Commentationes Mathematicae Universitatis Caroline

Dmitrii B. Shakhmatov
No upper bound for cardinalities of Tychonoff C.C.C. spaces with a G_{δ}-diagonal exists (an answer to J. Ginsburg and R. G. Woods' question)

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 4, 731--746
Persistent URL: http://dml.cz/dmlcz/106339

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NO UPPER BOUND FOR CARDINALITIES OF TYCHONOFF C.C.C. SPACES WITH A G ${ }^{-}$-DIAGONAL EXISTS
 (AN ANSWER TO J. GINSBURG AND R. G. WOODS' QUESTION) Dmitrií B. SHAKHMATOV

Abstract. It is proved that erery ind-sero-dimensional
Tychonolf space X with a Gg-diagonal can be embedded as a
closed subspace in anind-zero-dimensional IJchonoff space I
With a Gg-diagonal satisfying the countable chain condition.
In particular, for any cardinal τ thore exists a Iychonoff
o.c.c. space Z with a G_{g} diagonal such that $|Z| \geqslant \tau$. This set-
tles the question advanced by J.Ginsburg and R.G.Woods and
repeated by A.V.Arhangel'skii as well.
Key words and phrases: Tychonoff space, oountable chain
condition (zc.c.c.), space with a G
Classification: 54A25, 54C25.

1. Introduction.
J.Ginsburg and R.G.Woods showed that the cardimality of a collectionwise Hausdorff topological space with a Gg-diagonal satisfying the countable chain condition does not exceed $2^{S_{0}}$ ([1], Corollary 2.3). They also constructed an example of a Hausdorff non regular space with a G_{δ}-diagonal satisfying the countable chain condition of cardinality $2^{\text {C }}$ ($[1]$, Example 2.4) and raised the following

Question 1.1 ([1], Question 2.5). Is it true that the cardinality of a regular space with a Gg-diagonal satisfying the countable chain condition does not exceed $2^{S_{0}}$?

Question 1.1 man alse mentioned in A.V.Arhangol'skit's survey ($[2]$, open problen 16). In this paper we give complete answer to Queation 1.1 (see Cerollary 3.3).

2. Motations and terninolon.

Motations and terminolecy follow [3]. A space meane trjological space. All spaces are ascunced to be tychonoff ($=$ completely regular $+F_{1}$). A pace X is sero-dimensional iff ind $X=$ $=0,1 . e ., X$ has base consisting of closed-and-open sets. A space X is said to have G_{g}-diagonal iff the diagonal $\Delta=$ $=\{(x, x): x \in X\} \subset X \times X$ is a $g_{\delta-s e t}$ in $X \times X$. symbols $|X|$, $\omega(X), \psi(X)$ and $X(X)$ denote the cardinality, weight, psendocharacter and charactor reapeotively. A apace X is asid to astiafy the countable chain condition iff the Sousiln maber $c(X)=\sup \{|\gamma|: \gamma$ is a fanily of pairwise diajoint nonenpty open subsets of $X\}$ of the apace X is countable. A speco X is left-separated iff there exists a woll-order $<$ on X men that every left interval $X_{\rightarrow x}=\left\{y \in X^{\circ}: y<x\right\}$ is closod in X. As nearal cardinals are identified with initial ordimale. For aet X let $\exp X=\{F: F$ is a robet of $X\}$.

3. Man remita.

Theoren 3.1. Erory sero-dimensional Tychonoff space X with a G_{8}-diagonal oan be eabedded as a closed subapace in a sero-dimensional Tychonoff space Y with ag-diagonal satisfying the countable chain condition.

Thoore 3.2. If in addition to the assumptions of Theoren 3.1 the apace X is left-separated, then so is the apace Y.

Corollayy 3.3. For any cardinal τ there exists a Iycho-
neff (left-separated) apace Z with a A_{8}-diagonal satiafying the countable chain condition such that $|Z| \geqslant \tau$.

Corollary 3.3 gives acmplete answer to guestion 1.1.
Theerea 3.4. Irery sero-dimensional Fyohonoff space X can be cabedded as a closed rubspace in a sero-dimensional Pyohonoff space Y such that $\psi(Y) \leqslant \mu(X)$ and $C(Y)=S_{0}$.

Theeren 3.5. If in addition to the asenmptions of Theorea 3.4 the space X is left-seperated, then $s 0$ is the spece Y.

Corollary 3.6. (M.J.Zeitiln [4]). There exists a Tyohonoff space Z with a G_{8}-diagonal without one-to-one contimone mapping onto a Hausdorff firat-countable space.

Corollary 3.6 gives an answer to a question of A.V.Arhangel'skil. It is worth noticing that our space Z constructed in Corollary 3.6 satisfies the coantable chain condition while the corresponding epace of M.J.Zeitlin doean't.
4. Proofe.

The constructions are similar to those described by the anthor in [5].

We need the following well-known
Proposition 4.1. ($[6]$). For any apace X the following conditions are equivalent:
(1) X has a G_{8}-diagonal,
(11) there exists a sequence $\left\{\gamma_{n}: n \in \omega\right\}$ of open covers of X suoh that for any distinct points $x, y \in X$ one oan find an $n \in \omega$ with $\left\{U \in \gamma_{n}:\{x, y\} \subset U\right\}=\varnothing$.

