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COMMENTATIONES MATHEMATICAE UNIJVERSITATIS CAROLINAE

25,4 (1984)

TRANSLANTION OF NONSTANDARD DEFINITIONS
TO STANDARD ONES
Karel CUDA

Abgtrget: An slgorithm translating nonstanderd definitions of
notions standard version is given., Counterexamples proving that
our algorithm is in a certain sense the best one are described, It
appears that in general this translation is much more complicated
than in the case when the notion of & limit (and other similar .no-
tions) is translated by &£-o” method,

figurE!x words: Enlargement, standard, internsl, external, monad,

Claasification: Primary O3HO5
Secondary 26E35,54J05

P ——

Introduction. The paper is the last of the series of three
papers ([81],(82]) using the same idea but applied in different
branches of nonstandard methods. We find a standard description
of nonstandardly defined notions., Cauchy’s ¢ - criterion.for 13-
mits and Weierstrass’ &-o method for exclusion of infinitesi-
mels may serve as the first results in this area, In the paper we
shall describe an algorithm which finds for any nonstandard defi-
nition of a notion its standard counterpart., The algorithm can be
used also for the natural generalization of the notion "to be in-
finitely small®, namely for the notion "to be an element of the

monad of a filter", In this case we demand, however, the enlarge-
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ment to be compact and we give some counterexamples proving the
importance of this assumption. The algorithm uses auxiliary va-
riables for subseta of the set we work at. Hence,in general,
f—zf method does not suffice, An example proving this fact will
be also given here, Notions used in the counterexsmple are only
by one step more complicated (from the syntactical point of view)
than those ones of a limit, a derivation, etc. The counterexample
proves that the given algorithm is from a certain point of view
the best one - it uses namely suxiliary variables just from the
power set of the "basic" set., This choice of variables is urgent
and sufficient., The translation given in[N] uses auxiliary varia-
bles from increasing powersets of the basic set in dependence on
the complexity of the nonstandard definition.

Both translations are complicated emough and one cannot
expect that they contribute to the better understanding of the
nonstandardly defined notions. The author believes that the com~
plexity of the translation may point out the places that could
be specific for nonstandard methods., Let us give here & notion
of this kind. Let f,, be a sequence of real functions defined in
a neighbourhood of a point x, We call a real number a to be a li=-
mit point of the sequence f_ in touch to x iff (Jy,y=x)(Ver ,IL())
(f.(y)=8), where y=x means that y and x are infimitely close and
IL( o) denotes that oc i1s an infinitely large natural number (for
a correct definition see §0). Let us note that }35L8n=a is equi-~
valent with (Vo ,IL(=))(8,=a) but the given notion is nat equi-
valent to (Ve (I yeoa(x))(%ighfh(y)=a). Some examples of non—
standard notions (syntactically) similar to the given one can be
found in [H],

In the middle part of the paper we shall "word by word" mo-

dificate (using the technique of compact enlargements) the mid-
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dle part of [GZ] . Also the numbering of theorems and definitions
is consistent with this paper. The author believes that the re-
placement of this part by a citation and instructions of modi-
fication of [¥2] would spare the author’s effort and some paper

but could discourage possible readers.

§0 Preliminaries.

Definition 0.1: 1) A structure */ is called an enlargement of U
fer ¢ iff c, a)ﬁn(c) are from the language of 4, *U is an ele-
mentary extension of L a&nd there is ae*(é’ﬁn(c)) * @ﬁn(c))
being the interpretation of Fp; (c) in U ) such that (Vx)
(U E xee => *UE xca ).

2) We call the interpretation *x of the element x of I in
*(/L/ the enlargement of x. The elements of *({ being such in-
terpretations we call standard ones (St(x) = (J x)(x=*)), Ele-
ments of ¥IL we call internal and subsets of *L we call extere
nal, ( Thus e.g. N (more exactly {*n;neﬂ_} where N denotes the
set of natural numbers) is an external set, ot €¥N-N is an inter-
nal set ( every natural number n is the set of a&ll natursl num-
bers less than n ) and *N is a standard set ( but having nonstan-

dard@ elements)e.

