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REDUCTION OF THE DIMENSION IN THE LINEAR MODEL 
WITH STOCHASTIC REGRESSORS 

W. JAHN and M. RIEDEL 

ABSTRACT: First of all we introduce the linear model with sto-
ohastic regressors. The estimates of the parameter B and GyfX 

of this model are influenced by multioollinearity. As one of the 
possibilities to reduce the degree of multioollinearity subset re
gression is proposed. As a criteria for the selection of a model for 
the best extrapolation we use the mean square error of extrapola
tion. Some important properties of the estimates of the ••looted 
model will be shown. 

KEY WORDS: Linear model with stochastic regressors, multioolline
arity, mean square error of extrapolation, subset regression. 

ANS: 62 J 99 

1. INTRODUCTION 

First of all we will give a short introduction to the linear model 

with stochastic regressors. It will be shown that the estimates for 

the parameters of this model such as the vector of regression co

efficients and the conditional variance possess the usual proper

ties as unbiasedness and consistenoy. In this model the multioolli

nearity plays an important role. Its effect on the estimates Is 

also shortly demonstrated and by an example illustrated. To oorreot 

the estimates from this effect it is necessary to reduce the degree 

of multioollinearity. One of the possibilities for this is the sub

set regression whioh can be considered as a kind of the reduction 

of the dimension of the parameter apace. As a criteria for the se

lection of a model for the best extrapolation of the regresaand 

by all or a subset of the regressands we use the mean square error 

of extrapolation which will be stated in theorem 3- For all se

lections k we show that || IB - B(k)// converges uniformly for all k 

from a certain set K to [P - 6(k)f • 
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2. THE LINEAR MODEL WITH STOCHASTIC REGRBSSORS 

Consider an 1 x (n+1) random vector Z with the expectation /U. and 

the oovarianoe matrix 21 . Z, u and XT are partitioned as 

Z - (Y, X), u - (uY, ux) 

K S.x | w E 

\ X Y XX 

where Y and uY are 1 x 1, X and ux are 1 x n, and I «« is n x n. 

The problem is to determine the regressand Y by the regressors 

X. For convenience we will let I? . denote the class of 1x(n+1) 

random vectors Z having the N ..(0,-C) distribution with positive 

definite matrices T. . It is well known that for Z € NV 1 

B(Y/X) - X E " 1 GT V -: X B 

and X X 

var (Y/X) - *2 - ^ X T ~x S - Y «
: S*/X • 

Moreover, the random variable £ :• Y - XB and the 1 x n random 
2 

vector X are independent and C ^ N ^ O , ^Y/X.)* In other words^X 

and C determine Y in a linear manner, as 

Y - X B + C . (1) 

In order to obtain the maximum likelihood estimators of B and 
2 

^Y/X ** i s n o* necessary to restrict ourjBelves to normally dis
tributed regressors. Therefore^we introduce a generalized para
metric family F Instead of NV. 

As suggested by (1),we now consider random vectors Z which are 

defined by X and £ according to 

Z - (X B +e, X) « (Y,X) 

Let F be the class of 1 x (n*l) random vectors Z possessing 

following properties: 

(i) X and € are independent 

(ii) £~N(0,S2) for some 6 2 7 0 

(iii) X ~ G . for some &e. €> , where 

§ « { G* : i^e 0 j is an arbitrary family of distribu-
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tions on JR with the parametric spaoe 0 and positive 
definite oovariance matrioes *~YY-

Note that NVn+1 e P iff N n(0, 7Zxx) 6 ft for all -£xx. 

Purther suppose that for all *&"G © there exists a density # ^ 
of G^ and denote the density of N,.(0, 6 ) by f a, . Then the density 
of Z with the parameter ( B,6 ,n?" ) is given by 

f(y,*) - S^Cx) fg*(y - x B) (2) 

where, as before X is a row vector and P i s a oolumn vector. 

Estimating fi and 5 we take a sample of size Hvn of Z and de
note it by 

ar - (v , *) 

where the results of the i-th trial Z, « (Y.,X.) are written in 
the i-th row of E. 

Obviously, from (1) we get the representation 

V - JIB •• £ (1») 

with N x 1 random vector C^NgCO, 6aI„) where I™ is the N x N iden
tity matrix. Using now (2) we get the logarithmic likelihood func
tion 

o N N 
1 ( IB,^,#-; n ) - 21 log f , ( y . - x . ! B ) + £T log g (x.) 

i-1 6 * * i»1 -> * 

-: 11 ( IB,6-
X; a) + l^tf-J * ) . 