Proof of Theore 3.1. For every $\alpha<\omega_{2}$ by trangfinite in-
duction ne construct the structure $\Xi_{\alpha}=\left\langle X_{\alpha}, \mathscr{B}_{\alpha}, \overline{\mathscr{F}}_{\alpha}, \mathbb{\pi}_{\alpha}\right.$, $\mathscr{F}_{\alpha}, \theta_{\alpha}, \mathscr{O}_{\alpha}>$ with the properties (1)-(9).
(1) $X_{\alpha}, \mathscr{B}_{\alpha}, \overline{\mathscr{D}}_{\alpha}$ are sets, $\mathscr{B}_{\alpha} \cap \overline{\mathscr{B}}_{\alpha}=\varnothing, \mathbb{\pi}_{\alpha}: \mathscr{B}_{\alpha} \rightarrow \overline{\mathscr{G}}_{\alpha}$ is a one-to-one mapping, $F_{\alpha}=\left\{F: F \subset \mathscr{B}_{\alpha} \cup \overline{B A}_{\alpha}, F\right.$ is finite and $F \neq \varnothing\}$,
(2) $\theta_{\alpha}: \mathscr{B}_{\alpha} \cup \overline{\mathscr{P}}_{\alpha} \rightarrow \exp X_{\alpha}$ is a mapping satisfying the following condition:
if $b \in \overline{\mathscr{B}}_{\alpha}$, then $\theta_{\alpha}(b)=X_{\alpha} \backslash \theta_{\alpha}\left(\pi_{\alpha}^{-1}(b)\right)$,
(3) $\mathscr{E}_{\alpha}=\left\{\mathscr{E}_{\alpha, n}: n \in \omega\right\}$; the family \mathscr{E}_{α} must satisfy the following conditions:
(3a) $\mathscr{E}_{\alpha, n} \subset \mathscr{B}_{\alpha}$ for every $n \in \omega$,
(3b) $\cup\left\{\hat{\theta}_{\alpha}(b): b \in \mathscr{E}_{\alpha, n}\right\}=X_{\alpha}$ for any $n \in \omega$,
(3c) for every two distinct points $x, y \in X_{\alpha}$ there exists an $n \in \omega$ (which depends on x and y) such that $\left\{b \in \mathcal{E}_{\alpha, n}:\{x, y\} \subset \theta_{\alpha}(b)\right\}=\varnothing$,
(3d) $\mathscr{E}_{\alpha, n} \cap \mathscr{E}_{\alpha, m}=\varnothing$ as soon as $n \neq m$.
In our further constructions the properties (4)-(8) must hold in case $\beta<\alpha$.
(4) $X_{\beta} \subset X_{\alpha}, \mathscr{B}_{\beta} \subset \mathscr{B}_{\alpha}, \overline{\mathscr{B}}_{\beta} \subset \overline{\mathscr{B}}_{\alpha},\left.\pi_{\alpha}\right|_{\mathscr{B}_{\beta}}=\pi_{\beta}$,
(5) if $b \in \mathscr{S}_{\beta}$, then $\theta_{\alpha}(b) \cap X_{\beta}=\theta_{\beta}(b)$,
(6) $\theta_{\alpha}(b) \cap X_{\beta}=\varnothing$ for each $b \in \mathscr{B}_{\alpha} \backslash \mathscr{B}_{\beta}$,
(7) if $x \in X_{\alpha} \backslash X_{\beta}$, then there is a $b \in \mathscr{B}_{\alpha} \backslash \mathscr{B}_{\beta}$ with $x \in \theta_{\alpha}(b)$,
(8) $\mathscr{E}_{\beta, n} \subset \mathscr{E}_{\alpha, n}$ and $\mathscr{E}_{\alpha, n} \mathscr{E}_{\beta, n} \subset \mathscr{B}_{\alpha} \backslash \mathscr{B}_{\beta}$ as soon as $n \in \omega$.
convention 4.2. From now on we let $\widetilde{\theta}_{\alpha}(F)=\bigcap\left\{\theta_{\alpha}(b)\right.$: $b \in F\}$ for every $F \in \mathcal{F}_{\alpha}$.
(9) Let $\alpha<\omega_{2}$. Let $\mathcal{K}_{\text {be a family with }} \mathcal{K} \subset \mathscr{F}_{\alpha},|\mathfrak{K}|=$

$=\omega_{1}$ and $\widetilde{\theta}_{\alpha}(F) \neq \varnothing$ for each $F \in \mathcal{K}$. Then one and find tine distinct elements $F_{1}, F_{2} \in \mathscr{K}$ with $\widetilde{\theta}_{\alpha+1}\left(F_{1}\right) \cap \widetilde{\theta}_{\alpha+1}\left(F_{2}\right) \neq \varnothing$.

Convention 4.3. Henceforth we fix a symbol ${ }_{\alpha}$ for denoting the etractare 堊 $_{\alpha}=\left\langle X_{\alpha}, \mathscr{B}_{\alpha}, \overline{\mathscr{B}}_{\alpha}, \pi_{\alpha}, \mathscr{F}_{\alpha}, \theta_{\alpha}, \mathscr{E}_{\alpha}\right\rangle$ and we will uss it only in that moaning.