Conventions 0.2: Sometimes we shall omit *ir there is no danger
of confusion ( which is in use in the literature), We shall omit
* mostly in the case of habitual relations and functions. Thus
we write o €N (instead of o % ™ ), x+y (instead of x*4y) ete.
On the other hand we extend the meaning of *@ﬁn(x) also for
external sets X. We define *@fin(x) = {x;(Vtex)(tex)&*rin(x)} .

(N) € X(Ppsn()) = *@

) = ¢ £in(*N). Simi-

*
Thus e.g. @fin ein
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larly we extend the meaning of <, N,- etc, for external sets.

Notations 0.3: We use n,m,k,l,... for elements of N (here we
also identify n with *n). We use o, B,y ,... for elements of
*N. We use X,¥,t,u,... for internal sets, X,Y,ga,C',... for

external sets. There are also asome exceptions. We use someti-
mes ¢ instead of C for elements of ¥/, but in this case sym-

! * x
bols ¢ or (@ﬁn

(e¢)) occur in its nearness.
Definition O.4: 1} A natural number oce™N is called infinitely
large ( IL(o¢) ) iff cc€*N-N.

2) A real number x€"R is called infinitely swall ( IS(x))
iff (Jo¢ ,TL(ee))( x| <1/ce)e

3) For ¢ from {L we say that a set acX( P (¢)) such that

fin
cCa is c-infinitely large and use the notation L (a).

4) Let F from /L be a filter on c. We put (wg.zfxe*c;
(¥ X6 F)(x€*D)} . wg is celled the monad of F . It would be
also reasonable ta use the notation ISg(x) instead of x€ (%, as

IS(x) = x€(wy ir ¥ denotes the neighbourhood filter of O.

Note that if "L is an enlargement for F then (4 #0 also
in the case that /1% =0.

Lemma 0.5: 1) St(B8) = (Vo¢,IL(o¢))(B< )

U]

2) Let x€¥ & *L be an enlargement for c. St(x)&xe¥e
= (VY a,IL,(a))(xea),
Proof: 1) <= is obvious as7n<n., We prove = , Let « <83, Put
M={k;k£oc}. MSN and M is bounded from above (by /3 ), hence M
has the maximal element. Let m=max(M). If m<eo¢ then m+l<c¢c and
m+1€M which is in contradiction with m=max(M). Hence m= c¢ and
St(ee).

2) => obviously holds. We prove <=, If IL,(a)&xdc then
IL,(a~{x}) ( see the defimition of ILy).
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Definition 0.6: An enlargement *l is called compact for c¢ (cel)
iff for every internal set y the following property holds:
(¥ a,IL,(a))(aey) => (JagePrin(e))(V ae*(Peyp(e)),a2a))
(aey).

Saying that *M is an (compact) enlargement we mean that

YL ig an (compact) enlargement for every element of WL,

»

Fact: Every enlargement for N is compact for N.

The hint of the proof: (Pf (N) can be coded in N (e.g. using

in
the dyadic expansion (see e.g. [&2]yy. Moreover, a subset is
standard iff its code is standard. Further for every IL(oc¢)
there is /B<ot such that @B codes an ILN set. For the proof of
compactness use the co-overspreed lemma (consider the least

of codes for sets in y from the definition of compactness).

Now we suppose that (% has a set structure, too. By that
we mean that € belongs ta the language of L and extensionali-
ty holds ( sets are equal iff they have the same elements ).
Hence c,nNn, VU ,- have usual boolean properties, Furthermore we

suppose that for every c¢ll we have (Pﬁn(C)GU(u

Theorem 0.7: If *4 is an enlargement compact for ¢ and y is
an internal formula ( only internal sets can be used as para-
meters and quantified - (/ is a formula in the sense of W)
then the following equivalence holds (V a,]l.c(a))(Vx)

(3 b,IL(B)) PP (t,8,b,%,3) T (W be Py (e))(T ag€ Fpyp(c))
(Va2a))(Vx)(Ib2ab)) y(t,s,b,x,"i). Furthermore, if Z are
standard then the righthand side of the equivalence can be un-
derstood in the standard’ sense ( as a usual formula of the
structure ).

Proof: see [&].

Note that if we use an analogous equivalence for IL(o¢),
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we obtain ¢-J translations of notions (uniform) continuity,
(uniform) limit, derivation etc. (see [&]).