By the property (ii) of F we obtain 

1. »,**;») IT- (y - * ffi)T(y - * B) + | log (2^**). 
1 26 * 

A result of Okamoto f l 9 7 3 j yields that for a l l <S~ £ (9 

G^/ |yT*/>0 J . 1; 

here /A | denotes the determinant of a matrix 1A. Henoe, there 
exist the maximum likelihood estimates IB of IB and 0 of b and they 
have a similar structure as in the linear model (with non-random 
regressors). 

749 -



Hote that 

m - or**)-1 j* * «:r+ y 

where y+ is the Moore-Penroae inverse of .?. As in the classical 

case instead of <5 we use the estimate 

s2 . Ifca 2*-jfL-i v- *m)Tttr- * ) 

rfi)"1 • ,-Jrr E " <?> 

whioh is unbiased (see theorem 1). 

The following theorem gives some properties of the estimators 

til and S . 

Theorem 1: For Z € ? we take a sample of sise H>n. Suppose 

that the expeotation of (Ĵ -f)"" exists then 

B (0/?) - B (4) 
oov ($/y) » G x (yT .rr 1 (5) 
and 

B(S 2 / . f ) - €** (6) 

In particular, A3 and S are unbiased. 

Remark 1: If Z € iflL^ then the n x n random matrix ¥ X from a 
n*r 1 m * 

sample of size H and the expeotation of (-f f) exists if H > n+1; 

moreover (see Kshirsagar iC 1972.7) 

XX 

Proof: Clearly 

**C?)T - (.fTlr)"1 

and the existence of the expeotation of (If -f)~ implies the 

existence of the expectation of If . Using (11) and (ii) of * we 

oonolude 

B <$/?) « B( ® + Tftlf) » IB ; i.e. (4). 

Further we need a result for conditional expectations of random 

matrices. Let A, be u. x v, random matrices for j-1,2,3,4 and 

8 up pose that A., and A.-, are measurable with respeot to the fT-al-

gebra generated by A* and v.. « Up, v2 « u-,. 

Then 

B(A1 A2 kjkj « /A1 B(A2/A4) Aa (8) 
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provided that the expectation of A« e x i s t s . 
It i s easy to see that 

(ffi - ffi) (B - ffi)T « T?t f T ( J * ) 7 . (9) 

Using now (3) and (8). With A 1 - & 3 - **, A g - € % T , A 4 - X the 

statement (3) is an immediate consequence. Putting 

» -- iN - n + 

we can write 

(N-n) S2 «$ TfMC« tr(M«£T). 

Applying again (8) with A,. »JM, Ag « £ £ , A- • I- and A^ • I we 

get 

(N-n) N(S2/y) - tr ( IK B(f C T/I) - (N^n)***-

as M is idempotent and (6) is established. For our next purpose 

the maximum likelihood estimate of ffi of a sample of sise N is 

written as ffiv"'. 

Theorem 2: For Z*NV . we take a sample of sise N. 
WN)t 

Then the sequence of estimatesflr Jis consistent to 6. 

Proof: From theorem 1 and remark 1 the estimates ©^ ' are unbiased. 

Then for the consistence of {& \ it suffices to show that 

lim trfcov ( B W ) } - 0. (10) 
i\-*>oo 

From theorem 1 and (7) it follows 

hence (10) is valid. 

3. MULTICOLLINEARITY AND ITS CONSBQUBNCBS 

As a measure of the dependenoe of the regressors X we use the de

terminant of the correlation matrix fR«w of X, namely, the regressors 

X are said to be multicollinear of degree S , 1 * 4 " , if 

lmxxl 
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In application there are no possibilities giving a* bound S0 for 

the degree of multioollinearity in suoh a way that for <T£.f0 

the properties of the estimate to are scarcely influenced by the 

multioollinearity but for tT«^ this estimate ia not useful. The 

only way to study the effect of f is to investigate its influence 

on the estimate. From theorem 1 we see that oov (IB) depends on 

the degree of multioollinearity. Note that also the statistics t, 

for testing the hypothesis H : B. • 0 are dependent of f . The 

larger the degree of multioollinearity the smaller are t.. 