One on think of ouch X_{α} ae being a piece of our future space Y, of a family $\left\{\theta_{\alpha}(b): b \in \mathscr{B}_{\alpha} \cup \overline{\mathscr{B}}_{\alpha}\right\}$ as being a subbase for a topolesg on X_{α}. Bach $b \in \mathscr{I}_{\alpha} \cup \overline{\mathscr{S}}_{\alpha}$ is a name for the subbase set $\theta_{\alpha}(b)$. For every $b \in \mathbb{B}_{\alpha}, \pi_{\alpha}(b)$ is a name for the set $X_{\alpha} \theta_{\alpha}(b)$, so (2) makes each subbase set $\theta_{\alpha}(b)$ closod-and-opan in X_{α}. (3c) assures m_{1} of X_{α}; (3a)-(30) guarantee the existence of a sequence of open covers of X_{α} satisfying the condition (ii) of Proposition 4.1, which prorides a θ_{δ}-diagonal of X_{α}; (6) mes each X_{α} closed in Y; (9) 18 responsible for c.c.o. of Y.

A basis of induction. Let X be an original space and let $\left\{U_{b}: b \in B\right\}$ be a base on X consisting of olosed-and-open sots. since X has a g_{-}-diagonal, one can find a family $\left\{\gamma_{n}\right.$: $n \in \omega\}$ satisfying the condition (ii) of Proposition 4.1. Since X is sero-dimensional, we can think of each γ_{n} as consisting of olosed-and-open sets. Let $\gamma_{n}=\left\{V_{b, n}: b \in B_{n}\right\}$, where $B_{n} \cap B_{m}=\varnothing$ whenever $n+m$, and $B \cap\left(\cup\left\{B_{n}: n \in \omega\right\}\right)=\varnothing$.

How define the structure ${\underset{ت}{\Theta}}_{0}$ Let $X_{0}=X, \mathscr{B}_{0}=U\left\{B_{n}\right.$: $n \in \omega\} \cup B, \mathscr{E}_{0, n}=B_{n}, \mathscr{E}_{0}=\left\{\mathscr{E}_{0, n}: n \in \omega\right\}$; if $b \in B$, then $\theta_{0}(b)=U_{b}$ and if $b \in B_{n}$, then $\theta_{0}(b)=V_{b, n}$. We choose sets $\overline{\mathscr{P}}_{0}, \mathscr{F}_{0}$ and a mapping π_{0} in accordance with (1) and define a mapping θ_{0} on $\overline{\mathscr{B}}_{0}$ by letting $\theta_{0}(b)=X_{0}$, $\backslash \theta_{0}\left(\pi_{0}^{-1}(b)\right)$ for every $b \in \overline{\mathscr{G}}_{0}$. one can easily verify that
the ${ }_{0} s 0$ constructed satisfies the conditions (1)-(3).
Convention 4.4. Everywhere below we will identify the sets X and X_{0}.

Remark 4.5. By construction the family $\left\{\theta_{0}(b): b \in\right.$ $\left.\in \mathscr{G} \mathcal{O}_{0} \cup \overline{\mathscr{B}}_{0}\right\}$ consists of closed-and-open subsets of X and the topology generated by taking it as a subbase, coincides with the original topology on X.

An inductive ster. (I) For limit ordinals an inductive step is carried out by

Leman 4.6. Let α^{*} be a limit ordinal and suppose that the structures $\stackrel{F}{\beta}$ with the properties (1)-(8) have already been defined for every $\beta<\alpha^{*}$.

Let $X_{\alpha^{*}}=U\left\{X_{\beta}: \beta<\alpha^{*}\right\}, \mathscr{B}_{\alpha^{*}}=U\left\{\mathscr{B}_{\beta}: \beta<\alpha^{*}\right\}, \overline{\mathscr{B}}_{\alpha^{*}}=$ $=\bigcup\left\{\overline{\mathscr{B}}_{\beta}: \beta<\alpha^{*}\right\}, \mathscr{G}_{\alpha^{*}}=U\left\{\mathscr{F}_{\beta}: \beta<\alpha^{*}\right\}, \mathscr{G}_{\alpha^{*}, n}=\bigcup\left\{\mathscr{G}_{\beta, n}: \beta<\alpha^{*}\right\}$, $\mathscr{E}_{\alpha^{*}}=\left\{\mathbb{E}_{\alpha^{*}, n^{\prime}}: n \in \omega\right\}$. Determine the map $\mathbb{\pi}_{\alpha^{*}}: \mathscr{B}_{\alpha^{*}} \rightarrow \overline{\mathscr{S}}_{\alpha^{*}}$ by $\mathbb{\pi}_{\alpha^{*}}(b)=$ $=\pi_{\beta}(b)$, where β is any ordinal with $\beta<\alpha^{*}$ and $b \in \mathscr{B} \beta$. Define the map $\theta_{\alpha^{*}}: \mathscr{B} \alpha_{\alpha^{*}} \cup \overline{\mathscr{B}}{\alpha^{*}} \rightarrow \exp X_{\alpha^{*}}$ by letting $\theta_{\alpha^{*}}(b)=$ $=U\left\{\theta_{\beta}(b): \beta<\alpha^{*}, b \in \mathscr{B}_{\beta} \cup \overline{\mathscr{B}}_{\beta}\right\}$ for each $b \in \mathscr{B _ { \alpha }}{ }^{*} \cup \overline{\mathscr{B}}_{\alpha^{*}}$.

Then the structure ${ }^{H} \alpha^{*}$ satisfies the properties (1)-- (8).