Theorem 0.7 may be considered as a first form of a trans~
lation algorithm. The form is suitable for the translation of
notions similar to the notion of limit.

Let us consider (on the other hand) the formula ( Vo ,IL(x))
(3 a,IL (a))(card(a) < »). This formula holds in any compact
enlargement. But an exemple proving that there is an enlarge-
ment in which the given formula does not hold can be found in
[L] (it follows the/lemma 2.7.8). Hence to the given formula
there is no standard counterpart which is independent on the
enlargement,

Similarly: Let M be a set of ultrafilters on N described
by the following nonstandard definition: FeM = (Voo ,IL(ce))
(36 ,B=x)(T £,L:*H—*Nast(£))(V Xe*F &S5t(X))(£(8 )eX)o (No-
te that ¥ = Fil(f(B)) in the notation from [CH H]).In the
case of compact enlargement M contains all the ultrafilters.
In the general case M depends on the enlargement, That is the
reason why we— restrict ourselvea, in finding the translation,
to the case of compact enlargements. It is not known to the
author if there is a natural parameter and a translation algo~
rithm for the general case. In the case of nonstandard models
of arithmetic we use,as such a parameter, the standard system

of the model (see [82]).
§1 Set considerations.

Lemma 1.1 (Quantifiers changing lemma): Let *Fin(a), let Q<a
be an external set and let (f(t,?) be a set formula. There is

»
an external set O < Ofin(G) and a set formula \f/(t,g) such
that (Vte?)tf(t,?) = (3;66)(},({’;).

- 620 -



Moreover, G is definable from Q.= by the operations *@fin'-’
Proof: Put G = "0 (a) = "Ppi (amp), @ (t,F) = (Vted) p(t,id
and consider the internal set f{tea; tf(t,?)}.

Corollary 1.2: Let (/(t,st,'ff) be & normal formula (only the
quantification of internal sets is sllowed) using the predica-
te St for elements of ¥e. A set formula ¢(t,x,%,¥,u} can be
found (by an algorithm) such that for any suitably def;lned ex-
ternal set G cu and suitably defined parameters 'ﬁ,u we have
l’?(t,st,i) = (3 xeG)«y(t,x,“z’,ﬁ,u).G is defined from c¢ (the
external set of all the standard elements of the standard set
*c), and from an arbitrary & such that ILc(a) using the opera-
tions AWfin’ X y~+ Parameters K,u are defined from & using the

operations W’f X

in?®
Froof: By the induction based on the complexity of the formuls
50. For induction steps let us note the following hints: St(t)=
2 (3 xec)(t=x). For conjunction use, in an obvious manner, care
tesian product. For negaticm use the dual formula and Q.ch.l.
(Lelal)e For a quantifier use the commutative law for the ssae
type of quantifiers and Q.ch,1l, if necessary.
Remarks: 1) The lemma and its corcllary cen be generalized for
several "small* external sets (instead of ¢) and corresponding
"large" sets as parameters (see [$2]). As an example let us men-
tion the iterated ultrapower where "small" means enlargements
with small indices and "large" enlargements with large indices.
2) If St occurs only in the prefix of Lf then it ie suffi-
cient to modify only the prefix., In this case the modification
and the definiticn of G znd U are dependent only on the syn-

tactical form of the prefix of f.
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§2 Topological considerations,

Definition 2.1: Let <V be an equivalence relation.

1) Siy, (X) 2 (Vx,y)(xeX&ynx => yeX) (we say that X is a
figure in ~ }.

2) Pig.(X) = {¥;(3 xeX)(y ~x) (the figure of X).

3) Malx) = Fig ({x}) (the monad of x).

Fact: g (Fig(X)).

Definition 2.2: 1) We use 4« for words defined by the following
inductive definition: (i) The empty word A is a word,

(ii) 1If ""1/2 are words, then (//blx Mrz) is a word,

(iif) If 4 is a word then Pm is a word.

(iv) Each word is obtained by finitely many applications
aof (ii) and (iii) on empty words.

2) For ac( @ (¢)) (standard or nonstandard) and for &

fin
word 4o we define the set u: and the (external) equivalence
;=" on u;‘ by the recursion based on the complexity af «z .

