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ASYMPTOTIC BEHAVIOUR IN TIME OF SOLUTIONS TO SOME 
EQUATIONS GENERALIZING THE KORTEWEG-DE VRIES-BURGERS 

EQUATION 
Piotr BILER 

Abstract; We summarize the results of a more detailed pa
per concerning the decay estimates for the solutions to equa
tions describing the propagation of nonlinear waves which ge
neralize the Korteweg-de Vries and Burgers equation. 

Key words; Generalized Korteweg-de Vries and Burgers e-
quation, propagation of nonlinear wavesf decay in time of so
lutions. 

Classification; 35Q20, 35B40 

J.C. Saut has considered in [2] a class of model equations 

describing propagation of nonlinear waves which generalize the 

Korteweg-de Vries and Burgers equations. He has proved several 

theorems on the existence, uniqueness and regularity of solu

tions of the Cauchy problem for equations of the type 

u + +.£ . i£r- [f(tfu) + cTH(xfu)J + e Bu » g 
» M s. i ^ X i 

where x £ lRnf u « u(x,t) is a real function, Hf B are the (re

al) pseudodifferential operators describing dispersive and dis-

sipative properties of the medium and f is a polynomially 

bounded function of u. 

We prove, using the ideas of the papers 131f143f some 

This paper was presented in written form on the International 
Spring School on Evolution Equations, Dobfichovice by Prague, 
May 21-25, 1984. 
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theorems on the decay in time of the solutions (in Lp norms) 

to one-dimensional equations of more special structure 

(*) ut + f(u)x + cT(Hu)x + &D
su - 0 

where Dsu(x) - / If lstl(§ )***$ df f s e E
+
f 

Hu(x) a J p(P )^(f ) • * &§ with an even .positive symbol p %i 

polynomial growth. 

In the proofs we use energy inequalities for (*) f inter* 

polation of Sobolev spaces and elementary properties of the 

fundamental solution of the linearized equation. 

Theorem 1. (0^4* 0f & . > 0 ; dispersion and dissipation 

effects are included) 

a) If tf ' ( u ) l . 4 C ( l u l p + 1) for some p<2(s-1)f s£2 f uQ6 Hs
f 

then lira lu(t)l - 0. 

b) The optimal decay rate (identical as for the linearized 

equation) is obtained assuming that f is sufficiently flat 

at the origin: 

If also If '(uH-^clul^ for some q^2a + 1 in a neighbour

hood of 0 and u € L f then 

luCtM^. 0((1+tr1/s) and lu(t)l2 . 0((1+t)""
1/2s). 

Theorem 2. ( €r > 0, d"*- 0; pure dissipative case) 

a) The assumption in Th. 1a) plus u 6 L implies that 

lu(t)i2 . 0((1+t)"
1/2d). 

b) If If " (u) l*C(u l q for some q £ 2 s - 1 and small | u l f then 

l u C t ) ! ^ . 0 ( ( 1 + t ) " 1 / s ) . 

The pure dispersion case (fc» 0 f cf+> 0) leads to energe

t i c a l l y neutral equations: lu(t)l 2 =» const. They can have spe

c i a l wave-like so lu t ions - so l i tons - which do not decay when 
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t tends to infinity. Since now it is more difficult to esti

mate the fundamental solution of the linearized equation, we 

restrict our attention to the case of homogeneous symbols 

p(C ) = If I , r>3» and we consider only small solutions 

of ( # ) (with initial conditions small enough to do not sup

port the solitons). 

Theorem 3. 

a) If If '(u)l £ C|ul q , q > r + 1 in a neighbourhood of u * 0 

and lu I-j + ^ u
0 ^ ( r « i ) / 2 i s s r a a 1 1 * n e n 

l u C t ) ! ^ - 0((1 + | t | ) " 1 / r ) for It l—> oo. 

b) A better (than obtained by a simple interpolation) resul t 

on the decay of L^ norms of the solution i s : 

If q > ( r + (r 2 + 4 r ) 1 / 2 ) / 2 then 

l u ( t ) l 2 ( q + 1 ) - 0 ( ( 1 + t r ' l - l / ^ + l » / r ) . 

The space-periodic solutions of (;*. ) in the case of dissi

pation ( €, > 0) decay exponentially when t tends to infinity. 

Similarly as for the Navier-Stokes equations (cf. £11) the so

lutions are asymptotically equal to solutions of the lineariz

ed equation. Namely we can prove the following 

Theorem 4. 

a) If | f ' ( u ) U C( |u l p + t ul) for some p .<2(s -1 ) , s > 2 , then 

A - lira ( D s u ( t ) , u ( t ) ) / l u ( t ) l 2 e x i s t s and A « A ( u ) 

i s an eigenvalie of D s . 

Moreover 

b) If cf =. 0 then lim e£ A u(t ) e x i s t s and i t i s a non-zero 
t -> oo 

eigenfunction of Ds corresponding to A • 
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