Commentationes Mathematicae Universitatis Caroline

Mihai Turinici
 A fixed point result of Seghal-Smithson type

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 2, 221--232
Persistent URL: http://dml.cz/dmlcz/106361

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

$$
26,2 \text { (1985) }
$$

A FIXED POINT RESULT OF SEGHAL-SMITHSON TYPE Mihai TURINICI

Abstract

A maximality prinoiple due to the author is used to obtain a metrical generalization of a Sehgal-Smithson fixed point reault involving multivalued mappings.

Key words: Fixed point, multivalued mapping, maximal element, contractivity condition, cluater point, inward set.

Classification: 54 H25

Let (X, d) be a complete metric apace. Indicating by 2^{X} the femily of all nonempty subsets of X and by $C(X)$ the class of all compact Y in 2^{X}, let $d(\cdot, Y)$ stand for the usual diatance function from the points of X to the element Y of 2^{X} and $p(Y)(0)$ the associated projection function from X to $Y \in C(X)$ given by

$$
p(Y)(x)=\{y \in Y ; d(X, Y)=d(x, y)\}, x \in X .
$$

Suppose Y is a nonempty subset of X and let the (multivalued)
mapping T from Y to $C(X)$ be given. After a terminology of Sehgal and Smithson [8] we shall say T is a weak directional contraction if a number k in $(0,1)$ may be found such that, for each $z \in Y$ there exists u in $p(T z)(z)$ with $D T(z, u)<k$, where

$$
\begin{aligned}
\operatorname{DT}(z, u) & =0 \text { if } z=u ; \infty \text { if } Y(z, u]=\emptyset \\
& =\inf H(T z, T w) / d(z, w) ; w \in Y(z, u) \quad, \text { if } Y(z, u) \neq \emptyset
\end{aligned}
$$

(H being the usual (generalized) Hausdorff métric on 2^{X} and $Y(z$, u] the subset of all $w \in Y$ distinct from $z w i t h$ the property $d(z, w)+d(w, u)=d(z, u))$ and a directional contraction if $k=1$
in thia definition. The following result established by Sehgal and Smithson in the above quoted paper may be considered as the etart point of our developments.

Theore 1. Suppose Y is olosed and I is auch that
(1) the Iunction $\varphi=\varphi_{T}$ from Y to $[0, \infty)$ defined by $\varphi(x)=d(x, T x), x \in Y$, is lower memicontinuous. If, in addition, either of the following conditions holds
(1i) Tis a weak directional contraction
(iii) T is a directional contraction and each sequence $\left(\varepsilon_{n}\right)$ in Y with $\operatorname{DT}\left(z_{n}, \nabla_{n}\right) \rightarrow 1$ for some $\left(w_{n}\right)$ in X fulfiling $\nabla_{n} \in p\left(T_{n}\right)\left(\varepsilon_{n}\right), n \in \mathbb{H}$, has a cluster point the considered mapping T has at least a ifxed point (in Y).

Concerning the ifset part of this result (which extends a similar one due to Husain and Sehgal [5]) it immediately follows by definition that (ii) may be written as
(ii) for each z in Y not belonging to Tz there exists u
 In this context, let us note that, z, u, w being as above (1) $d(z, w)+d(w, T z)=d(z, T z)$ because $d(z, w)+d(w, u)=d(z, u)=d(z, T z)$ gives at once $d(w, u)=d(z, T z)-d(z, w) \leqslant d\left(z, u^{\circ}\right)-d(z, w) \leq d\left(w, u^{\prime}\right), u^{\bullet} \in T z$ that is, $d(w, u) \leq d(w, T z)$ and since the reverse inequality $(d(w, u) \geq d(w, T z))$ also holds, our claim is proved; observing that the reciprocal of (ii)' (given z and watisfing (1) an - lement u in $p(T z)(\varepsilon)$ may be determined with $w \in Y(z, u])$ is not valid - as aimple examples show - when the range of T is not in $C(X)$, it is olear that the following condition atrictiy includes, in general, the above one
(ii) " for each z in Y not belonging to $T z$ there existe win $\mathbf{Y}(\mathrm{z}, \mathrm{Tz}]$ with $\mathrm{H}(\mathrm{Tz}, \mathrm{Tw})<\mathrm{k} \cdot \mathrm{d}(\mathrm{z}, \mathrm{w})$
(where, given A in 2^{X} we denoted, for each $s \in X$
(2) $Y(z, \Lambda]=f w \in Y ; w \neq z, d(z, w)+d(w, A)=d(z, A)\})$
so that, a natural problem is whether a replacoment of (ii) my (ii)" would produce the seme conclusion in the etatement of Theorem 1 (the first part). At the same tima, motime that, maler the acceptance of (ii) " with $k=1$, a more general formulation of (iii) is

