Commentationes Mathematicae Universitatis Carolinae

Walter Jahn; Marks Riedel

Reduction of the dimension in the linear model with stochastic regressor

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 4, 747--761

Persistent URL: http://dml.cz/dmlcz/106340

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

REDUCTION OF THE DIMENSION IN THE LINEAR MODEL WITH STOCHASTIC REGRESSORS W. JAHN and M. RIEDEL

Abstract

Pirst of all we introduce the linear model with ohastic regressors. The estimates of the parameter B and σ_{Y}^{2} / X of this model are influenced by multicollinearity. As one of the possibilities to reduce the degree of multicollinearity subset regression is proposed. As a criteria for the selection of a model for the best extrapolation we use the mean square error of extrapolation. Some important properties of the estimates of the seleoted model will be shown. KEY WORDS: Linear model with stoohastic regressors, multicollinearity, mean square error of extrapolation, subset regression.

AMS: 62 J 99

1. INTRODUCTION

First of all we will give a short introduction to the linear model with stochastic regressors. It will be shown that the estimates for the parameters of this model such as the vector of regression coefficients and the conditional variance possess the usual properties as unbiasedness and consistency. In this model the multiooliinearity plays an important role. Its effect on the estimates is also shortly demonstrated and by an example illustrated. To oorrect the estimates from this effect it is necessary to reduce the degree of multicollinearity. One of the possibilities for this is the subset regression which can be considered as a kind of the reduction of the dimension of the parameter space. As a criteria for the selection of a model for the best extrapolation of the regressand by all or a subset of the regressands we use the mean square error of extrapolation which will be stated in theorem 3. For all selections k we show that $\|B-\hat{B}(k)\|^{2}$ converges uniformly for all k from a certain set K to $\|B-B(k)\|^{2}$.

2. THE LINEAR MODEL WITH STOCHASTIC REGRESSORS

Consider an $1 \times(n+1)$ random vector Z with the expectation μ and the oovariance matrix Σ, Z, μ and Σ are partitioned as
$Z=(Y, X), \mu=\left(\mu_{Y}, \mu_{X}\right)$
$\left(\begin{array}{ll}\sigma_{Y}^{2} & \sigma_{Y . X} \\ \sigma_{X \cdot Y} & \Sigma_{X X}\end{array}\right)=\Sigma$
where Y and μ_{Y} are $1 \times 1, X$ and μ_{X} are $1 \times n$, and $\Sigma_{X X}$ is $n x n$.
The problem is to determine the regressand Y by the regressors X. For convenience we will let $N V_{n+1}$ denote the class of $1 x(n+1)$ random vectors Z having the $N_{n+1}(0, \Sigma)$ distribution with positive definite matrices Σ. It is well known that for $Z \in N V_{n+1}$
$\quad \mathrm{B}(\mathrm{Y} / \mathrm{X})=\mathrm{XE} \Sigma_{\mathrm{XX}}{ }^{-1}{ }^{-\sigma_{X: Y}}=\mathrm{XB}$

$$
\operatorname{var}(Y / X)=\sigma_{Y}^{2}-\sigma_{Y \cdot X} \sum_{X X}^{-1} \sigma_{X \cdot Y}=: \sigma_{Y \mid X}^{2}
$$

Moreover, the random variable $\varepsilon:=Y-X B$ and the $1 \mathrm{x} n$ random vector X are independent and $E \sim N_{1}\left(0, \sigma_{Y / X}^{2}\right)$. In other words, X and \mathcal{E} determine Y in a linear manner, as

$$
\begin{equation*}
Y=X B+\varepsilon \quad . \tag{1}
\end{equation*}
$$

In order to obtain the maximum likelihood estimators of B and
$\sigma_{Y / X}^{2}$ it is not necessary to restrict our_selves to normally distributed regressors. Therefore, we introduce a generalized parametric family F instead of NV.

As suggested by (1), we now consider random vectors Z which are defined by X and ε according to

$$
Z=(X \mathbb{B}+\varepsilon, X)=(Y, X)
$$

Let F be the class of $1 \times(n+1)$ random vectors Z possessing following properties:
(i) X and ε are independent
(ii) $\varepsilon \sim N\left(0, \sigma^{2}\right)$ for some $6^{2}>0$
(iii) $X \sim G$ for some $\vartheta \in \Theta$, where $\in=\left\{\mathcal{G}_{\mathcal{N}}: \vartheta \in \Theta\right\}$ is an arbitrary family of distribu-

> tions on \mathbb{R}^{n} with the parametric space Θ and positive definite covariance matrices $\Sigma_{X X}$.