Proof of Lemma 4.6. A verification of the properties (1), (2), (4)-(8) is trivial and can be omitted. Let us verify (3).
(Ba) is obvious.
(ib) Arbitrarily choose $x \in X_{\alpha^{*}}$ and $n \in \omega$. Then $x \in X_{\beta}$ for some $\beta<\alpha^{*}$. By (ib) for this β, one can find a $b \in E_{\beta}, n$ with $x \in \Theta_{\beta}(b)$. But $\dot{E}_{\beta, n} \subset \mathscr{E}_{\alpha^{*}, n}$ and $\theta_{\beta}(b) \subset \theta_{\alpha^{*}}(b)$ imply $x \in U\left\{\Theta_{\alpha^{*}}(b): b \in \mathscr{E}_{\alpha^{*}, n}\right\}$.
(sc) Let $x, y \in X_{\alpha^{*}}, x \neq y$. Then $x, y \in X_{\beta}$ for some $\beta<$
$<\alpha^{*}$. By (sc) for β, there is an $n \in \omega$ such that $\left\{b \in \mathcal{E}_{\beta, n}\right.$: $\left.\{x, y\} \subset \theta_{\beta}(b)\right\}=\varnothing$. The properties (6) and (8) imply $\theta_{\alpha^{*}}(b) \cap X_{\beta}^{\beta}=\varnothing$ whenever $b \in \dot{E}_{\alpha^{*}, n} \backslash \mathscr{E}_{\beta, n}$. How from (6) it follows that $\left\{b \in \mathscr{E}_{\alpha^{*}, n}:\{x, y\}^{, n} \subset \theta_{\alpha^{*}}(b)\right\} \subset\left\{b \in \mathscr{E}_{\beta, n}\right.$: $\left.\{x, y\} \subset \theta_{\beta}(b)\right\}=\varnothing$.
(3d) Let $b \in \mathscr{B}_{\alpha^{*}}$ be chosen arbitrarily. Then $b \in \mathscr{B}_{\beta}$ for some $\beta<\alpha^{*}$. By (8), we have $\left\{n \in \omega: b \in \mathscr{E}_{\gamma, n}\right\}=\{n \in \omega$: $\left.b \in \mathscr{E}_{\beta, n}\right\}$ provided $\beta<\gamma<\alpha^{*}$ and therefore $\{n \in \omega$: $\left.b \in \mathscr{E}_{\alpha^{*}, n}\right\}=\left\{n \in \omega: \mathfrak{b} \in \mathscr{E}_{\beta, n}\right\}$. But the last set is either empty or consists of a single element since (3d) holds for β.

The proof of Lemma 4.6 is complete .
(II) Let $\alpha^{*}=\beta^{*}+1$. The step from β^{*} to α^{*} is done with the holp of an auxiliary inductive construction.

An auxiliary inductive construction. Let $C=\{\mathscr{K}: \mathcal{K} \subset$ $\subset \mathscr{F}_{\beta^{*}},|\mathscr{K}|=\omega_{1}$ and $\widetilde{\theta}_{\beta^{*}}(F) \neq \varnothing$ for all $\left.F \in \mathscr{K}\right\}$. Bnmerate elements of C by non-limit ordinals not exceeding some limit ordinal δ :
(H) $C=\left\{K_{\alpha}: 0<\alpha<\delta, \alpha\right.$ is a non-limit ordinal $\}$. Let $X_{0}=X_{\beta^{*}}, \mathscr{B Z}_{0}=\mathscr{B}_{\beta^{*}}, \overline{\mathscr{B}}_{0}=\overline{\mathscr{B}}_{\beta^{*}}, \pi_{0}=\pi_{\beta^{*}}, \mathscr{F}_{0}=$ $=\mathcal{F}_{\beta^{*}}, \theta_{0}=\theta_{\beta^{*}}, \mathscr{E}_{0}=\mathscr{E}_{\beta^{*}}$. starting from ${ }^{-}$, by transfinite induction for every $\alpha<\delta$ define the structure ${ }_{\alpha}$ with the properties (1)-(8) satisfying also the following conditron:
there are $F_{1}, F_{2} \in \mathcal{K}_{\alpha}$ with $_{\alpha} \widetilde{\alpha}_{\alpha}\left(F_{1}\right) \cap \widetilde{\theta}_{\alpha}\left(F_{2}\right) \neq \varnothing$ whenever α is a non-limit ordinal.

For limit ordinals an inductive step is carried out by Lemma 4.6. In case of non-limit ordinals we make use of the

Leman 4.7. Let $\alpha=\beta+1$ and suppose that the structure ${ }^{H}$ has the properties (1)-(8). Then there exists the atractare $\stackrel{H}{\mu}^{\text {having not only the properties (1)-(8) but the pro- }}$ party $\left(*_{\alpha}\right)$ as well.

Proof of Lama 4.7. Here we mat "grow out" "old" subbase sets $\overline{\mathscr{B}}_{\beta} \cup \overline{\mathscr{B}}_{\beta}$ in such a way that some $\tilde{\theta}_{\alpha}\left(F_{1}\right)$ and ${\widetilde{\theta_{\alpha}}}_{\alpha} F_{2})$ with $F_{1}, F_{2} \in \mathcal{I}_{\alpha}$ would be forced to meet. However, we are not free on it because of the property (2). Indeed, if $b \in$ $\in F_{1}$ and $\pi_{\beta}(B) \in F_{2}$ for som $b \in Z_{\beta}$, then ${\widetilde{\theta_{\alpha}}}\left(F_{1}\right) \cap$ $\cap \widetilde{\Theta}_{\alpha}^{1}\left(F_{2}\right)=\varnothing$ no matter how "growing out" is done. so to choose F_{1} and F_{2} such as in $\left(*_{\alpha}\right)$, we mast eliminate the case described above.