The complicated dependence also of parameters like ̂ v/X °* ̂ n e 

multioollinearity is now studied in the following simple example. 

Example: Consider Z€NV with n • 2 and var (Y) • var (X1) -

var (X2 ) - 1 . Then 

2- - [ *21 

\ *Э1 

»12 

1 

Ç 3 2 

Ç13 

^23 

1 

P & —1 

and X « (X1 ,Xg) is multloolllnear of degree & if £23 * — jr~ 

In this case it follows for S\S) • 6 . 

«2«f> 

(?? 2 + ??3><r - 2 912 ?13Vo3iV if ?23..o 

cause 71 is positive definite we have -? 1 2^ 1» S^^l and Be 

>23 

with a,b - f12 ? 1 3 ± \( 1 - ?^2 - ?^3 + ? 1 3 9 

Only for ? 1 2 - ? 1 3 we get b » 1. Further, put 

—-W- for a 2:0 
1-a* 

1 for a < 0 
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and 

в • 
1-Ь' - -

3 

OO for §
12
-» f

1 3 

It is easy to see that 

{0 for a> o 

1 - < « ? ? - + 

б*(A + ) 

й
2 

( ? 1 2 + ? 1 3 > * ° r a < : o 
and 

. r ° f o r ft? * ? 
6

J
( B - ) - i *

1 2
 13 

1 1-f?
2
 for f

1 2
 -

 ?13 

In order to study the behaviour of 6 (<-»*) we have to distinguish 

three cases: (i) a *0, (ii) b£0, (iii) a-^O-^b. 

As the transformation ?12 » - ?12, <P13 » f13» $> « - <?2j i s in~ 

variant for €«*- we only have to consider the case a aiO or a«.0<b 

and $2.3 "7.0. Then the function £**( <f) is monotonously increasing in 
(A,<Q) and monotonously decreasing in ( ̂ , B) where 

max (f^ g > §*3) 

" 1 2 - ^ 1 3 / 
^ " f ,fl2 д

2
?
,
 f 0 Г

 ?12 *
 f
13 

The function 6*( c£ )re aches its maximum 1- max ( 9 *o> -?1**) a^ "̂ • 

This example shows that Gviv depends on the degree of multicolli-

nearity as well as on the correlation structure. If fVy?» goes 

to one then <f0 tends to infinity and consequently, high degree of 

multioollinearity may be combined with great ^v)X * 

A sequence of simulation examples of more complicated structure 

have shown us the same effect, see Jahn / l 9 8 4 j . 

Prom these examples we get the intention that the mean square 

error of the extrapolation of the regressand by n regressors 

would be reduced using only m 4 n regressors with a greater deter

minant of correlation matrix than the one of the original re

gressors. In this way the subset regression is a method to re

duce the degree of multioollinearity and therefore to improve 

the estimate B. 
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With problems like this have among others alee delt Oliker 

119783, Akaike [1970, 1973, 1974, 1977, 19783 , Bierens fl980j, 

Mallowe £l973j , Hooking £1976} , Shibata £1981J . 

4. DETERMINATION OF THB DIMENSION 

In this section we study the subset regression for the linear mo

del with stochastio regressors (2.1) with Zt-KY 4. 8uppose that 

we select the regressors Xv , ...,X, ; U n - n , and remove the re-
*1 *m 

gressors X, ,...,X. and put k « (kj,...»*-)> k. 4 ... /k and 
1 n—m 

h • (hj,...,h ), h..^....<h . Moreover, we set 

X(k) - (Xk ,...,Xk ), B(k) - (Bk , . . . t \ )T. 
1 m 1 m 

Then the model (2.1) oan be written as 

Y - X(k) B(k) + X(h) ©(h) + £ . (1) 

Taking a sample of size N > n we denote its result by 

* - ( It , y(k), *(h) ; 

henee we hare 

K - .f(k) ffl(k) • -f(h) B(h) + € . (2) 

The main object of regression analysis is to extrapolate T(B) 

by a random vector X(E) whloh is independent of Jf and Z(B) 

and eaoh row of 9 are identically distributed. As above the re

striction of X(B) to the variables k is denoted by X(B,k). 

The maximum likelihood extrapolation of the future observation 

on Y(B) at X(B) is given by 

? (B,k) - X(B,k) (k). 

