u^ by the recursion based on the complexity of x*. • 

(i) uQ = ^fin^
a^ * x f y * xrtc--yflc (x,y have the same 

standard: elements). 

(ii) u£**̂  = <<Xuf*. ̂ V ^ I ^ l ' V 5 

- xi t*i**z fy2-
(iii) uf*** ^finCu^), x % y 5 Fig .*(x)=Figg(y). 

Remark; For ae^fi„(c) (!•©• standard and finite) all the equi­

valences are identical with the equality. 

Theorem 2.3: 1) ( ^a , IL c ( a ) ) £ ^ t c ) . 

2) £ * ^ ( G * ) a > £ , ^ ^ («£-(rK 

3) &fygil<>1)& &ty ^* ( (T 2 ) = ^ V ' ^ . * ^ c c * i * 6 2 ) # 

4) S t^g . C O ^S^J ,<P*W ( *<Pfin(<F)K 

Proof: Only 4) is not obvious. Let us prove 4). We have to 
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show that x£G*<&y %x =5> ys<^ (*finiteness of x follows from the 
a 

definition of u^*)* But y sFig4j(y)sFig^(x) c(j*t as £IA §• (G*)* a I £ ^ a 

Corollary £,,4: The set u from CI .2 may be chosen as u^ for 

a suitable x^,a; the external set G* as a figure in * and u^ 

from 1J as u ^ for suitable subwords AA/> of .^t>» 
8 1 

Remark:. The given step can be done also for several "input" 

classes, if we suppose that they are figures in suitable equi-

valencee. 

§3 A construction of standard equivalent formulas. 

Theorem 3*1: If b £i*6*( 0fin(c)) then u^Su^and C^x,y€u£) 

(xfr 5 «£,. 
Proof: Biy the induction based on the complexity of ML* Only 

the step for #w. is not obvious. Let us prove this step. Let 

x,y€u^ fX^fy and: tex. There is sey such that s|t. As x.ycu^ 

we have s,t€u^. Using the induction assumption we obtain 

s^t and hence FigeXx) SFigg(y). The proof of the assertion 

where x,# are changed and the proof of «> are analogous. 

Definition 3.2: For a,b€ (<Pfitt(c)) such that be.a and a word 

AJL we define the function fjiu^-^uf. We proceed by the re­

cursion based on the complexity of x^, 

(i) Q ^ C X ) « xAb 

Cii) a f ^ ^ « x 1 , x 2 » . 4 ^ C x 1 ) f a f ^ ( x 2 ) > 

(iii) af^(x) « CafD
t)*x. 

Lemma 3.3: 1) af£ is described by a set formula with parameters 

a j.bj.z/Lo 

2) For xeu^we have af£Cx) = x. 

3) If a & b S d then b*2«> d*£«a*£ 

Proof: By the induction based on the complexity of >CÂ . 
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Theorem 3.41 1) For a,be*( $fill(c)) such that bsa, and for 

-*rvSua the following implication holds; x|^ -$> a^C-*)^*^*)* 

2) If IL (b) then the opposite implication holds, too* 

3) If ILc(a) and x.yeu* then x|y -- (V ̂ «^fin(c))(afJ(x)« 

*a^(y)) 5 ( 3 b , I L c ( b ) ) ( b c a & a f ^ ( x ) » a f g ( y ) ) . , 

Proof: 1) By the induction based on the complexity of M*. On­

ly the induction step for (PMU is not obwious. Let us prove 

this step. Let t€Qf^(x) and let Isx/l ((a
f
b)~

1,>! ft}). There is 

vey such that v=pt. By the induction assumption we have t|fcfD(¥) 

and hence FiggC f£*(x)) £ Fig*.( fJWy)). If we change x,y then 
b a u •£ a o 

we proceed analogously. 

2) We use again the induction and only the step for (PAA. 

is not obvious. Let t€x. It is sufficient to find sey such that 

t=te. Let s6 f^y) be such that s f L ^ t ) (**-© existence follows 

from the, assumption of the implication). Let ley be such that 

s-̂  fb(s). By the induction assumption we have I-£t. 

3) The fact that the second assertion is implied by the 

first one can be proved by 1) and by the fact that for D 6^ fi n^) 

If'is the identity. The fact that the third assertion is imp­

lied by the second one follows from the compact enlargement 

property. Using 2) we prove that the first assertion is imp­

lied by the third one. 

Corollary 3.5; If c c b S ae*( ̂ fia(c))Ax«u£ then / $ * ) § * . 

Proof: Put y=-Qf£(x). yfeu£* hence a^(y)^= af£(x) (see L3.3.2)). 