Note that $N V_{n+1} \subset F$ iff $N_{n}\left(0, \Sigma_{X X}\right) \in$ for all $\Sigma_{X X}$.
Purther suppose that for all $\vartheta \in \Theta$ there exists a density 9 of G_{Ω} and denote the density of $N_{1}\left(0, \sigma^{2}\right)$ by $f_{\sigma^{2}}$. Then the density of Z with the parameter ($\left.B, \sigma^{2}, \vartheta\right)$ is given by
$f(y, x)=g_{\gamma}(x) f_{6^{2}}(y-x B)$
where, as before X is a row vector and B is a column vector.
Bstimating B and G^{2} we take a sample of size $N>n$ of Z and denote it by

```
Z=(Y, z
```

where the results of the $1-t h$ trial $Z_{i}=\left(Y_{1}, X_{i}\right)$ are written in the i-th row of \mathbf{z}.

Obviously, from (1) we get the representation

$$
\begin{equation*}
Y I=\mathbb{Z} B+\Phi \tag{1'}
\end{equation*}
$$

with $N \times 1$ random vector $\mathbb{C} \sim N_{N}\left(0, \sigma^{2} I_{N}\right)$ where I_{N} is the $N \times N$ identity matrix. Using now (2) we get the logarithmic likelihood function

$$
\begin{aligned}
1\left(\mathbb{B}, \sigma^{2}, \vartheta ; z\right) & =\sum_{i=1}^{N} \log f_{\sigma^{2}}\left(y_{1}-x_{i} \mathbb{B}\right)+\sum_{i=1}^{N} \log g_{\vartheta}\left(x_{i}\right) \\
& =: 1_{1}\left(\mathbb{B}, \sigma^{2} ; z\right)+1_{2}(\vartheta ; x) .
\end{aligned}
$$

By the property (1i) of F we obtain
$I_{1}\left(\mathbb{B}, \sigma^{2} ; \pi\right)=-\frac{1}{2 \sigma^{2}}(y-\mathbb{B})^{T}(y-\neq \mathbb{B})+\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)$.
A result of Okamoto [1973] yields that for all $\vartheta \in \Theta$

$$
G_{v}\left\{\left|\Psi^{T} \Psi\right|>0\right\}=1 ;
$$

here $|\mathbb{A}|$ denotes the determinant of a matrix \mathbb{A}. Hence, there exist the maximum likelihood estimates \hat{B} of B and $\hat{\sigma}^{2}$ of σ^{2} and they have a similar structure as in the linear model (with non-random regressors).

Note that

$$
B=\left(\Psi^{T} Y\right)^{-1} Y^{T} Y=Y^{+} Y
$$

where 7^{+}is the Moore-Penrose inverse of 7 . As in the olassical case instead of $\hat{\sigma}^{2}$ we use the estimate

$$
S^{2}=\frac{N-n}{n} \hat{\sigma}^{2}=\frac{1}{N-n}(Y-Y \hat{B})^{T}(Y-\hat{B})
$$

which is unbiased (see theorem 1).
The following theorem gives some properties of the estimators \hat{B} and s^{2}.
Theorem 1: For Z \mathcal{C} F we take a sample of size $N>n$. Suppose
that the expeotation of $\left(\Psi^{T} Y\right)^{-1}$ exists then
$B(\widehat{B} / X)=B$
$\operatorname{cov}(\hat{B} / X)=\sigma^{2}\left(X_{T}^{T}\right)^{-1}$
and
$B\left(S^{2} / 7\right)=\sigma^{2}$
In particular, \hat{B} and S^{2} are unbiased.
Remark 1: If $Z \in N V_{n+1}$ then the $n x$ random matrix \mathbb{N}^{T} from a sample of size N and the expectation of $\left(\boldsymbol{7}^{\mathrm{T}} \mathbf{7}\right)^{-1}$ exists if $N>n+1$; moreover (see Kshirsagar [1972])

$$
\begin{equation*}
B\left(X^{T}\right)^{-1}=\frac{1}{N-n-1} \Sigma_{X X}^{-1} \tag{7}
\end{equation*}
$$

Proof: Clearly

$$
z^{+}\left(\Psi^{+}\right)^{T}=\left(\Psi^{T} \Psi\right)^{-1}
$$

and the existence of the expectation of $\left(Y^{T} Y\right)^{-1}$ implies the existence of the expectation of \mathbf{p}^{+}. Using (1^{\prime}) and (ii) of \mp we oonclude

$$
B(\widehat{B} \mid \nmid Y)=B\left(\mathbb{B}+Y^{+} E / \not \subset\right)=I B \text {; i.e. (4). }
$$