For fixed k and h the covariance matrix ---"„- is partitioned as 

/X. 2-*.̂  
/ kk kh 

XX •L ŁҺҺ 

where TT Is m x m and 2-
 v v
 is (n-m) x (n-m). 

kk
 h h 
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For oimplioity put 

2 1 hhA - ^hh ~ S i k ^ k ^kh 

" / * kk kh 

Thooroa 3* If I7B+I thon 

Bf(T(B) - f (B,k))2/ I(k), X(B,k)J 

- X(B,k)(f(k)T f(k))*"1XT(B,k)f B(h)T 2Thh/k P(h)+ *Y/X-*
+ 6T/X 

and 

B (T(B) - T(B,k))2 - ( 1 • - ^ . r )[^/x+ *<*>T^hh/k B(h)J (4) 

In partioular, 

lim 1 (T(B) - ?(B,k))2 - ®(h)TZThh/k ©(h) + 6*/x (-*•) 

Proof: Prom (1) and (2) wo oonelude 

T(B) - T(B,k) - X(B,k) B(h) + £- X(B,k).¥+(k) Kh) /B(h) 

- X(B,k) .f*(k)C. 

As X(B) and £ , $ and £ , as well as X(B) and C are independent 
wo thon obtain 

B f(T(B) - T(B,k))2/ y,X(B)j 

- B(h)TX(B,h)TX(B,h)fi(h)+^/x(l • X(B ,k ) («k ) T . r (k ) r 1 X(B,k ) T ) 

• (Kh) B(h)jT(X(B,k) .?(k)+)T(X(B,k) Kk)+)( Kh) ©(h)) 

- 2 B(h)TX(B,h)TX(B,h) f(k)+ 1(h) ffl(h) (5) 

-1 1^ + I2 + I.j - 21^ , 

Prom the usual normal theory wo can derive the following cond i t i o 
nal expectat ion*: 

Bfx(B,h)TX(B,h)/x(B",k)J - 2 I h h / k • BT
 kX(B,k)TX(B,k) © n / k (6) 

B[X(B,h)/X(B,k)J - X(B,k) © ^ (7) 

B £ K h ) / K k ) ] - K k ) B h / k (8) 
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audi 

B[>(h) ©(h) ©(h)T 3?(h)T/ *(k)J 

. »(h)T r h h / k /B(h) IK -v ?(k) ©(h) /B(h)
TKk)T . (9) 

lew wt are able to study the conditional expectation of I-pIo 

amd 1^ mnder .f(k) and X(E,k). By virtue of (6) we get 

M[lJX(*tk)J « /B(h)T ffih/k
T X(E,k)T X(E,k) © ^ ©(h) 

+ B ( h > T 2 T h n i k ©(h) • 0<>) 

Note that 

B[l i f /^(k) ,X(B,k)J - /B(h)T E[X(B,h)/X(E,k)J 

•X(B,k) _?(k)+ E£y(h)/.f(k)JlB(h) . 

In according to (7) and (8) we derive 

B[l 4 / . f (k) ,X(B f k)J - /B(h)T /Bj.T X(B,k)T X(B,k) /Bn/k/B(h) (11) 

Finally using (9) we see 

B f l 3 / f ( k ) J -« B [ t r / x ( E , k ) y (k) + } T {X(B,k) y(k)+J . 

•¥(h) ©(h) )B(h)T -?(h)T/ y(k) J 

» x(B,k) (y (k) T ?(k )T 1 x(E,k)T f B ( h ) T 2 : h h / k a ( h ) 

+ /B(h) © h / k
T X(B,k)T X(B,k) IBh/k ©(h) . (12) 

From (5) , (10), (11), (12) the statement (3) follows immediately. 

Now we show (-*). Using remark 1 we conclude 

B[x(E,k) (*(k)T .^(k))"1 XT(B,k)J - jfliTT a n d s t a t e m e n t 

(-0 fol lows. 
Next we give the expeoted extrapolation error i£ all n re-

gressors are applied in regression. 