 me (w_{n}) in X fulfililing $w_{n} \in Y\left(z_{n}, T z_{n}\right], n \in N$, has oluster point is again of interest to ack whether a substitution of (iii) by (i11) ' leads us to the same conclusion about the fixed pointa of T. The answer to both quentions is positive (as we mall see below) and is based on a maximality principle atated by the anthor in [12]. Some further aspects of the problem will be discumaed in a future paper.

Let (V, d) be a metric apace. Given the ordering \leq on V, let us call the sequence $\left(\nabla_{n}\right)$ in V, ascending provided that $\nabla_{i} \leqslant \nabla_{j}$
 lies $V=$. The following Zorn principle obtained by the author in the above quoted reference will be in effect in the equel.

Theorea 2. Suppose that

(iv) any asconding mequence in V is a Canchy sequence bounded from above.

Then, to every V in ∇ there corremponde marimal olement w in V such that $\tau \leqslant \boldsymbol{T}$.

An interesting particular form of thia theoren (which, under

1tg quasi-metric variant [10] appears as a generalization of the well-known Brezis-Browder ordering principle [2]) can be stated along the following lines. Let (X, d) be a metric apace. Given the function $\varphi: X \rightarrow[0, \infty)$ call the subset Y of X, φ-cloed whon any convergent sequence $\left(y_{n}\right)$ in Y with $\left(\varphi\left(y_{n}\right)\right)$ decreasing has its limit in Y too, and φ-complete provided each Cauchy sequence $\left(Y_{n}\right)$ in Y with $\left(\varphi\left(y_{n}\right)\right.$) decreasing converges (in X); at the same time, let us call the ambient function ρ, Y-self-lsc when for each sequence $\left(y_{n}\right)$ in Y with $\left(\varphi\left(y_{n}\right)\right)$ decreasing, $y_{n} \rightarrow$ $\rightarrow J \in Y$ and $\varphi\left(y_{n}\right) \leqslant t$ for all $n \in N$, we have $\varphi(\bar{y}) \leq t$. Observe that if these properties involving Y and φ are verified, the condition (iv) holds in the structure (Y, d, \leq) where \leq is the ordering on X defined by the convention

$$
x \leqslant y \text { if and only if } d(x, y) \leqslant \varphi(x)-\varphi(y)
$$

and therefore, we have (see also the above quoted author's paper).
Theoren 3. Let the couple Y in 2^{X} and $\varphi: X \rightarrow[0, \infty)$ be such that Y is φ-closed and φ-complete while φ is Y-self-lsc. Then, to every Y in Y there correaponds z in Y with the properties (a) $d(y, z) \leq \varphi(y)-\varphi(z)$ (b) $d(z, w)>\varphi(z)-\varphi(w)$ for all WGY, W中8。

Under these preliminaries, let (X, d) be a metric space. It will be sufficient in the eequel to work with the (generalized) Heusiorff pseudo-metric D on 2^{I} defined as

$$
D(Y, Z)=\operatorname{mup}\{d(y, Z) ; \dot{Y} \in Y\}, Y, Z \in 2^{X}
$$

rather than the (generalized) Heusdorff metric H (observe at this moment that, $B(X)$ indicating the clans of all bounded Y in 2^{X}. we have

$$
H(Y, Z)=\max \{D(Y, Z), D i Z, Y)\}, Y, Z \in B(X)
$$

an well as (by standerd computations)

$$
\begin{equation*}
d(x, Z) \leq d(x, Y)+D(Y, Z), X \in X, Y, Z \in B(X)) . \tag{3}
\end{equation*}
$$