Further we need a result for conditional expeotations of random matrices. Let \mathbb{A}_{j} be $u_{j} \times v_{j}$ random matrices for $j=1,2,3,4$ and suppose that \mathbb{A}_{1} and \mathbb{A}_{3} are measurable with respeot to the σ-algebra generated by A_{4} and $v_{1}=u_{2}, v_{2}=u_{3}$. Then

$$
\begin{equation*}
B\left(A_{1} A_{2} A_{3} / \mathbf{A}_{4}\right)=/ A_{1} B\left(A_{2} / A_{4}\right) A_{3} \tag{8}
\end{equation*}
$$

provided that the expectation of A_{2} exists.
It is easy to see that

$$
\begin{equation*}
(\hat{B}-\mathbb{B})(\hat{B}-B)^{T}=\chi^{+} \mathbb{E} \mathbb{E}^{T}\left(Z^{+}\right)^{T} . \tag{9}
\end{equation*}
$$

 statement (5) is an immediate consequence. Putting

$$
M=I_{N}-\mathbb{Z} X^{+}
$$

we can write

$$
(N-n) S^{2}=\AA^{T} M \Phi=\operatorname{tr}\left(M \& \varepsilon^{T}\right) .
$$

Applying again (8) with $A_{1}=M, A_{2}=\mathcal{C} \mathbb{4}^{T}, A_{3}=I_{n}$ and $A_{4}=T$ we get

$$
(N-n) B\left(S^{2} / \sharp\right)=t r\left(M B\left(\mathbb{E} \mathcal{L}^{T} / X\right)=\left(N^{0}-n\right) G^{2}\right.
$$

as M is idempotent and (6) is established. For our next purpose the maximum likelihood estimate of B of ample of sise M is written as $\hat{\mathrm{B}}^{(\mathrm{N})}$.
Theorem 2: For ZeNV_{n+1} we take a sample of size N.
Then the sequence of estimates $\left\{\hat{B}^{(N)}\right\}$ is consistent to B.

Proof: From theorem 1 and remark 1 the estimates $\hat{B}^{(N)}$ are unbiased. Then for the consistence of $\left\{\mathrm{B}^{(N)}\right\}$ it suffices to show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \operatorname{tr}\left\{\operatorname{cov}\left(\hat{B}^{(N)}\right)\right\}=0 . \tag{10}
\end{equation*}
$$

From theorem 1 and (7) it follows

$$
\operatorname{tr}\{\operatorname{cov}(\hat{B})\}=\frac{\sigma^{2} n}{N-n-1}
$$

hence (10) is valid.

3. MULTICOLLINBARITY AND ITS CONSEQUEACBS

As a measure of the dependence of the regressors X we use the determinant of the correlation matrix $\mathbb{A}_{X X}$ of X, namely, the regremsors X are said to be multicollinear of degree $\delta, 1 \in \delta$, if

$$
\delta=\frac{1}{\left|\mathbb{R}_{X X}\right|}
$$

In application there are no possibilities giving a bound δ_{0} for the degree of multicollinearity in such a way that for $\delta<\delta_{0}$ the properties of the estimate \widehat{B} are scarcely influenced by the multicollinearity but for $\delta>\delta_{0}$ this estimate is not useful. The only way to study the effect of δ is to investigate its influence on the estimate. From theorem 1 we see that cor (\hat{B}) depends on the degree of multicollinearity. Note that also the statistics t_{j} for testing the hypothesis $H_{0}: B_{j}=0$ are dependent of δ. The larger the degree of multicollinearity the smaller are t_{j}.

The complicated dependence also of parameters like $\sigma_{Y / X}^{2}$ of the multioollinearity is now studied in the following simple example.
Example: Consider $Z \in N V$ with $n=2$ and $\operatorname{var}(Y)=\operatorname{var}\left(X_{1}\right)=$ $\operatorname{var}\left(X_{2}\right)=1$. Then

$$
\Sigma=\left(\begin{array}{lll}
1 & \rho_{12} & \varsigma_{13} \\
\varsigma_{21} & 1 & \varsigma_{23} \\
\varsigma_{31} & \varsigma_{32} & 1
\end{array}\right)
$$