Now, let us turn to details. Let $X_{\alpha}=X_{\beta} \cup\left\{x^{*}\right\}$,where $x^{*} \neq X_{\beta}$ and let $\mathscr{B}_{\alpha}=B_{\beta} \cup\left\{b_{n}^{*}: n \in \omega\right\}, \bar{B}_{\alpha}=\overline{\mathscr{B}}_{\beta} U$ $U\left\{\bar{b}_{n}^{*}: n \in \omega\right\}$, where $\left(\left\{b_{n}^{*}: n \in \omega\right\} \cup\left\{\bar{b}_{n}^{*}: n \in \omega\right\}\right) \cap\left(\mathcal{B}_{\beta} U\right.$ $\cup \bar{\partial}_{\beta} \bar{b}^{*}=\varnothing,\left\{b_{n}^{*}: n \in \omega\right\} \cap\left\{\bar{b}_{n}^{*}: n \in \omega\right\}=\varnothing_{\text {and }} b_{n}^{*} \neq b_{m}^{*}, \bar{b}_{n}^{*} \beta$ $\neq \bar{b}_{m}^{*}$ whenever $n \neq m$. Let $\pi_{\alpha}(b)=\pi_{\beta}(b)$ as soon as $b \in \mathscr{B}_{\beta}$ and $\pi_{\alpha}(b)=\bar{b}_{n}^{*}$ in case $b=b_{n}^{*}$. put also $\mathscr{S}_{\alpha}=$ $=\left\{F: F \subset \mathscr{B}_{\alpha} \cup \mathscr{S}_{\alpha}, F\right.$ is finite and $\left.F \neq \varnothing\right\}, \mathscr{E}_{\alpha, n}=$ $=\mathscr{E}_{\beta, n} \cup\left\{b_{n}^{*}\right\}$ for all $n \in \omega, \mathscr{E}_{\alpha}=\left\{\mathscr{E}_{\alpha, n}: n \in \omega\right\}$. since $\mathscr{K}_{\alpha} \subset \mathscr{F}_{0},\left|\mathscr{K}_{\alpha}\right|=\omega_{1}$,applying the standard Δ-symten arguments, one can find a $J \in \mathscr{F}_{0} \cup\{\varnothing\}$ and a $\mathscr{K}_{\alpha}^{\prime} \subset \mathscr{K}_{\alpha}$ with $\left|\mathcal{K}_{\alpha}^{\prime}\right|=\omega_{1}$ and $F^{\prime} \cap F^{\prime \prime}=J$ for all pairs $F^{\prime}, F^{\prime \prime} \in$ $\in \mathcal{K}_{\alpha}^{\prime}$. Choose an $F_{1} \in \mathcal{K}_{\alpha}^{\prime}$. Suppose that $F_{1}=\left\{b_{1}, \ldots\right.$, $\left.b_{k}, \pi_{0}\left(b_{k+1}\right), \ldots, \pi_{0}\left(b_{m}\right)\right\}$, where $b_{1}, \ldots, b_{m} \in \mathscr{B}_{0}$ and $\left\{b_{1}, \ldots, b_{k}\right\} \cap\left\{b_{k+1}, \ldots, b_{m}\right\}=\varnothing$ (the last follows from (2)). Let $P=\left\{b_{1}, \ldots, b_{m}, \pi_{0}\left(b_{1}\right), \ldots, \pi_{0}\left(b_{m}\right)\right\}$. Then
there is a finite sot $\mathcal{M} \subset \mathscr{K}_{\alpha}^{\prime}$ soon that $F \cap P=J$ for rory $F \in \mathcal{K}_{\alpha}^{\prime} \backslash \mu$. proc an $F_{2} \in \mathscr{K}_{\alpha}^{\prime} \cdot \mathcal{M}$. suppose that $F_{2}=\left\{a_{1}, \ldots, a_{s}, \pi_{0}\left(a_{s+1}\right), \ldots, \pi_{0}\left(a_{t}^{\alpha}\right)\right\}$, where $a_{1}, \ldots, a_{t} \in$ $\in \mathscr{B}_{0}$ and $\left\{a_{1}, \ldots, a_{s}\right\} \cap\left\{a_{s+1}, \ldots, a_{t}\right\}=\varnothing$. Then we have $\left\{a_{1}, \ldots, a_{t}\right\} \cap\left\{b_{1}, \ldots, b_{m}\right\}=J^{\prime}$, where $J^{\prime}=\varnothing$ if $J=$ $=\varnothing$, and $J^{\prime}=\left\{C_{1}, \ldots, C_{l}, C_{l+1}, \ldots, C_{r}\right\}$ if $J=\left\{C_{1}, \ldots, C_{l}\right.$, $\left.\pi_{0}\left(c_{l+1}\right), \ldots, \pi_{0}\left(c_{r}\right)\right\}$ (in the last case $c_{i} \neq c_{j}$ as soon as $i \neq j, i \leqslant r, j \leqslant r)$. Define a map $\theta_{\alpha}: \mathscr{B} B_{\alpha} \rightarrow \exp X_{\alpha}$ by letting

$$
\theta_{\alpha}(b)= \begin{cases}\theta_{\beta}(b) \cup\left\{x^{*}\right\} & \text { if } b \in\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{K}\right\}, \\ \theta_{\beta}(b) & \text { if } b \in \mathscr{B}_{\beta^{\prime}} \backslash\left\{a_{1}, \ldots, a_{S}, b_{1}, \ldots, b_{K}\right\}, \\ \left\{x^{*}\right\} & \text { if } b \in\left\{b_{n}^{*}: n \in \omega\right\} .\end{cases}
$$