(1) u: =*0’fin(a) y X ja=Ly £ xnc=yne (x,y have the same
standard elements),

(ii) ug"”‘ﬂ‘") = u:’x\x:‘ﬂ-, {xq,%5> (“'%M"‘){ylyyz)

W

> Arq Aa
=X a8 F Yo
cse ) * 7/ - .
(iii) u = @fin(ua), x g—"x = Flg%(X)=Fls§(y).
Remark: For ae@fin(c) (i.e. standard and finite) all the equi-

valences are identical with the equality.

Theorem 2.3: 1) (V a,IL (a)) ?A‘%,ét(,c).
2) Suye (G) > Epu (d-6).
3) By 24(G)e By 22 (67p) = -(F/‘%/(.w,%,«.d (G 1XGy)e
4) g';‘sf%‘ (G) ?% %ﬂb ( *inn(G))’

Proof: Only 4) is not obvious. Let us prove 4). We have to
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show that xsGay %

definition of u). But y SFigu(y)=Figy(x) <G, as Zge(6).
I & a

X » yeG° (¥finiteness of ¥y follows from the

Corollary 2.4: The set u from Cl.2 may be chosen as u;" for
& suitable a4r,e2; the external set G as a figure in ‘é’and uy

from ¥ as u.;"t' for suitable subwords 4% of 4v.

Remark: The given step can be done also for several "input"
classes, if we suppose that they are figures in suitable equi-

valences.
§3 A construetion of standard equivelent formulas,

Thearem 3.1: If b Eae*( 0

(=g = xfy).

Proof: By the induction based on the complexity of wt, Only

£in(C)) then u} SuZ and (V x,yeuy)

the step for (m is not obvious. Let us prove this step. Let
x,yeug"' »X 'g’y and tex, There is se¢y such that sgt. As x,yeug""
we have s,ten‘{‘:. Using the induction assumption we obtain

sgt and hence Fig'?(x) sris%(y). The proof of the assertion

where x,¥ are changed and the proof of => are analogous,

Definition 3.2: For a,be*(d)ﬁn(c)) such that bsa and a word
. we define the function Bf::u:i’%u‘b‘. We proceed by the re—
cursion based on the complexity of « .

(1) fp(x) =xad

(11) G (dx ,x)) = Gffh(x)), fia(x,) >

(1i1) f2a(x) = ( tfy"x.
Lemma 3.3: 1) afg is described by a set formula with parameters
a,b, .

2) For xeu“: we have a1"6’(:{) = X.

3) If asb<Sd then bf; odfg'-s &f:;

Proof: By the induction based on the complexity of atr.
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Theorem 3.4: 1) For a,be( P, (c)) such that bea, and for

fin
x,.yEu: the following implication holds: xgy = afg(x)gafg(l)-

2) 1t ILc(b) then the opposite implication holds, too.

3) If IL (a) and x,yeu;" then x;;"y = (V be@ﬁn(c))(.fg(x)-
=,T(¥)) 2 (3 b,IL (b)) (b < & FE(x)=,PE(¥)).

Proof: 1) By the induction based on the complexity of 4. On-
1y the induction step for P« is not obwious. Let us prove
this step. Let teafg“'(x) and let Iexn((afg)-l"' {tl}). There is
vey such that ng. By the induction assumption we have té"‘fb(vy
and hence Figa( elf)’)’"(x)') SFigg.(afg“(y)). If we change X,y then
we proceed analogously.

2) We use again the induction and only the step for Pa
is not obvious., Let tex, It is sufficient to find 8s¢y such that
th. Let seaf'g'(y) be such that s%‘af;(t) (the existence follows
from the asgumption of the implicatien). Let 8ey be such that
szafg(ﬁ). By the induction assumption we have 'éft.

3) The fact that the second assertion is implied by the
first one can be proved by 1) and by the fact that for be 0fine)
g"is the identity. The fact that the third assertion is imp-
lied by the second one follows from the compact enlargement
property. Using 2) we prove that the first assertion is imp-

lied by the third one.