Corollary 1: If N> n+1 then 

B [(Y(E) - Y(E,n))2/ *, X(E)J 

" ^Y/X t1 + ^(BX^W" 1 X(B)TJ 
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and 

E (Y(E) - Y(E,h))2 « ̂ / x (1 + -j^—p ) . (14) 

In order to consider a sequence of linear models with stochastic 

regressors we start with a sequence (X., j6 IN) of regressors and 

suppose that we select from it m,narely X(k) « (X, ,...,X, ) with 
1 m 

k « (k.,...,k ) and n ?1. As before we assume Z(k) ~ (Y,X(k))^NV + 

and 

Y - X(k) ffl(k) + £(k) (15) 

with ©(k) - (Bk ,...,Bk )Temm . 
1 m 

In other words we obtain this model by putting in (1) /B(h) • 0 and 

n » OD . This means that the selection of regressors k is strongly 

connected with parameter /B. Further put 

Taking a sample of size N?n we denote its result by 2Xk) == (¥,Xtk)), 

i.e. we have 

Y( - y(k) B(k) + #(k). (16) 

For an m x 1 random or no t random v e c t o r c put 

i/C//2 * CT # (k) T )? (k) C 

l/C f - CT Z . ( k ) C . 
k 

Using remark 1 we g e t 
2 

E I B-i(k)J*« | IB - B(k) J + J~T ^X(k) = : M(k'N)* ( 1 7 ) 

Obviously, for all selections k, | ffi - &(k)l converges in proba

bility to I IB - /B(k)//*as N — 7 co . Now we show even that this is 

valid uniformly for all k from the set 

K_„ „ - / k : k^N } 

where 0 <c ̂  ̂  ^ 
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Theorem 4 : Por a l l O z i - 1 we have 

lim P {8© - f ( k ) U*>(1 - T ) I(k fI)*k*:c nkl mi 

provided that for all N 

II IB -B(k)l£ 
RN :« aup — £ oo 

k'Km,N,f 6tk) 

Por the proof of theorem 4 we need following result. 
Lemma 1: Let^f be a p(2random variable with n degrees of freedom. 

Then for any Oz.^ z. n , we get 

F.Jn-tf ) :- H X** n -? ) L e (1 - £ ) (19) 
n *> n * /•* 

2 Proof: Using the moment generating function of pi we see for t £0 

(1 - 2t) 2 « | e t x F(dx) 
o  

Z. J e t x FjdxJ 
0 

7 e
t(n-*> F%(n -t ) ! 

i.e. F f t ( n - Z ) . i e - t ( n - ' , ? ) ( i . 2 t ) - n l 2 

Por v 
4 • 2(n-<- ) 

the upper bound of the last inequality is minimal and (19) is 
established. 
Proof of theorem 4: Obviously, we have 

aN :« HlB -il(k)|^(1-/t)M(k,N)3k6KmN ^) 4* 

*k7k P(,B - f t - O f e d - * )M(k,N)) «-
m,N,J 

* ^ P ( gfe(k) -B(k)if „ m _ rM(k.N) } 
k*Km,N,f 0*(k) ~N-m-1 ^ ( k ) 
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It is easy to see that |B(k) - 6(k)l| / d ( k ) is X* distributed 

vith m degrees of freedom.Hence, it follova 

* . * ^ F » ( l r f - 1 " **$& > 
k C K » . H , J 

vhere 

<,,*,*« (k-K
B.H.f =¥^T - T 2 ^ - t f l > o i • 

Applying nov lemma 1 for n • m and 

* --H=i-T+ ^-%f{ + » -

ve see that for k € K - c »»N, J 

w ( m - 7- M(*»y? \ Fm l N-m-1 r <r*(k) ' 

^ e 1/2 , 1-T . r KB - BU)-< ,«/2 ̂  et/2( 1-T ̂ /2 
~ e l N-m-1 T m <f1(k) ' ^ e lN-m-l' 

So ve obtain by definition of F« and n 

a„ * ф .40-c - Ӣ ^ ) + Г R H ^ - l 0 * т f e + 'J 

1-ř i-t 
As V » N x l and log ^m-} * 1 ^ ° 

for sufficiently large N, ve see 

1-T 
i log v + jum i " I 

aN = m! 

. 1 m l o g V + -£(>( 1 - M 1 " ^ ) ? [ ~ 1 0 « H • 1 • log( 1-T) +o( 1) ] 
N "~ m! 

m! 

l o g ( l - T ) • o (1 )J ^ 

л l f - - « + І Ӣ ^ Г | - ( I - Ӣ ^ ) ( 1 + 1°«И-^) + < > ( ' ) ) 
~ m! N Є 
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-mÇ +0(1) 
N .tf(l) • o(i; 

and the statement is shovn. 
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