and $X=\left(X_{1}, X_{2}\right)$ is multicollinear of degree δ if $\rho_{23}^{2}=\frac{\delta-1}{\delta}$. In this case it follows for $\sigma^{2}(\delta)=\sigma_{Y / X}^{2}$
$\sigma^{2}(\delta)=\left\{\begin{array}{l}1-\left(\rho_{12}^{2}+\rho_{13}^{2}\right) \delta+2 \rho_{12} \rho_{13} \sqrt{(1-\delta) \delta} \text { if } \rho_{23} \geq 0 \\ 1-\left(\rho_{12}^{2}+\rho_{13}^{2}\right) \delta-2 \rho_{12} \rho_{13} \sqrt{(1-\delta) \delta} \text { if } \rho_{23}<0 .\end{array}\right.$
Because Σ is positive definite we have $\rho_{12}^{2}<1, \rho_{13}^{2}<1$ and $\rho_{23} \in(a, b)$
with $a, b=\rho_{12} \rho_{13} \pm \sqrt{1-\rho_{12}^{2}-\rho_{13}^{2}+\rho_{13}^{2} \rho_{12}^{2}}$.
Only for $\rho_{12}=\rho_{13}$ we get $b=1$. Further, put

$$
A=\left\{\begin{array}{cc}
\frac{1}{1-a^{2}} & \text { for } a \geq 0 \\
1 & \text { for } a<0
\end{array}\right.
$$

and

$$
B=\left\{\begin{array}{lll}
\frac{1}{1-b^{2}} & \text { for } & \rho_{12} \neq \rho_{13} \\
\infty & \text { for } & \rho_{12}=\rho_{13}
\end{array}\right.
$$

It is easy to see that

$$
\sigma^{2}(A+)= \begin{cases}0 & \text { for } a \geq 0 \\ 1-\left(\rho_{12}^{2}+\rho_{13}^{2}\right) & \text { for } a<0\end{cases}
$$

and

$$
\sigma^{2}(B-)= \begin{cases}0 & \text { for } \rho_{12} \neq \rho_{13} \\ 1-\rho_{12}^{2} & \text { for } \rho_{12}=\rho_{13}\end{cases}
$$

In order to study the behaviour of $\sigma^{2}(\delta)$ we have to distinguish three cases: (i) $a \geq 0$, (ii) $b \leq 0$, (iii) $a<0<b$.
As the transformation $\widetilde{\rho}_{12}=-\rho_{12}, \widetilde{\rho}_{13}=\rho_{13}, \widetilde{\rho}_{23}=-\rho_{23}$ is invariant for $\sigma_{Y / X}^{2}$ we only have to consider the case $a z 0$ or $a<0<b$ and $\rho_{23} \geq 0$. Then the function $\sigma^{2}(\delta)$ is monotonously increasing in (A, δ_{0}) and monotonously decreasing in (δ_{0}, B) where

$$
\delta_{0}= \begin{cases}\frac{\max \left(\rho_{12}^{2}, \rho_{13}^{2}\right)}{\left|\rho_{12}^{2}-\rho_{13}^{2}\right|} & \text { for } \rho_{12} \neq \rho_{13} \\ \infty & \text { for } \rho_{12}=\rho_{13}\end{cases}
$$

The function $\sigma^{2}(\delta)$ reaches its maximum $1-\max \left(\rho_{12}^{2}, \rho_{13}^{2}\right)$ at δ_{0}. This example shows that $\sigma_{Y / X}^{2}$ depends on the degree of multicollinearity as well as on the correlation structure. If ρ_{12} / ρ_{13} goes to one then δ_{0} tends to infinity and consequently, high degree of multicollinearity may be combined with great $\sigma_{Y / X}^{2}$.
A sequence of simulation examples of more complicated structure have shown us the same effect, see Jahn [1984].

From these examples we get the intention that the mean square error of the extrapolation of the regressand by n regressors would be reduced using only $m<n$ regressors with a greater determinant of correlation matrix than the one of the original regressors. In this way the subset regression is a method to reduce the degree of multicollinearity and therefore to improve the estimate \widehat{B}.

With problems like this have among others alse delt Oliker [1978], Akaike [1970, 1973, 1974, 1977, 1978], Bierens [1980], Mallows [1973], Hooking [1976], Shibata [1981].

4. DBTERMIMATION OF THB DIMENSION

In this section we study the subset regression for the linear model with stochastic regressors (2.1) with $Z \in N V_{n+1}$. Buppose that we select the regressors $X_{k_{1}}, \ldots, X_{k_{m}} ; 1 \leqslant m \& n$, and remove the regressors $x_{h_{1}}, \ldots, x_{h_{n-m}}$ and put $k=\left(k_{1}, \ldots, k_{m}\right), k_{1}<\ldots<k_{m}$ and $h=\left(h_{1}, \ldots, h_{n-m}\right), h_{1}<\cdots<h_{n-m}$. Moreover, we eet
$X(k)=\left(X_{\mathbf{k}_{1}}, \ldots, X_{\mathbf{k}_{m}}\right), B(k)=\left(B_{\mathbf{k}_{1}}, \ldots, B_{\mathbf{k}_{m}}\right)^{T}$.
Then the model (2.1) can be written as

$$
\begin{equation*}
Y=X(k) \mathbb{B}(k)+X(h) \mathbb{B}(h)+\varepsilon . \tag{1}
\end{equation*}
$$