Let Y be a nonempty subset of X and $T_{:} Y \rightarrow B(X)$ a (multivalued) map. As basic assumptions about the couple (Y, T) we shall admit that
(v) Y is T-convex (for each z in Y not belonging to $T z$ the subset $Y(z, T z]$ defined as in (2) is not empty)
and moreover (letting $\varphi=\varphi_{T}$ from X to $[0, \infty$) be introduced as in (1) with $\varphi=0$ outaide Y)
(vi) Y is both φ-closed and φ-complete
(vii) φ is Y-self-lsc.

Concerning the problem of extending Theorem 1 is the sonse we already precised, the first main result of the present note is

Theorem 4. Assume that, in addition to the above hypotheses, an lsc strictly increasing function $f_{z}[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0, f(t)>t, t>0(s 0, f(\infty)=\infty)$ may be found with the property
(viii) for each z in Y not belonging to $T z$ there exdetew in $Y(z, T z]$ with
$\rho(D(T z, T w)+t) \leq f(d(z, w)+t)-d(z, w), 0 \leq t<\varphi(z)$.
Then, T has at least a fixed point (in Y).
Proof. Let the function $\Psi: X \rightarrow[0, \infty)$ be defined as $\psi(x)=f(\varphi(x)), x \in X$.
As $\left(\psi\left(y_{n}\right)\right)$ is decreasing if and only if $\left(\varphi\left(y_{n}\right)\right)$ has such a property, it is clear that (vi) holds with φ replaced by ψ. Furthermore, let g: $[0, \infty) \rightarrow[0, \infty)$ be defined by the convention
$g(t)=\sup \{s \geq 0 ; f(s) \leq t\}, t \geq 0$.
The fact that g is well defined (and increasing on $[0, \infty)$)
results in essence from $f(\infty)=\infty$. We also note the equivalence
(4) $f(s) \leqslant t$ if and only if $s \leqslant g(t)$
obtained from the property
$f(g(t)) \leq t, t \geq 0$,
which is immediate in view of the fact that f is lac on its existence domain. How, if $\left(J_{n}\right)$ is a sequence in Y with $\left(\psi\left(J_{n}\right)\right)$ deoreasing, $J_{n} \rightarrow J \in Y$ and $\psi\left(y_{n}\right) \leq t, n \in N$, we have by (4), $\varphi\left(J_{n}\right) \leq g(t), n \in 耳$, , 0 that $\varphi(J) \leq g(t)$ which, again $b_{j}(4)$, giren $\psi(y) \leqslant t ;$ in other worde, (σ ii) also holds with φ replaced by ψ. In this case, Theorem 3 being applicable, given y in Y there existe z in Y with
(a) $d(y, z) \leqslant \psi(y)-\psi(z)$
(b) $d(z, w)>\psi(z)-\psi(w)$ for all $w \in Y, w \neq z$.

Suppose z is not belonging to $T x$ and let $w \in Y(z, T z)$ (which is not eapty, by (v)). We have by (b) plus the inequality (3)

$$
\begin{aligned}
& d(x, w)>f(d(x, T z))-f(d(w, T w)) \geq f(d(z, w)+d(w, T \varepsilon))- \\
& f(d(w, T z)+D(T \varepsilon, T w))
\end{aligned}
$$

that is
$f(D(T z, T w)+d(w, T z))>f(d(z, w)+d(w, T z))-f(d(z, w))$
while

$$
0 \leq d(w, T z)<d(z, T z)=\varphi(z)
$$

which contradicte (viii). So, z belongs to Tz and the result follown. Q.E.D.