Extend θ_{α} over $\overline{\mathscr{B}}_{\alpha}$ by letting $\theta_{\alpha}(b)=X_{\alpha}$ - $\theta_{\alpha}\left(\pi_{\alpha}^{-1}(b)\right)$ for every $b \in \overline{\mathscr{B}}_{\alpha}$.

The structure ${ }^{-}$is thus completely defined. The properties (1), (2), and (4)-(8) follow directly from our construetions. Besides $x^{*} \in \widetilde{\theta}_{\alpha}\left(F_{1}\right) \cap \widetilde{\theta}_{\alpha}\left(F_{2}\right) \neq \varnothing$ and hence $\left(*_{\alpha}\right)$ holds. We need only to verify (3). Items (a), (b) and (d) are obvious. fo verify (c), consider two cases.
(1) $\{x, y\} \subset X_{\beta}$. The property (3c) for β implies $\left\{b \in \mathscr{E}_{\beta, n}:\{x, y\} \subset \theta_{\beta}(b)\right\}=\varnothing$ for some $n \in \omega$. But $\mathscr{E}_{\alpha, n}{ }^{\prime}$, $\mathscr{E}_{\beta, n}-\left\{b_{n}^{*}\right\} \quad$ and $\theta_{\alpha}\left(b_{n}^{*}\right)=\left\{x^{*}\right\}, x^{*} \notin X_{\beta}$. How it follows from (5) that $\left\{b \in \mathscr{E}_{\alpha, n}:\{x, y\} \subset \theta_{\alpha}(b)\right\}=$ $=\varnothing$.
(11) One of points x and y is x^{*}, say $x=x^{*}$. (3d) for β implies $\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{K}\right\} \cap \mathscr{E}_{\beta, n}=\varnothing$ for some $n \in \omega$. But $\left(\mathscr{E}_{\alpha, n} \backslash \mathscr{E}_{\beta, n}\right) \cap \mathscr{B}_{\beta}=\varnothing$ by (8), and $\left\{a_{1}, \ldots, a_{S}, b_{1}, \ldots, b_{k}\right\} \subset \mathscr{B}_{0} \subset \mathscr{B}_{\beta}$. therefore $\left\{a_{1}, \ldots, a_{S}\right.$,
$\left.b_{1}, \ldots, b_{k}\right\} \cap \varepsilon_{\alpha, n}=\varnothing$. it follows from the definition of θ_{α} and the property (6) for α that $\left\{b \in \mathscr{B}_{\alpha}:\left\{x^{*}, y\right\} \subset\right.$ $\left.\subset \theta_{\alpha}(b)\right\}=\left\{a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{k}\right\}$ end $\left\{b \in \mathscr{E}_{\alpha, n}^{\alpha}:\left\{x^{*}\right.\right.$, $\left.y\} \subset \theta_{\alpha}(8)\right\}=\varnothing$ as required.

Lemma 4.7 is completely proved.
The auxiliary inductive construction having been done, applying Lemma 4.6 , we should define the structure $\stackrel{H}{H}$ and should determine $X_{\alpha^{*}}=X_{\delta}, \mathscr{S}_{\alpha^{*}}=\mathscr{B}_{\delta}, \overline{\mathscr{B}}_{\alpha^{*}}=\overline{\mathscr{P}}_{\delta},{J_{\alpha^{*}}}^{J^{\prime}} \mathscr{J}_{\delta}$,
 quire. The properties (1)-(8) hold by Lemma 4.6. Since for every non-limit ordinal $\alpha<\delta$ the property ($*_{\alpha}$) holds, (N) implies that the property (9) is fulfilled for the ordinal β^{*}. This completes the inductive construction.

The inductive construction having been done, apply Lemma 4.6 to obtain $\stackrel{H}{\sim} \omega_{2}$

Convention 4.8. Let $Y=X \omega_{2}$. Henceforth for the sake of simplicity we omit the index ω_{2}^{2} in $\mathbb{B} \omega_{2}, \overline{\mathscr{B}} \omega_{2},{ }^{\pi} \omega_{2}$, $\mathscr{F}_{\omega_{2}}, \theta_{\omega_{2}}, \mathscr{E}_{\omega_{2} n}$ and $\mathscr{O}_{\mathscr{O}_{2}}$.
consider the family $\eta=\{\theta(b): b \in \mathscr{B} \cup \overline{\mathscr{B}}\}$ and the topology \mathscr{V} generated by it as a subbase. The space (Y, \mathscr{J}) is that we need.

Proposition 4.9. The space (Y, \mathbb{C}) is zero-dimensional and Tychonoff.