Thus yfx (see T3.4.3)K 

Theorem 3.6: Let b£a and ILc(b) ,3Xc(a). if GT . c ^ are 

figures in hfB then (/£)" (rQ*G"an % anct (^r1*^* 

-Figf(CTb). Hence CTa - (a^^C.fg)-^) and <?• fe . 
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Proof; For xeG*8 we have X ^ ^ D ^ x ^ € ^ a n ua* T n e a s s e r t i o n a mrm 

now easy consequences of th i s factt. 

Theorem 3.7: The operations ->, X f(P commute with f in the 

following sense: Let b £ a £ $ and l e t ILft(a) ,ILc(b),ILc(d)# 

1) If G1/z c u £ are figures in f then / g * ( ^ - / b * 6 ^ * 

= af**CGV<r2K 
2) If C T ^ ^ ^ u ^ are figures then Ugtg*)*^) x ' 

x(( af^)w(T2) « ( af^x^ ;)wCG-1xcr2)» 
3) If O-su^ is a figure then * < ? f i n ( ( / * ) - <f) * 

= ( af^)« *<? f i n«n-

For Cdf£? assertions analogous to 1),2),3) holoU 

Proof; We use T3*6. We prove1 only the most complicated case, 

namely 3). Let x e*^in(Caf£)*<T) • ^^fia
C<r/)ub)# ^ ^ x £ <3~ & 

&x€ug« --> x=af£*(x) (see L3.3.2)) *$> * H / £ * ) " *<?fin(<? )• Let 

on the other hand x=f?**(#) & y£<5% We have to prove that 

( ̂ t6x)(t€(afD
t)W!6>- (=<?^u^))» Let for an arbitrary t€x an ele­

ment sey be such that tsfj(s) (see the definition of f*)» 

We have t|s (see C3#5), t€ug hence t£G-r\u^ as G" is a figure. 

We now give the proof for C^)"* 1* Let x S^fi^^^)""1*^} * 

» *(Pfin(Fig«(<?)) (i.e. x£Fig*.(<"T )=G)» We have to prove? that 

dff
H(x)=((3fa

t)'tx£<r. If t is an arbitrary element of x then 

dfM(t)€<?r. u*=cT (see T3*6).» Lei; on the other hand XG 

e((df^)^
lw( ^ f i n ( ^ ) ) ) '

 Hencei Cdf2»*xce-. If t is an arbit­

rary element of x then df^Ct)€G-. Thus xg "^finCC^)"
1* G*). 

Definition 3.8; Let ILc(a) and let G ^ S u ^ b e a figure in Ĵ  

We define an external set 3^6^ Qt standard functions F such 

that dom(F)=c in the following manner; fsJC^ 5 (3 xeG* ) 

(^b€<Pfin(c))(F(b)=af^(x)). 

Remark: The system -ft̂  will play an essential role in the5 
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elimination method* P«.JC^ are functions from ^fill(c) into 

sets obtained by operations x and (Pfin applied
1 successively 

on finite subsets of c and hence may be usually identified 

(e»g» if choice is at disposal) with subsets of c# On this fact 

lays: the strengthening of our method in comparison with the 

method5 in fN]. 

Theorem 3.9: Let ILc(a) and let G^su^be a figure in J£ 

1) t€6*a a CJP€3^)(^d€(P f in(c))(P(d)»a .fJ[(t)At6U*>c. 

2) For b 2 a & I L A b ) l e t us put CTK=Figtf( (T ) . We have 
c o i, a 

3̂ <r -Hp •( Ĵ  does not depend on the choice of a - it has a 

standard sense.) 

Proof; 1) => see the definition of K ^ »<* For t satisfying 

the righthand side let t€ 6~a be such that (Vd€ ^ f i n U ) ) 

^ a ^ d ^ ^ a ^ d ^ ^ ^for the existence of t see the definition of 
yc- )„ We have tft (see T3*4) and hence t€C?- (as &o,&((Ta)). 

A a a o x a 

2) For x€G*b and d€ <Pfin(e) we have bf*Cx) = / a C ^ x ) ) 

(see L3*3.3)) and1 bfJ(x)€(ra ( see T3.6 )„ 

Corollary 3.10: For each normal formula (^(XjSt,?) (using the 

predicate St - "to be a standard element of cw) there are a 

set formula U/(xfyf"£) and a set JC (€M£) of functions 

F» ^ f i n(c)— * < r i ( e ) (where &(c) denotes <Pfin( & fin**»((Pfin(c)) 

«.»„) for a suitable number of iterations) such that for every 

?,t (internal sets) y?(tfSt,£) 5 (3 F€>0( V a€<J>fin(c)) 

y/(t,F(a),l). 