Corollary 3.5: If ccbsae™ Py (c))axeu’ then fikx)x,
Proof: Put y:afg‘(x). yeug‘ hence af:(y)zygafg(x) (see L3.3.2)).
Thus y3% (see T3.4.3)).
Theorem 3.6: Let b <Sa and ILc(b),ILc(a), I1f Gb/as“f}. are
figures in b?a then (afg')*" G g=Gyn u, and (afb)"lnsz
=Fige(G"y). Hence Gy = (oE) ™ "((,F1)"G) ana 6 =
= " -1
= (Bfg) ((Bfg) qﬁ\-b).
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. n n .
Proof: For xeG‘a we have ’5afb( x) eG‘anua. The assertions are

now essy consequences of this fact,

Theorem 3.7: The operations ~,X ,® commute with £ in the
following sense: Let bcacd and let ILe(a),ILé(b),ILc(d)'.
1) If G,/ Suy ere figures in g then £p"Gy -, f4"G, =
= oTp"(G1=67).
2) If Gy pp Eu:"”' are figurea then ((af{;")'@“l) X
X ((GEPR)"Gp) = (Tl ) ¥(G 1x Gp)e
3) If G‘su’: is a figure then *(Pﬁn((efg)”(v“) =
= (afgujn i\'é’f'in(c’\.)’
For (d,f:)'l assertions analogous to 1),2),3) hold.
Proof: We use T3.,6, We prove only the most complicated case,
nemely 3). Let xe (, (( fR"G) = *Pp, (CNu)e Thus x£G &
gxeul > x=£P(x) (see 13.3.2)) > xe( 5" %Py (G ). Let
on the other hand x= fJ%(¥) & ¥=6-o We have to prove that
(Vtex)(te( "6 (=G Nup)). Let for an arbitrary téx an ele-
ment sey be such that t=afg( 8) (see the defimition of f7),
We have tg’s (see C3.5), teug hence teG‘nu:as G is a figure,
eint st "6 =
= *Ofin(Figit(G‘)) (i.e. x&Figg(G }=G ), We have to prove that

We now give the proof for (df;")"l. Let x e

df:"‘(x)=(df:)"x56". If t is an arbitrary element of x then
dfg(t)ec?n u:=6‘ (see T3.6). Let on the other hand xe¢
e((gf2a)7Ln( P,

in(@))) . Hence (df‘a';"xss-. If t is an arbit-

rary element of x then df“;(t)eG'. Thus xe*ﬂfin((df:)'l'(p‘).
Definition 3.8: Let IL,(a) and let G, Su/be a figure in é’”,
We define an external set :Kc,-;_ of standard functions F such
that dom(F)=¢ in the following manner: Fekc-‘i (3 xec‘a)
(V bePp; (e))(F(b)=,£7(x)).

Remark: The system ¥, will play an essential role in the
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elimination method. Fe3ts are functions from @, (e) inta
sets obtained by operations X and oi’in applied successively
on finite subsets of ¢ and hence may be usually identified
(e.g8. if choice is at disposal) with subsets of ¢. On this fact
laya the strengthening of our method in comparisom with the
method in [N].

Theorem 3.9: Let IL (a) and let (,‘aSu;‘ be & figure in ;:”'.
1) t €6, = (I FeXg)(Vde Pp; () (F(d) = fH(t)&teuy).
2) For b2 a&IL,(b) let us put Gb=Figg(G'a). We have
b
He, =}Cﬁ~b.(}€ does not depend on the choice of a - it has &
standard sense.)
Proof: 1) => see the definition of Kg, o<= For t satisfying
the righthand side let te G, be such that (V de U’fin(c))
(afg(fbaf‘d‘(t)) (for the existence of t see the definition of
g, )+ We have tgf (see T3.4) and hence t€G~, (as ?A‘a,g(G‘a)).
2) For xeG’b and de @ﬁn(c) we have bfg(\x) = afg(bf‘;(x))
(see L3.3.3)) and b:f‘a'(x)e':;“B ( see T3.6 ).

Corollary 3.10: For each normal formula cf(x,st,?) (using the
predicate St - "to be a standard element of c¢") there are a
set formula (y(x,y,?) and a set K (¢4) of functions
Fi oy () —> R(c) (where R(c) denotes (Pﬁnw’ﬁno.o(@ﬁn(c))
eeo) for a suitable number of iterations) such that for every
Z,t (internal sets) so(t,st,'z’) = (FFeX)(V aelPps ()
(l/(t,F(a) 3.