As a basic partioular case, let $f(t)=h t, t \geq 0$, for some $h>1$; then, clearly (viii) reduced to (ii) " with $k=(h-1) / h$ and Theorem 4 becomes Theorem 1 (the first part). Another particular case of praotical interest is $f(t)=e^{t}-1, t \geq 0$; that it does not reduce to the oreceding one is a consequence of the
fact that if $a, b>0$ satisfy (for some $t(a, b)>0$)
$f(b+t) \leqslant f(a+t)-a, 0 \leqslant t<t(a, b)$
then, a relation like
$b \leqslant k \cdot a$ for some k in $(0,1)$ independent of a, b
does not hold since, otherwise, its immediate consequence
$f(k a) \leqslant f(a)-a(w i t h \quad a, k$ sufficiently close to 1)
would produce a contradiction as it can be readily verified. Returning to the first choice, it is clear that the case $h \rightarrow 1$, when (vili) becomes
(ix) for each z in Y not belonging to $T z$ there exists ${ }^{\prime}$ in $Y(z, T z]$ with $D(T z, T w)<d(z, w)$
cannot be hainded by these procedures so, it would be of interest to find out under what supplementary assumptions (constructed after the model of (iii)") conclusion of Theorem 4 continues to hold. An appropriate answer to this question is contained in the following second main result of this note.

Theorem 5. With the same general assumptions like before, let us admit that (ix) replaces (viii) and, in addition
(x) each sequence $\left(z_{n}\right)$ in Y with $z_{n} \notin T z_{n}, n \in N,\left(\varphi\left(z_{n}\right)\right)$ decreasing, $D\left(T z_{n}, T w_{n}\right)<d\left(z_{n}, w_{n}\right)$, $n \in N$, and $D\left(T z_{n}, T w_{n}\right) / d\left(z_{n}\right.$, $\left.w_{n}\right) \rightarrow 1$ for some $\left(w_{n}\right)$ in X fulfilling $w_{n} \in Y\left(z_{n}, T z_{n}\right], n \in N$, has a cluster point.

Then, T has at least a fixed point (in Y).
Proof. Suppose by contradiction T has no fixed points in Y. Given $z_{0} \in Y$ arbitrary fixed, let us apply Theorem 3 with φ introduced by the procedure we already indicated; there exists then a point z_{1} in Y with
(a) $1 d\left(z_{0}, z_{1}\right) \leqslant \varphi\left(z_{0}\right)-\varphi\left(z_{1}\right)$
(b) ${ }_{1} d\left(x_{1}, w\right)>\varphi\left(x_{1}\right)-\varphi(w)$ for all $w \in Y, w \neq z_{1}$.

Furthermore, given Σ_{1} in Y let us again apply Theorem 3 with φ replaced by 2φ; then, a $z_{2} \in Y$ may be found with
(a) $2 d\left(z_{1}, z_{2}\right) \leqslant 2\left(\varphi\left(z_{1}\right)-\varphi\left(z_{2}\right)\right)$
(b) $2 d\left(s_{2}, w\right)>2\left(\varphi\left(z_{2}\right)-\varphi(w)\right)$ for all $w \in Y, w \neq z_{2}$,
and so on. By induction, we get a sequence $\left(z_{n}\right)$ in Y with $z_{n} \notin$

(a) $n_{n} d\left(z_{n-1}, z_{n}\right) \leqslant n\left(\varphi\left(z_{n-1}\right)-\varphi\left(z_{n}\right)\right)$
(b) $n_{n} d\left(z_{n}, w\right)>n\left(\varphi\left(z_{n}\right)-\varphi(w)\right.$ for all $w \in Y$, $w \neq z_{n}$.