Moreover, if l?=**y* d are standard) then we have 

</>(*t,St*2f) 5 (3FeX)(^a€^fin(c))(|/
St(^tfF(a) *?) (where 

(£/ means U/ in the standard sense -> all the quantifiers are 

restricted to standard elements) as the enlargement is an ele­

mentary extension* The formula on the risrhthand side is stan~ 
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dart - it is a standard definition of the predicate defined 

nonatandardly. on the lefthand side of the equivalence. 

Projof: Let us denote (1),(2) the lefthand side and the right* 

hand! side of the equivalence, respectively. Using C1.2 and 

C2.4 we find an equivalent formula to (1) of the form 

CJt€Q- )tpCt,t,"if) for an arbitrary chosen a such that ILcCa). 

We know that G" oau^ is a figure in ̂  for a suitable word //fr. a a BL * 

Using T3.9 we obtain an equivalent formula of the form 

(3) C.?F6^)CVd6(PfiBLCe))^CFCd),d,a,t). 

We know that %$- is not dependent on the choice of a and that 

Cby T3.9.2),T1.3,T3*6) 

Ci) a ^ a g -=> C^CFCd)f«,a1,t,*)-^^CFCa)>d>a2ft,t)). 

a. does not occur in the formula tP • Using the logical law 

^S{p(a) h t/>sCi? a)0/Ca) we obtain the equivalent formula 

(4) (3F€X^)(J a,ILc(e))(^a6(Pfin(c))^(FC*),d,a,t,t). 

¥e prove that (4) is equivalent to (5). 

t5) C 3 F € 3 ^ ) ( y a 6 0 f i t t ( c ) ) ^ 

(4)=>(5) is obvious. Let us prove (5)-*»(4). Let us fix F. U-

sing (i) we obtain from (5) the formula t^ae ^ f i nC ̂ fiR(c))) 

C3 a € 5 , f C ( P f i n ( c ) ) ) ( ( y d € m ) C a . ? d ) & p ) < . Using the compact enlar­

gement argument we obtain that there is m.IL^ , „s{m) such 

that (3 a€TPfill(c))(CV'd€m)Ca5a>&^C*
tFCa)fd,aft,"t)). How as 

dca for every <H#fi]aCc), we have asc and therefore C4) 

holds.For completeness of the proof it is sufficient now to put 

^Cx,y,2) s (3 %1#z}iy*<$1tf2>&U al^fin(e))»asy2)& 

&5p(y1»y2»a>x>f)> and X*{F;dom(F)-* ^ f i l lCc)&C .3 Fe K^) 

( V<b6(Pfin(c))CFCb)*<|
?(b)>b»}. 

To finish the whole procedure it suffices only to give a 

description of JC^- in the usual set theoretical standard lan­

guage. This is done in the section 4# 
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§4 Standard1 description of JC9 

In this section we have to solve a problem typical for 

the beginning of the £-</* method in the calculus. Hamely : 

How to find! new definitions of notions defined5 with the help 

of infinitesimals# The new definitions may be more complicated, 

may km less objective, but must not use infinitesimals* In our 

case we consider the operations -» V , (P for parts of formally 

finite sets.. 

Theorem 4*3: Let I I (a)* 

1) &u(**f XAA,2) -» {F;ffom(F)» <PfiRlc)H3 F ^ X ^ , ) 

( 3 F 2 € j - ^ ) ( y f f € P ^ 

2) .Ku^t »{T;d<m(T)^(PriR(c)HV^(Pfinic))(n6}£^)& 

&C^b,d t^ f i i l (c ) ) (bcd =$> F(b)=df$F(<i))) 

Proof: It i s an easy application of the definition of K<rA and 

the assertions from §3* 

Definition 4*4: 1) JC1®JCZ = {F;dom(F)= (Pfin(c)U3 F . .*^) 

( 3 F 2 6 ^ 2 ) ( ^ ( 5 6^finCc))(F(d))=<F1(d),F2(d)>)}* 

2) For F€j£u«i and n*3(g* l e t us define F©H 2 ( V$*(Pfin(d) 

(F(d)«H(d))* 

3) For X S S ^ l e t us define CK® *lBsXnO«.;iVT@n) 

(F€.>Ojo 

Theorem A*5i Let aa*( ^ f i a ( c ) ) & c s a * 

1) If 6 ^ c u r a r e figures in f then JC^^JC^-X^* 

2) If G1/z £*£** ar® figures in i j V 4 then X<^x<s « 

= ̂ ®J%* 
3) If 6" s u^ i s a figure in f then J^** rr~ t * .X^., -" » a vfin to ) a 