Moreover, if Z="7" (¥ are standard) then we have
@, SEXT) = (T FEX)(V aeBoyp(e))y SH (%, F(a) *T) (where
V/St means 50 in the standerd sense - all the quantifiers are
restricted tao standard elements) as the enlargement is an ele-

mentary extension. The formula on the righthand side is stan-~
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dar@ - it is a standard definition of the predicate defined

nongtandardly on the lefthand side of the equivalence,

Proof: Let us denote (1),(2) the lefthand side and the righte
hand side of the equivalence, respectively. Using Cl.2 and
C2.4 we find an equivalent formula to (1) of the form

(’3%6(3'&)7(1:,?,?) for an arbitrary chosen & such that IL (a).

We know that Gasu‘a‘ is a figure in 'gfor a suitable word v,

Using T3.9 we obtain an equivalent formula of the form
(3) (FFeXg ) (Ve (c))P(RA),8,8,D).

We know that X, is not dependent on the choice of & and that
(by T3.9.2),T1.3,T3.6)

(1) aycsp = (P (FD),0,a,t,D=F (F(8),d,8,t,D).

a does not occur in the formula ?0. Using the logical law
V'i('ll(ai - (10?-(3 a)sv(a) we obtain the equivalent formula
(4) (I FeXp )(T a,IL () (Ve mﬁn(cn?(rm,a,a,tm.
We prove that (4) is equivalent to (5).

1Y (I Fel)(Vde Py (e))(F aePpyp(c) a2 WP(F(A),8,a,t,2).
(4)=>(5) is obvious., Let us prove (5)=>(4). Let us fix F, U-
sing (i) we obtain from (5) the formula (V¥ me mfin( Poinle)N)
(3 ae®( Peinle) NIV dem)(a> d)&!T/). Using the compact enlar-

gement argument we obtain that there is m,IL(? )(m) such

that (3 a €Wy (c))((Vaem)(ao )& P(*F(S),4,a t,’{)). Now as

dca for every deP,. (c), we have a>c and therefore (4)

holds.For

completeness of the proof it is sufficient now to put
Y (x,3,3)

(T 3790(3=00 v &(F adlPy; (e))a3y,)e
EY(¥1592,8,%,D)) and X ={F;don(F)= Ppyp ()& Fe 1)
(Vb6 Pps () (F(B)=GF(b),b))},

[1}]

To finish the whole procedure it suffices only to give a

description of ‘RG“, in the usual set theoretical standard lan-
guage. This is done in the section 4.
- 627 =



§4 Standard description ef X,

In this section we have to solve & problem typical for
the beginning of the ¢~d method in the caleulus. Nemely :
How to find new definitions of notions defined with the help
of infinitesimals, The new definitions may be more complicated,
may be less objective, but must nat use infinitesimals, In our
case we consider the operations -, X ,*4’ for parts of formally

finite sets.

Theorem 4.3: Let Ii..c(,a).
D Ky xany = {R30om(Fy= Op; (e)(3 Fe X u,)
(I FpeXyma) (¥ @€ Py (e)) (F(Q)=(Py (0),Fp(a)) 1} o
2) K fn = {F dom(®)= Pp; \()8(V e Ppy (€)) (F(A) € ugd
8(Vb,de P (e))(bcd > F(by=,fAlF(a)))
Proof: It is an easy application of the definition of K¢, and

the sssertions from §3.

Definition 4.4: 1) 3, ®©X, = {F;don(F)= P,; (c)&(F F1€2,)

2) For FeX a and He}P* 1et us define FOH = (Vae(Py (0
(F(d)eH(d)).

3) For X ¢ %ug-let us define 3( ={H636u€n;(VP@H)

(FeX ).