Proof. All elements of η are closed-and-open in (Y, G) since (2) and (5) imply that $Y \backslash \theta(b)=\theta(\pi(b))$ for any $b \in \mathscr{Z}$. since η is a subbase for the topology \mathscr{F}, the space (Y, \bar{J}) is zero-dimensional. By (3c), the family η separates points of Y, so (Y, G) is a Tychonoff space.

Proposition 4.10. The set X_{0} is closed in (Y, \mathscr{J}). Moreover, this is true for all X_{β} with $\beta<\omega_{2}$.

Proof. Suppose $\beta<\omega_{2}$ and $x \in Y X_{\beta}$. Then $x \in X_{\alpha}, X_{\beta}$ for sone $\alpha<\omega_{2}$. Applying (7), one can find a $b \in B_{\alpha} \backslash \mathscr{B}_{\beta}$ with $x \in \theta_{\alpha}(b)$. How (6) implies $\theta_{\alpha}(b) \cap X_{\beta}=\varnothing$ and hence $\theta(b) \cap X_{\beta}=\varnothing$ by (5).
proposition 4.11. The topology \mathscr{J} induces on $X_{o}=X$ the original topology of X.
proof. If $b \in B_{B}, \mathscr{B}_{\text {, then }}$ by (2), (5), (6), $\theta(b) \cap X=\varnothing$ and $\theta(\pi(b)) \cap X=(Y \backslash \theta(b)) \cap X=X$. Therefore, $\theta(b) \cap$ $\cap X \in\{\varnothing, X\}$ provided $b \in \mathscr{B} \cup \overline{\mathscr{B}} \backslash\left(\mathscr{B}_{0} \cup \overline{\mathscr{B}}_{0}\right)$. How suppose that $b \in \mathscr{B}_{0} \cup \overline{\mathscr{B}}_{0}$. By (5),$\theta(b) \cap X_{0}=\theta_{0}(b)$, and by Remark 4.5, the topology, generated on X by taking the family $\left\{\theta_{0}(b)\right.$: $\left.b \in \mathscr{B}_{0} \cup \overline{\mathscr{S}}_{0}\right\}$ as a subbase, coincides with the original topology of X. so \mathscr{T} induces the original topology of X.
proposition 4.12. The space (Y, \mathscr{I}) has a G_{δ}-diagonal.
proof. By our construction, each $\gamma_{n}=\left\{\theta(b): b \in \mathscr{E}_{n}\right\}$ is an open cover of Y. Let $x, y \in Y, x \neq y$. then $x, y \in X_{\alpha}$ for some $\alpha<\omega_{2}$. (3c) implies that $\left\{b \in \mathscr{G}_{\alpha, n}:\{x, y\} \subset \theta_{\alpha}(b)\right\}=$ $=\varnothing$ for some $n \in \omega$. by (6) and (8), we have $\theta(b) \cap X_{\alpha}=\varnothing$ whenever $b \in \mathscr{E}_{\alpha} \backslash \mathscr{E}_{\alpha, n}$. From (5) it follows that $\left\{b \in \mathscr{E}_{n}\right.$: $\{x, y\} \subset \theta(b)\}=\varnothing$. Therefore, the family $\left\{\gamma_{n}: n \in \omega\right\}$ satisfies the property (ii) of Proposition 4.1 by which we conclude that the space $\left(Y, \mathscr{)}\right.$ has a G_{δ}-diagonal.

Proposition 4.13. The space (Y, \mathscr{F}) satisfies c.c.c.
proof. put $\widetilde{\theta}(F)=\cap\{\theta(b): b \in F\}$ for any $F \in \mathcal{F}$. The family $\lambda=\{\widetilde{\theta}(F): F \in \mathscr{F}\}_{\text {is a }}$ base for the topology $\mathscr{}$.

To prove 4.13, all ne need is to show that any family $\xi \subseteq \lambda$ of cardinality ω_{1} fails to be disjoint. Pick a $\xi=\{\tilde{\theta}(F)$: $F \in \mathscr{K}\} \subset \lambda$ such that $\mathscr{K} \subset \mathscr{F},|\mathscr{K}|=\omega_{1}$ and $\overparen{\overparen{\theta}}(F) \neq \varnothing$ for every $F \in \mathscr{K}$. since $|\mathfrak{K}|=\omega_{1}<\omega_{2}$, there is an $\alpha<$ $<\omega_{2}$ such that $\mathscr{K} \subset \mathscr{F}_{\alpha}$ and $\widetilde{\theta}_{\alpha}(F)=X_{\alpha} \cap \widetilde{\theta}(F) \neq \varnothing$ for all $F \in \mathscr{K}$. Applying (9) to \mathscr{K}, pick $F_{1}, F_{2} \in \mathscr{K}$ with $\varnothing \neq \widetilde{\theta}_{\alpha+1}\left(F_{1}\right) \cap \widetilde{\theta}_{\alpha+1}\left(F_{2}\right) \subset \widetilde{\theta}\left(F_{1}\right) \cap \widetilde{\theta}\left(F_{2}\right)$. Thus the family ξ is not disjoint.

Proof of Theorem 3.2. Let $<_{X}$ be a left well-order on X. Define a left well-order $<_{Y}$ on Y. on $X \times X<_{Y}$ coincides $n 1$ th $<_{X}$. Examining attentively the proof of theorem 3.1, one can see that in our auxiliary inductive construetin we add a single point passing from α to $\alpha+1$ with the help of Lemma 4.7. The sequence in which we add new points to $X_{0}=X$ gives us the desired left well-order $<_{Y}$ on Y.
proof of Corollary 3.3. Apply Theorem 3.1 to the discrete space of cardinality τ.