Proof: Only the proof of 3) ±& noi obvious and hence we prove 

i t* S - l e t H€.^6.^.n(O-^» let y^u^ be an element correspon­

ding to H (C^dfr%n
(c>)CHCd)a-af^t(y)))f hence y5(T- Let 
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F©H» We know that for every &z(?fin(e)$ d s a & *F(d)6af2*Cy) * 

& C^ bccH(*F(b)=dfbC*FCd)). Using the compact enlargement 

property we obtain that the last formula is satisfied! also for 

d such that ILc(d)&<.f s a. Hence *F(d)€ fj\y)cfi" and F€3V» 

Thus H€X<s^. £ - let H e X f ^ and let yfeu^1 be an element 

corresponding to H. We have to prove yS(T. Let x be fin arbit­

rary element of y. Let ?$3C *. be a function corresponding to x. 

For any d'e<?fin(c) we have F(d)€H(d) as F(a)-=af£(x)€af|*(y) = 

=HCd). Hence F©H and FejC^ . Hence xs<?" (see T3»9)» 

In the theorem we have given the inductive s/teps for a 

standard definition of the set 3-t used5 in C3#10f which comple­

tes our procedures 

§5 Counterexamples* 

In the last section we give two examples# The first one 

proves that the usage of auxiliary variables from the powers** 

of the basic set is necessary. The second one gives reasons 

for our restriction on compact enlargements* 

Example 1» Let Sat11 denote the satisfactory relation on N for 

formulas of the arithmetic of the order n+1. E.g. Sat is the 

relation such that (Sat°)"( ry~* ) = {if; (f fit) , where r<f de­

notes the GOdel's number of the formula iP of the first order 

arithmetic and n are (evaluation of) free variables of <f « 

Sat is defined analogously for formulas W where the quanti­

fication of subsets of N is allowed# An easy diagonal conside­

ration proves that Sat11 cannot be defined by a formula of the 

n+1 order arithmetic. We prove that Satn is defined Xxy a "two 

changes of quantification" formula using the generalized IL 

predicate in any compact enlargement of <lPnCN). 

For the description of Satn we use the set theoretical 

- 629 -



formulas replacing N by HF (hereditarily finite sets) as this 

is technically much easier* From technical reasons we also iden­

tify c with <Pfin(c) for iterated powersets of HF, Further we 

use x € vfin( (?n(HF)) just to stress that we have in our mind 

the set structure of x (as a finite s e t ) . . This identification 

can be described by a standard formula and hence it preserves 

the predicate? Mto be standard". Remember that; 

1) xe.*<?n(HF)&St(x) s {x}efyn+1(HF)&St(-{x}) 

2) St(<xty>) 2 St(x)&St(y) 

3) If we put ILn(x) - IL^#H«^(x) then we obtain (using 

the compact enlargement argument) CVx,ILn(x)) tf(x9"i) s 

2 CJx oe^ f i n(^
n(HF))(^x€*(^ f i n(^

n(HF))),x2x o>^ 

for every internal formula \f and every internal parameters sf# 

Let (1) G S C V ) denote the generating sequence of rup 

(the sequence of Gftdel'a numbers of elements of the generating 

sequence off). 

(2) l^FVCy*) means that It are (evaluation of) free varia­

bles of iP » Let t/FVCy1) be the restriction (of the evaluation 

mapping) on free variables of W «. 

(3) t>jtk be the prolongation of the sequence t, (If wt 

use e»g» functions for the representation then ^t k=tu<& k,kX) 

Let us now give the definition for x to code the satis­

factory relation. 

Definition 5.1: Cdsatn(x) 5? x 6*( <Pfin( ^n(HF)))& 

& (yy»6*N&St(r<^))(r^dom(x)) & 

& {Vrfl edom(x))(GSCy7) Sdom(x)) & 

& (yfakea{€?dom(x),St(rak€a1l ))('. V<\9tj> ,St(<tk,t1> )) 

C<tkft^«x^rak€a1
1> * t k t t x ) & 

& (Vy i &^6dom (x) f StCy i «&^))(Vt\st ( t )&t6FV (7 1 ^ 
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Clex-f^ft ipl\ * (t/FV(^1)6x^^&?/i^(^2)6x
w(r^}) & 

& W i jp1 6 dom(x)fSt(^y?
1))CVtfStC?)&t€FV'(

r
7^)) 