Taking a sample of size $N>n$ we denote its result by

$$
z=(\mathbf{Y}, \Psi(k), \dot{Y}(h) ;
$$

hence we have

$$
\begin{equation*}
Y=\mathbb{Z}(k) \mathbb{B}(k)+\mathbb{Z}(h) \mathbb{B}(h)+\notin \tag{2}
\end{equation*}
$$

The main object of regression analysis is to extrapolate $Y(B)$ by a random vector $X(B)$ which is independent of X and $Z(B)$ and each row of z are identically distributed. As above the restriction of $X(B)$ to the variables k is denoted by $X(B, k)$.

The maximum likelihood extrapolation of the future observation on $Y(B)$ at $X(B)$ is given by
$\hat{Y}(B, k)=X(B, k) \hat{B}(k)$.
For fixed k and h the covariance matrix $\Sigma_{X X}$ is partitioned as
$\Sigma_{X X}=\left(\begin{array}{ll}\Sigma_{k k} & \Sigma_{k h} \\ \Sigma_{h k} & \Sigma_{h h}\end{array}\right)$
where $\sum_{k k} 18 m x m$ and $\sum_{h h}$ is $(n-m) x(n-m)$.

For simplicity put

$$
\begin{aligned}
& \Sigma_{h h / k}=\Sigma_{h h}-\Sigma_{h k} \sum_{k k}^{-1} \Sigma_{k h} \\
& B_{h / k}=\Sigma_{k k}^{-1} \Sigma_{k h} .
\end{aligned}
$$

Theorem 3: If $\mathrm{H}>\mathrm{n}+1$ then

$$
\begin{aligned}
& \left.E[(Y)-\hat{Y}(B, k))^{2} / X(k), X(B, k)\right] \\
& =X(B, k)\left(X(k)^{T} Y(k)\right)^{-1} X^{T}(B, k)\left[B(h)^{T} \sum_{h h / k} B(h)+\sigma_{Y / X}^{2}\right]+\sigma_{Y / X}^{2}
\end{aligned}
$$

and

$$
\begin{equation*}
B(Y(B)-\hat{Y}(B, k))^{2}=\left(1+\frac{B}{H-m-1}\right)\left[\sigma_{Y / X^{2}}^{2} B(h)^{T} \sum_{h h / k} B(h)\right] \tag{4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{I \rightarrow \infty}(Y(B)-\hat{Y}(B, k))^{2}=B(h)^{T} \sum_{h h / k} B(h)+\sigma_{Y / X}^{2} \tag{4'}
\end{equation*}
$$

Proof: Prom (1) and (2) we conclude
$Y(B)-\hat{Y}(B, k)=X(B, k) B(h)+\varepsilon-X(B, k) X^{+}(k) X(h) B(h)$
$-X(E, k) Y^{+}(k) \&$.
As $X(B)$ and E, \& and E, as well an $X(B)$ and E are independent we then obtain
$E\left[(X(B)-\hat{Y}(B, k))^{2} / X, X(B)\right]$
$=B(h)^{T} X(B, h)^{T} X(B, h) B(h)+\sigma_{Y / X}^{2}\left(1+X(B, k)\left(Z(k)^{T} Y(k)\right)^{-1} X(B, k)^{T}\right)$
$+(\boldsymbol{K}(h) B(h))^{T}\left(X(B, k) \not Z(k)^{+}\right)^{T}\left(X(B, k) \not Z(k)^{+}\right)(X(h) B(h))$
$-2 B(h)^{T} X(B, h)^{T} X(B, h) X(k)^{+} X(h) B(h)$
$=: I_{1}+I_{2}+I_{3}-2 I_{4}$.
Prom the usual normal theory we can derive the following conditionanal expectations:

$$
\begin{align*}
& B\left[X(B, h)^{T} X(B, h) \mid X(B ; k)\right]=\sum_{h h / k}+B_{h}^{T} X(B, k) T_{X(B, k)} B_{n / k} \tag{6}\\
& B[X(B, h) \mid X(B, k)]=X(B, k) B_{h / k} \tag{7}\\
& B[Y(h) \mid Y(k)]=Y(k) B_{h / k} \tag{8}
\end{align*}
$$