Let $\left(w_{n}\right)$ in Y be such that $w_{n} \in Y\left(z_{n}, Y z_{n}\right], n \in N$. We have by (b) n_{n} plus (3)

$$
\begin{aligned}
& d\left(z_{n}, w_{n}\right)>n\left(d\left(z_{n}, T z_{n}\right)-d\left(w_{n}, T w_{n}\right)\right) \geq n\left(d\left(z_{n}, w_{n}\right)+d\left(w_{n}, T z_{n}\right)-\right. \\
& \left.d\left(w_{n}, T z_{n}\right)-D\left(T z_{n}, T w_{n}\right)\right)=n\left(d\left(z_{n}, w_{n}\right)-D\left(T z_{n}, T w_{n}\right)\right), n \in \mathbb{N},
\end{aligned}
$$

that is

$$
D\left(T z_{n}, T m_{n}\right)>(1-1 / n) d\left(z_{n}, m_{n}\right), n \in N
$$

In partioular, letting $\left({ }_{n}\right)$ above be taken as in (ix) it follows from this relation that

$$
1-1 / n<D\left(T \varepsilon_{n}, T w_{n}\right) / d\left(x_{n}, w_{n}\right)<1, n \in \mathbb{N}
$$

and therefore $D\left(T z_{n}, T w_{n}\right) / d\left(z_{n}, w_{n}\right) \rightarrow 1$, which, in view of (x) gives us (eventually on a subsequence)

$$
z_{n} \rightarrow z \text { for some } z \text { in } Y
$$

(this last property being an immediate consequence of (∇i)). Again by the evaluaxtions (b) n_{n}

$$
d\left(z_{n}, T z_{n}\right) \leqslant d(w, T w)+(1 / n) d\left(z_{n}, w\right), n \in \mathbb{H}, w \in Y
$$

so that, passing to the limit as $n \rightarrow \infty$, one gets (taking (vii) into account)
(4) $d(z, T z) \leq d(w, T w)$, for all w in Y.

Combining this with (3) we have

$$
d(z, w)+d(w, T z) \leqslant d(w, T z)+D(T z, T w), w \in Y(z, T z]
$$

that is

$$
d(z, w) \leqslant D(M z, T w) \text {, for each } w \text { in } Y(z, T z]
$$

contradicting (ix). So, the apposition 1 has no iixed points in false and this onds our argument. Q.E.D.

Tow, clearly, (ix) extends (iii)' so that, correspondingly, Theorea 5 may be deemed as a generalization of Theoren 1 (the second part). This lact, combined with the discussion following the preceding statement allows us to conclude that the initial program of extending Theorem 1 modulo the couple (ii) "/(iii)" has been accomplished.

Concerning the basic I-convexity hypothesis (v) about Y, the following remarks are in order. Let $J_{Y}(z)$ denote (for each element z of Y) the (eventual empty) subset of all u in X with the property $Y(z, u)$ is not empty; of course, in the linear normed case, this is nothing but the inward set of z with respect to I in the sense of Caristi [4], whose closed (-z)-translate contains the tangent cone $K_{Y}(z)$ of z with respect to Y (see, e.g., Penot [7]) or, equivalently, the asymptotic direction set $d_{Y}(z)$ of z with respect to Y in Browder's sense [3]. It is now clear that, if the range of T is in $C(X),(V)$ may be clearly deduced from the stronger hypothesis
($v)^{\text {e }} p(T z)(z) \cap J_{Y}(z)$ is not empty for each z in Y, not belonging to Tz
(this fact being a consequence of the reasoning we used in the proof of (1)) and consequently, our main results could be almo viewed as a straightforward (multivalued) extonsion of Caristi " fixed point theorems (cf. the above reference). It in interesting to note at this moment that, still assuming $(\nabla)^{\prime}$ is to be satisfied, conclusion of Theorem 4 remains valid in case (viii) would be replaced by the following hypothesis
(Vili) for each z in Y, not belonging to Tz there adints u in $p(T z)(z)$ and w in $Y(z, u]$ such that

$$
f(d(u, T w)+t) \leq f(d(z, w)+t)-d(z, w), 0 \leq t<\varphi(z) ;
$$

indeed, it muffices to observe that relation (b) of the above quoted theorem

$$
d(z, w)>f(d(z, T z))-f(d(w, T w)), w \in Y, w \neq z
$$

gives at once (if wo take $u \in p(T z)(z)$ and $w \in Y(z, n]$ as in (viii) ${ }^{\circ}$)