(t*x»{rf} 5 t^xH{r7^}) & 
& (IA3 ak)^

1€dom(x)fSt(
r(3f ak)^))C ̂ ffSttt)&?6W(

r(3 s^p1)) 

Ctex»{rO ak)y>7 s t3 tkfSt(tk))(t^tk6x«{Yi))» 

Let us now consider the syntactical form of the given for­

mula* The formula is a conjunction of formulas of the form 

(t/»fStU))y(tf«) and (VafSt({8))(^1(t,»)SO yfSt(y))^2(tf»f^) 

where (1/ are set formulas. Using prenex operations and the men­

tioned facts, we can find an equivalent formula of the form 

( V z,St(z))(3 yfSt(y))y/(tfyfz). If ILSat»(x) then Cdsat
n(x). 

Thus we have for any standard ^X f
 r^> ;<t/^>€Satn = (3 x) 

(Cdsatn(x)&<tf
ru?7>6x) * Another use of the prenex operations 

gives an equivalent formula of the form (3 x)( V zfSt(z)) 

C3yfSt(y))y/(tfxf»tz> 2 (3 x)( V zfst(»))(3 y)( Vy flL
n(y)) 

Cyey&tfO = (using comp. enl. arg.) (3 x)(V z,St(z))(yy,ILnCy)) 

(3y)Cyey&y/> s (3 x>(^y,B-nCy))(Vz,st(z))^1 =(3x) 

(yy,ILn(y))C3lfIL
n(i)>y/2<> 

Note that the formula on the righthand side is only by 

one step more complicated than formulas having the "easy** tran­

slation mentioned in §0. 

The following counterexample uses ideas of such great ma­

thematicians as Sochor, Keisler and Luxemburg. 

Example 2. We prove that the set M of ultrafilters on N des­

cribed by the nonstandard definition M =• {fP ; { V^c fIL{ ?*<)) 

(3/3<oc>(3 fJ->N)(VX^)(*f(/3)^X)} is dependent on the 

enlargement which is used and hence there is no standard formu­

la equivalent to the definition of M. 

We prove firstly that, for any compact enlargement, M 
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consists of all ultrafilters* For this it suffices, at first, 

to prove that for every ultrafilter f on N the formula 

( Vz *(Pfin{ $)){*({} z)*oc#)) holds* Then we shall use the com­

pact enlargement argument and we shall put f to be the identi­

ty mapping. To prove the above mentioned formula let us note 

that N c 06 for every IL( 06 ) * 

Now we construct an example of an enlargement in which M 

consists only of principal ultrafilters and ultieafilters equi­

valent, in the Rudin-Keisler ordering of ultrafilters, to a 

minimal ultrafilter. Let us note at first that the ultrapower 

of an enlargement is an enlargement (see flj the place mentio­

ned in §0)# To see this fact it suffices to realize that the 

constant of an IL element of the enlargement (being the basic 

structure for the ultrapower) is an IL element in the sense 

of ultrapover» Remember some notation and facts from [CH HJ . 

For x«?*c we put Fil(x) = {x* (P(c) ;xe*xj * If 3* is an ultrafil­

ter on c then ^-FiKx) for every X6f*-(SF),> Let $?*, , ? 2
 b e t w o 

ultrafilters on e» ^\^r *~o (̂ ne Budin-Keisler ordering on ul­

trafilters) iff there is f:c—>e such that for one (and also 

for all) xery^C?^) w e have %(x)6 t^K^-Ja All the mentioned 

facts are immediate consequences of properties of enlargements*. 

Now we construct the promised enlargement. Let f be a minimal 

(in g£ ) ultrafilter on N (thus ? is a selective ultrafilter)# 

Let *UL be an enlargement for ultrafilters on N. We put *UO ~ 

* U3g.C*t1t) which is the ultrapower of *t/t> . Let c/e*N be the 

equivalence class containing Id/*N,» It is obvious that Fil(</)» 

= ?* Let Q££*N and ©c<oC Let f:H-->#N be a function contained 

in the equivalence class of ©c . Thus we have X={n;f(n)< n}s. %* 

Without loss of the generality we may suppose that X=H# Hence 

( Vn)(f(n)eN) and f:N—^N. Considering the construction of ul-
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xrapower we m*y s e e that *TCoO*°*» From the s e l e c t i v i t y of ?" 

we obtain that on a certa in s e t from o f f i s e i ther constant 

or one-one. Hence oceN or ( / " ^ ( o c ) for a su i table g:N —^W. 

Thus, in our example, the set M cons i s t s from principal u l t r a -

f i l t e r s and u l t r a f i l t e r s equivalent ( i n jjjr) with ? • 
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