and

$-B(h)^{T} \sum_{h h / k} B(h) I_{N}+X(k) B(h) B(h)^{T} \nVdash(k)^{T}$.
How we are able to study the conditional expectation of I_{1}, I_{3}
and I_{4} under $\not \subset(k)$ and $X(B, k)$. By virtue of (6) we get

$$
\begin{align*}
E\left[I_{1} / X(B, k)\right] & =\left[B(h)^{T} \mathbb{B}_{h / k} T^{T} X(B, k)^{T} X(B, k) \mathbb{B}_{h / k} \mathbb{I B (h)}\right. \\
& +\mathbb{B}(h)^{T} \sum_{h h / k} \mathbb{B (h)} . \tag{10}
\end{align*}
$$

Note that
$B\left[I_{4} / \not \subset(k), X(B, k)\right]=\mathbb{B}(h)^{T} E[X(B, h) / X(B, k)]$

$$
X(B, k) \not Z(k)^{+} B[X(h) / X(k)] \mid B(h) \text {. }
$$

In acoording to (7) and (8) we derive
$B\left[I_{4} \mid X(k), X(B, k)\right]=\mid B(h)^{T} \mathcal{B}_{h / k}^{T} X(B, k)^{T} X(B, k) B_{n / k} B(h)$
Finally using (9) we see
$E\left[I_{3} \mid \Psi(k)\right]=E\left[\operatorname{tr}\left\{X(B, k) \not Z(k)^{+}\right\}^{T}\left\{X(B, k) \not Z(k)^{+}\right\}\right.$.

$$
\left.\mathbb{Z}(h) \mathbb{B}(h) \mathbb{B}(h)^{T} \mathbb{Z}(h)^{T} / \Psi(k)\right]
$$

$=X(B, k)\left(\mathbb{Y}(k)^{T} Z(k)\right)^{-1} X(B, k)^{T} \mathbb{B}(h)^{T} \sum_{h h / k} \mathbb{B}(h)$
$+B(h) B_{h / k}^{T} X(B, k)^{T} X(E, k) B_{h / k} B(h)$.
From (5), (10), (11), (12) the statement (3) follows immediately.
Now we show (4). Using remark 1 we conclude

$$
B\left[X(B, k)\left(\not Z(k)^{T} \mathbb{Z}(k)\right)^{-1} X^{T}(B, k)\right]=\frac{m}{N-m-1} \text { and statement }
$$

(4) follows.

Next we give the expeoted extrapolation error if all n regressors are applied in regression.

Corollary 1: If $N>n+1$ then
$B\left[(Y(B)-\hat{Y}(B, n))^{2} / X, X(E)\right]$
$=\sigma_{Y / X}^{2}\left[1+X(B)\left(X^{T} X\right)^{-1} X(B)^{T}\right]$
and
$E(Y(E)-\hat{Y}(E, \hbar))^{2}=\sigma_{Y / X}^{2}\left(1+\frac{n}{N-n-1}\right)$.
In order to consider a sequence of Inear models with stochastic regressors we start with a sequence $\left(X_{j}, j \in \mathbb{N}\right)$ of regressors and suppose that we select from it m, namely $X(k)=\left(X_{k_{1}}, \ldots, X_{k_{m}}\right)$ with $k=\left(k_{1}, \ldots, k_{i a}\right)$ and $m>1$. As before we assume $Z(k)=(Y, X(k)) \in N V_{m+1}$ and

$$
\begin{equation*}
Y=X(k) \mathbb{B}(k)+\varepsilon(k) \tag{15}
\end{equation*}
$$

with $\mathbb{B}(k)=\left(B_{k_{1}}, \ldots, B_{k_{m}}\right)^{T} \in \mathbb{R}^{m}$.
In other words we obtain this model by putting in (1) $B(h)=0$ and $n=\infty$. This means that the selection of regressors k is strongly connected with parameter B . Further put

$$
\sigma^{2}(k)=\sigma_{Y / X(k)}^{2}
$$

Taking a sample of size $N>n$ we denote its result by $Z(k)=(Y, Y(k))$, i.e. we have

$$
\begin{equation*}
Y /=X(k) \mathbb{B}(k)+\notin(k) . \tag{16}
\end{equation*}
$$

For an m x 1 random or not random vector c put

$$
\|C\|^{2}=C^{T} X(k)^{T} X(k)
$$

$\|C\|_{k}^{2}=C^{T} \Sigma(k) \quad C$.
Using remark 1 we get

$$
\begin{equation*}
E\|B-\hat{B}(k)\|^{2}=\|B-B(k)\|_{k}^{2}+\frac{m}{N-m-1} G^{2}(k)=: M(k, N) \tag{17}
\end{equation*}
$$

Obviously, for all selections $k,\|\mathbb{B}-\hat{B}(k)\|^{2}$ converges in probability to $\|B-I B(k)\|_{k}^{2}$ as $N \rightarrow \infty$. Now we show even that this is valid uniformly for all k from the set

$$
K_{m, N, \xi}=\left\{k: k_{m}<N^{\frac{1}{2}-\xi}\right\}
$$

where $0<\xi<\frac{1}{2}$.