Theoram 4.5: Let 8&6™(P.. (c)) & cea.
) L :
1) If 6‘1/29. u, are figures in 'g‘then 3661__61=3Q};-]C5;.
.2

2) If Gy p 2Uy " 8Te figures in ‘5 then Hgpxg =

- ¥, O
“is a fi in 2 =

3) If G suy i igure in F then J\Cae%_h (G’)’}@’
Proof: Only the proof of 3) ig not obvious and hence we prove
it, § - let HEXwp,, (6-)s let yeul“ be an element correspon-
ding to H ((Vd €Prin(®))(H(d)= £3%(¥))), hence y€6 o Let
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FOH. We know that for every & e@tin(c) ,dcagl *F(d)eafg‘(y) &
& (Vbch)(*F(b):dfb(*F(d)). Using the compact enlargement
property we obtain that the last formula is satisfied alse far
d such that IL,(d)&d <a. Hence *F(d)eafg"(y)cc‘ end F& Xy o
Thus He 3(. 2 - let He }c and let yeu’ be an element
corresponding to H. We have to prove yS¢G . Let x be an arbit-
rary element of y. Let FGJCur.be a function corregponding to x.
Far any d 6 Gp; () we have F(d)eH(d) as F(@)=,f3(x)€, L3%(¥)=
=H(d). Hence FOH and Fe X5 ., Hence x€G" (see T3.9).

In the theorem we have given the inductive steps for a
standard definitien of the set 7 used in C3,10, which comple-

tes our procedure.
§5 Counterexsmples.

In the last section we give two exeamples, The first one
proves that the usage of auxiliary variables from the powerset
of the basic set is necessary. The second one gives reasons

for our restriction on compact enlargements.

Example 1, Let Sat™ denote the satisfactory relation on N for
formulas of the arithmetic of the order n+l. E.g. Sat® is the
relation such that (Sat®)"( 1) = {#;¢ () , where Y de-
notes the G8del’s number of the formula (/ of the first order
arithmetic and ® are (evaluation of) free variables of «/ °
sat! is defined analogously for formulas tf where the quanti-
fication of subsets of N is allowed, An easy diagonal conside-~
ration proves that Sat™ cannot be defined by a formula of the
n+l order arithmetic, We prove that Sat® is defined by a "twoe
changes of quantification" formula using the generalized IL
predicate in any compact enlargement of G’H(N).

For the description of Sat® we use the set theoretical
- 629 =



formulas replacing N by HF (hereditarily finite sets) as this
is technically much easier. From technical reasons we also iden-
tify ¢ with G}in(c) for iterated powersets of HF. Further we
use x Gyfin(yn(ﬁl’)) just to stress that we have in our mind
the set structure of x (as a finite set). This identification
can be described by & standard formula and hence it preserves
the predicate "to be standard”., Remember that:

1) xe*PM(HF)&st(x) = x}e PP (HP)ast({x})

2) St(<=,y?>) = St(x)&St(y)

3) If we put IL%(x) = ILprgpy(X) then we obtain (using
the compact enlargement argument) (b’x,ILn(x))y(x,Z) =
F (I x € Ppy  (PTHR) (Y xe™( Py (P HHFY)),x2x ) 2 (x,7)
for every internal formula y and every internal parameters Z.

Let (1) GS(Q,’) denote the generating sequence of qp”

(the sequence of Gldel’s numbers of elements of the generating
sequence of ¥ ).

(2) ?kFV('y’) meensa that t are (evaluation of) free varia-
bles of«f . Let t/FV(’y‘) be the restriction (of the evaluation
mapping) on free variables of y °

(3)'¥;¢k be the prolongation of the sequenc&‘¥; (If we
use e.g. functions for the representation then'zvxkégu<ik,k>.)

Let us now give the definition for x to code the satis~

factory relation.

Definition 5.1: Cdsat™(x) Z x €% @4y (¢ (HF)))&

& (V@p‘& *N&St(ﬁf”))(’¢'édom(X)) &

& (Vg e dom(x))(GS("y1) & dom(x)) &

& (V' gca) €dom(x),St Fa€a)l ))(V <ty 9> ,58(<ty, 1))
('<tk,t1>ex"{"akeaf} E tet)) &