Proofs of Theorems 3.4 and 3.5 are similar to those of 3.1 and 3.2 respectively and will be omitted.

Proof of Corollary 3.6. Consider a Tychonofr c.c.c. space Z with a G_{8}-diagonal and $|Z|>2^{i_{0}}{ }_{\text {the }}$ existence of which 1 s guaranteed by Corrollary 3.3. Assume that there exists a ono-to-one continuous mapping of Z onto a Hausdorff first-countable space Y. Then $c(Y)=S_{0}^{\prime}$ and from the well-known 1. Haj- $^{\prime}$ nail and I.Juhász's result $[7]$ it follows that $|Y| \leqslant \exp (X(Y)$. - $c(Y)) \leqslant 2^{y_{0}}$. But $2^{s_{0}} \geqslant|Y|=|Z|>2^{s_{0}}$, which is a contradiction.

5. Some positive results and inal remarks.

In connection with the negative answer to Question 1.1 it is worth looking for olasses of spaces in the realn of which Question 1.1 is settled positively. According to J.Ginsburg and R.G.Woods, result (see Introduction) in the realm of collectionwise Hausdorff spaces an answer to Question 1.1 is "yes". The following easy result is of the same kind.

Proposition 5.1. In the realm of Hausdorff spaces of pointwise-countable type an answer to Question 1.1 is "yes".

Proof. For spaces of pointwise-countable type $\psi(X)=$ $=\chi(X)$ (see [3], Exercise 3.1.F). Hence a space of point-wise-countable type with a G_{δ}-diagonal is first-countable. How it suffices to apply A.Hajnal and I.Juhász's result $|X| \leqslant$ $\leqslant \exp (X(X) \cdot c(X))[7]$.

Corollary 5.2. The cardinality of a čeoh-complete c.c.c. Hausdorff space with a G_{δ}-diagonal does not exceed $2^{\delta_{0}}$.

With the help of a method, different from described above, the author obtained the following general result:

Theoren 5.3. Let us consider the following properties:

1) having a G_{g}-diagonal,
2) being σ-discrete (this is to be a sum of countable family of its discrete closed subspaces),
3) normality,
4) metacompactness,
5) hereditary metacompactness.

Every Tychonoff space X can be embedded as a closed Gg-subspace in a Tychonoff c.c.c. space Y in such a way that the space Y has any of the above properties whenever X has.

Corgllary 5．4．For any cardinal τ there exists a nor－ mal hereditarily metacompact σ－discrete c．c．c．space Z suoh that $|Z| \geqslant \tau$ ．

Remark 5．5．Every σ－disorete space has a G－diagonal．
Romark 5．6．This work had already been finished when I found out from the thesis of Toshiji Terada［8］that he had also given an answer to Question 1．1．I don＇t know his proofs， for his paper submitted to＂Canadian Mathematical Journal＂ is not published yet．V．V．Uspenskii，after having learned argu－ ments of the present paper，gave his own solution in［9］．

Acknowledgements．I would like to thank my teacher Prof． A．V．Arhangel＇skil for calling \boldsymbol{H}^{\prime} attention to Question 1．1． I am indebted to Dr．V．I．Malyhin for the tire he spent dis－ cussing with me the forcing ideas which influenced crucially not only this work，but also the work［5］．
［1］GINSBURG J．，WOODS R．G．A cardinal inequality for topolo－ logical spaces involving closed discrete sets．－ Proc．Amer．Math．Soc．，1977，v．64，N 2， p． 357 － 360 ．
 ких пространств и кардинальнне инварианты．－Јс－ пехн математичесих наук， 1978 ，т．З3，ј 6，с． 29－84（Arhangel＇skii A．V．A structure of spa－ ces，their classification and cardinal invariants －Soviet Math．Surveys，1978，v．33，N 6，p． 29 － －84）．
［3］BKGELKING R．General topology．－Warszawa，PWI， 1977.
 ке：＂Топология и теорщн множеств＂，Удмуртскии го－ сударственни⿱⿱日一⿻日土灬押 уверситет．Ижевск，I982，с．8－II．
(Zeitlin M.J. On a question of A.V.Arhangel'skil. In: "Topology and Theory of eetan, Univereity of the Udmart Repablic. Ishevsk, USSR, 1982, p. 8 -- 11).
[5] आАХДАТОВ Д.В. О псевдокомпактних пространствах с точепно
 (Shakhmatov D.B. On pseudocompact spacee with a point-countable base, to appear in Soviet lath. Dokl.).
[6] CEDER J.G. Some generalizations of metric spaces. - Pacific J. Math., 1961, v. 11, I 1, p. 105-125.
[7] HAJHAL A., JUHisZ I. Discrete subapaces of topological spaces. - Indag. Math., 1967, v. 29, p. 343-356.
[8] TERADA T. Dense subspaces of topological apaces (to appcar in Canadian Math. J.).- Zentralblatt fïr Mathematik, 1983, B. 507, abstract 54005.
[9] USPEMSKII V.V. A large F_{6}-disorete Fréchet apace having the Souslin property. - Comment. Math. Unit. Carolinae 25(1984), 257-260.

```
Department of General topology and Geometry
Faculty of Mechanics and Mathematics
Moscow State University
119899 Moscow
USSR
```