Theorem 4: Por all $0<\tau<1$ we have
$\left.\lim _{N \rightarrow \infty} P\left\{\|B-\widehat{B}(k)\|^{2}>(1-\tau) M(k, N) \forall k \in K_{m, N}\right\}\right\}=1$
provided that for all N

$$
R_{N}:=\sup _{k \in K_{m, N_{1} \xi}} \frac{\|B-B(k)\|_{k}^{2}}{\sigma^{2}(k)}<\infty
$$

Por the proof of theorem 4 we need following result.
Lemma 1: Let X_{n}^{2} be a X^{2} random variable with n degrees of freedom.
Then for any $0<\eta<n$, we get

$$
\begin{equation*}
P_{n}(n-\eta):=P\left(x_{n}^{2}<n-\eta\right) \leq e^{\eta / 2}\left(1-\frac{\eta}{m}\right)^{\eta / 2} \tag{19}
\end{equation*}
$$

Proof: Using the moment generating function of X_{n}^{2} we see for $t \leq 0$

$$
\left.\begin{array}{rl}
(1-2 t)^{-\frac{n}{2}} & =\int_{0}^{\infty} e^{n x}{\underset{N}{n}}(d x) \\
& \geq \int_{0}^{n-\eta} e^{t x} P_{n}(d x) \\
& >e^{t(n-\eta)} P_{n}(n-\eta) ;
\end{array}\right\}
$$

For

$$
t=\frac{-q}{2(n-q)}
$$

the upper bound of the last inequality is minimal and (19) is established.
Proof of theorem 4: Obviously, we have

$$
\begin{aligned}
& a_{N}:=P\left(\|B-\hat{B}(k)\|^{2}<(1-\tau) M(k, N) \exists k \in K_{m, N, \xi}\right) \leq \\
& \leqq \sum_{k \in K_{m, N, \xi}}^{P\left(\|B-\hat{B}(k)\|^{2} \leq(1-\tau) M(k, N)\right) \leq} \\
& \leq \sum_{k \in K_{m, N}, \xi} P\left(\frac{\hat{B}(k)-B(k) \|^{2}}{\sigma^{2}(k)} \leq \frac{m}{N-m-1}-\frac{\tau M(k, N)}{\sigma^{2}(k)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { It is easy to see that }\|B(k)-\hat{B}(k)\|^{2} / \sigma^{2}(k) \text { is } \chi^{2} \text { distributed } \\
& \text { with } m \text { degrees of freedom. Hence, it follows } \\
& a_{N} \leq \sum_{k \in K_{m, N}^{\prime}, \xi} F_{m}\left(\frac{m}{N-m-1}-\tau \frac{M(k, N)}{\delta^{2}(k)}\right) \\
& \text { where } \\
& \quad K_{m, N, \xi}^{\prime}=\left\{k \in K_{m, N, \xi}: \frac{m}{N-m-1}-\tau \frac{M(k, N)}{\delta^{2}(k)}>0\right\} \text {. } \\
& \text { Applying now lemma } 1 \text { for } n=m \text { and } \\
& \eta=-\frac{m}{N-m-1}+\tau \frac{M(k, N)}{\delta^{2}(k)}+m= \\
& \quad=m\left(1-\frac{1-\tau}{N-m-1}\right)+\tau \frac{\| B-B(k) U_{k}^{2}}{\delta^{2}(k)}
\end{aligned}
$$