& (Vipe Y:gedom(x) »St(P1& 2 (Y £, St(D)EXFV(TF & p2))
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Gex{pya 3} = ErEvey eyt atrreyp exfiph o
& (V" 7 € domx), 5t MY T,sDaterv(nipn))
Rex{"y} = wx{rgh &
& (V13 ap) 7 €don(x),5t(1F 8 ) ")) (Y E,sHDETEFVAI 8) p)
ctex{3 a )P = (F ty,see ) (Eerexfyh.
Let us now consider the syntactical form of the given for-
mula. The formula is a conjunction of ferumulas eof th; form
(V =,5t(2)) ¢ (t,2) and (V 2,5t(2))(p1(t,2)H(T y,S5t(3))P,(t,5,M)
where V/ are set formulas. Using prenex operations and the men-
tioned facts, we can find an equivalent formula of the form
(¥ 2,5t(2))(35,5t(3)) p(t,y,2). If ILg n(x) then cdsat™(x).
Thus we have for any standard (t,’(fﬂ}:(t,”w)eSatn = (3 x)
(Cdsetn(x)&<t,Qp’>exj. Another use of the prenex operations
gives an equivalent formula of the form (J x)(V z,St(z))
(33,563 P (£,%,52) = (I DV 2,58(2) (I VNV F,ILE))
(yeJ& ) = (using comp. enl. arg.) (3 x)(V 2z,5t(2)) VY, ILMF))
(IGeFey) = 3 VF,LHIN (V2,582 p, = (I x)
(V3,153 (T 5,ILNE@ .
Note that the formula on the righthand side is only by
one step more complicated than formulas having the "easy" tran-
slation mentioned in §0Q.
The following counterexsmple uses ideas of such great ma-

thematicians aa Sochor, Keisler and Luxemburg,

Example 2, We prove that the set M of ultrafilters on N des-
cribed by the nonstandard definition M = {% ;(Vx,IL(w¢))
(IB<)(F FIH— NY(V X2F)(*F(3)e*X)} is dependent on the
enlargement which is used and hence there is no standard formu-

la equivalent to the definition of M,

We prove firstly that, for any compact enlargement, M
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consists of all ultrafilters. For this it suffices, at first,
to prove that for every ultrafilter 9 on N the formula

(V= e(pfin( F3y)(*¢/l z)noe 20} holds. Then we shall use the com-
pact enlargement argument and we shall put f to be the identi-
ty mapping. To prove the above mentioned formula let us note
that Nc e for every IL(cc)e.

Now we construct an example of an enlargement in which M
consists only of principal ultrafilters and ultrafilters equi-
valent, in the Rudin-Keisler ordering of ultrafilters, to a
minimal ultrafilter. Let us note at first that the ultrapower
of an enlargement is an enlargement (see [L] the place mentio-
ned in §0). To see this fact it suffices to realize that the
constant of an ILc element of the enlargement (being the basic
structure for the ultrapower) is an ILc element in the sense
of ultrapover. Remember some notation and facts from [CH H]J.
For xe*c we put Fil(x) = {Xe P(c);x€%}. If 4 is en ultrafil-
ter on ¢ then % =Fil(x) for every xe{ F). Let 9'1, 972 be two
ultrefilters on c. ?].RQK gz (the Rudin-Keisler ordering on ul-
trafilters) iff there is f:c-—>¢ such that for ome (and also
for all) xem cf\z) we have ’“f(x)e(%(?l). All the mentioned
facts are immediate consequences of properties of enlargements,
Now we construct the promised enlargement. Let ‘:-75 be a minimal
(in IfK ) ultrafilter on N (thus T is a selective ultrafilter).
Let\*UL be an enlargement for ultrafilters on N. We put ¥ =
= Ulg(*L) which is the ultrapower of ¥, Let J€™N be the
equivalence class containing IdA N. It is obvious that Fil(d)=
=%. Let «&”N and o<, Let £:N—>¥N be a function contained
in the equivalence clasg of o¢, Thus we have X={n;f(n)< n}e 7.
¥ithout loss of the generality we may suppose that X=K. Hence
(¥n)(f(n)eN) and f:N—>N. Considering the construction of ul-

- 632 =



vrapower we may see that *£(o )=oc, Prom the selectivity of
we obtain that on a certain set from 3’, f is either constant

or cne-one., Hence oeN or d="g(oc) for a suitable g:N —> N,

Thus,in our exsmple, the set M consists from primncipal ultra-
filters and ultrafilters equivalent (in R<K) with ?.

[®

[t1]

[52]

[cr H]

L

(]

L
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