we see that for $k \in K_{m, N, \xi}^{\prime}$
$F_{m}\left(\frac{m}{N-m-1}-\tau \frac{M(k, N)}{\delta^{2}(k)}\right)$
$\leq e^{\eta / 2}\left(\frac{1-\tau}{N-m-1}-\tau \frac{\|B-B(k)\|_{k}^{2}}{m \delta^{2}(k)}\right)^{m / 2} \leq e^{\eta / 2}\left(\frac{1-\tau}{N-m-1}\right)^{\eta / 2}$.
So we obtain by definition of R_{N} and n
$a_{N} \leq\left(y_{m}\right) e^{\frac{1}{2}\left[m\left(1-\frac{1-\tau}{N-m-1}\right)+\tau_{R_{N}}\right]\left[\log \frac{1-\tau}{N-m-1}+1\right] .}$
As $V=N^{\frac{1}{2}-\xi}$ and $\log \frac{1-\tau}{N-m-1}+1<0$
for sufficiently large N, we see
$\left.a_{N} \leq \frac{1}{m!} e^{m \log v+\frac{1}{2}\left[m\left(1-\frac{1-\tau}{N-m_{1}-1}\right)\right.}\right][-\log N+1+\log (1-\tau)+0(1)]$
$\leq \frac{1}{m!} e^{\log N}\left[\frac{m}{2}-m \xi-\frac{1}{2} m\left(1-\frac{1-\tau}{N-m-1}\right)\right]+\frac{m}{2}\left(1-\frac{1-\tau}{N-m-1}\right)[1+$
$\log (1-\tau)+o(1)]$
$\leqslant \frac{1}{m!} N^{-m \xi+\frac{m}{2} \frac{1-\tau}{N-m-1}} e^{\frac{m}{2}\left(1-\frac{1-\tau}{N-m-1}\right)(1+\log (1-\tau)+o(1))=}$

```
= N ^ { - m \xi + o ( 1 ) } \cdot \sigma ( 1 ) = o ( 1 )
and the statement is shown.
```

Acknowledgements

This paper was a lecture on the third Prague conference on asymptotic statistics. The authors thank for discussion and for the helpful comments of the reviewers of the CMUC.

REFERENCES

Andel, J. (1982): Fitting models in time series analysis, Math. Operationsforsch, Statist., Ser. Statistics Vol.13,No.1,121-143

Akaike, H. (1970): Statistical predictor identification, Ann. Inst. Statist. Math。 22, 203-217

Akaike, H. (1973): Information theory and an extension of the $m 1$ principle in end Int. Symposium on Information Theory, Eds. Petrov, Csáki. 267-281 Budapest; Akademiai Kiad6

Akaike, H. (1974): A new look at the statistical model identification. I.E.E.E. Trans. Auto Control. 19, 716-723

Akaike, H. (1977): On entropy maximation principle, Application of statistics. P.P. Krishnaiah ed. North Holland, Amsterdam 27-41

Akaike, H. (1978): A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Statist. Math. A30, 9-14

Bierens, H.J. (1980): Consistent selection of explanatory variable, Stichting voor Economisch Onderzoek der Universiteit van Amsterdam, Seo Overdruck 1

Eaton, M.L. and Perleman (1973): The nonsingularity of generalized sample covariance matrices, The Annals of Statistics Vol. 1 No. 4, 710-717

```
Hocking, R.R. (1976): The analysis and selection of variables in
    linear regression. Biometrics 62, 1-49
Jahn,W. (1984); Dimensionserniedrigung von Parameterräumen im
        linearen Modell mit stochastischen Regressoren. To appear
        in: Sitzungsberichte der IGMS der Math. Gesellschaft der DDR
Kshirsagar, A.M. (1972): Multivariate Analysis, Marcel Dekker,
        New York
Mallows, C.L. (1973): Some comments on Cp, Technometrics 15,
        213-220.
Okamoto, M. (1973): Distinctness of the eigenvalues of a quadra-
        tic form in a multivariate sample, The Annals of Statistics
        Vol. 1, No 4, 763-765
0likwe, V.I. (1978): On the relationship between the sample size
        and the number of variables in a linear ragression model,
        Commun. Statist. AT(6), 509-516
Park and H. Sing (1981): Collinearity and opt. restriction on re-
        gression parameters for estimating responses, Technometrics
        23, 3, 289-295
Schwarz, G. (1978): Estimating the dimension of a model, The An-
        nals of Statistics Vol.6 ,No 2, 461-464
Shibata, R. (1980): Asymptotically efficient selection of the order
        of the model for estimating parameters of a lin. process,
        The Annals of Statistics Vol. 8 No 1, 45-54
Shibata, R. (1981): An optimal selection of regression variables
        Biometrika 68, 1, 45-54
Stein, C.M. (1969): Multivariate Analysis I, Technical report No 42,
        Dep. of Statist., Stanford University
Stone, M. (1979): Comments on model selection criteria of Akaike
        and Schwarz, J.R. Statist. Soc. B 41; 276-278
Sugiura, N. (1978): Further analysis of the data by Akaike
        Commun. Statist. A 7, 13-26
Karl-Marx-University Leipzig, Department of Mathematics, 701
Leipzig, Karl-Marx-Platz 10
                            (Oblatum 15.2. 1984)
```