$$
d(z, w)>f(d(z, w)+d(w, u))-f(d(w, u)+d(u, T w))
$$

that is,
$f(d(u, T w)+t)>f(d(z, w)+t)-d(z, w)$, where $0 \leqslant t=d(w, u)<\varphi(\varepsilon)$, contradicting (viii) and proving our claim. In the same context, condition (ix) being aubatituted by the following one
(ix) for each z in Y, not belonging to $T z$ there exiets u in $p(T z)(z)$ and w in $Y(z, u]$ with $d(u, T w)<d(z, w)$ and (x) by
 decreasing, $d\left(u_{n}, T w_{n}\right)<d\left(z_{n}, w_{n}\right), n \in M$, and $d\left(u_{n}, T w_{n}\right) / d\left(s_{n}, w_{n}\right) \rightarrow$ $\rightarrow 1$ for some $\left(u_{n}\right)$ in X and $\left(w_{n}\right)$ in Y wh $u_{n} \in p\left(I_{n}\right)\left(s_{n}\right)$, $\nabla_{n} \in Y\left(z_{n}, u_{n}\right], n \in I$, has a cluster point conclusion of Theorem 5 will also ramain valid. In fact, (b) of that result would imply then (taking $\left(u_{n}\right)$ in X and $\left(w_{n}\right)$ in Y in woh a way that $\left.u_{n} \in p\left(T z_{n}\right)\left(s_{n}\right), w_{n} \in Y\left(z_{n}, u_{n}\right], n \in Y\right)$

$$
d\left(z_{n}, w_{n}\right)>n\left(d\left(z_{n}, T s_{n}\right)-d\left(w_{n}, T w_{n}\right)\right) \geq n \cdot\left(d\left(s_{n}, w_{n}\right)+d\left(w_{n}, u_{n}\right)-\right.
$$

$$
\left.d\left(w_{n}, u_{n}\right)-d\left(u_{n}, T w_{n}\right)\right)=n\left(d\left(z_{n}, w_{n}\right)-d\left(u_{n}, T w_{n}\right)\right), n \in I
$$

and this immediately gives (taking $\left(u_{n}\right)$ and $\left(w_{n}\right)$ above as in (ix))

$$
1-1 / n<d\left(u_{n}, T w_{n}\right) / d\left(z_{n}, w_{n}\right)<1, n \in I
$$

that is, $d\left(u_{n}, T w_{n}\right) / d\left(g_{n}, w_{n}\right) \rightarrow 1$. By $(x)^{\prime}, s_{n} \rightarrow g$ (eventually on a mbsequence) for some $z \in Y$, in which case, relation (4)
(obtained by the mane procedure as before) gives us for any couple $u \in p(T s)(z), W \in I(x, u]$,

$$
d(z, w)+d(w, u) \leq d(w, u)+d(u, T w)
$$

that is, $d(z, w) \leq d(u, y w)$, a contradiction with respect to (ix)", completing the argument. Of courme, when T is univalent, conditions (viii) $,(1 x)^{\prime},(x)^{\prime}$ will respectively coincide with (vili), (ix), (x) but, in general, they are diatinct even in the linear normed case. Returning to the key condition (v) ${ }^{\circ}$, note that an interpretation of it in terms of variable drops was indieated by Turinioi [9] (see also the fixed point epprosch used in Kirk and Cariati [6]) whioh allows us to conaect our statements with those of Altman [1], based on a contractor directions viewpoint. It neem to be not without interest to formulate a corremponding variant of the above theorems for metrizable uniform tructures founded, e.g., on the appropriate variant of Theoren 3 in these structures due to the author $[11]$; some aspects of this problen will be discussed elsewhere.

ReIerencen
[1] M. ALTMA: Contractor directions, directional contractors and directional contractions for solving equations, Pacific J. Math. 62(1976), 1-18.
[2] E. BRK̊zIs and F.E. BROWDER: A general principle on ordered sets in nonlinear funotional analysis, Adv. in Math. 21 (1976) , 355-364.
[3] F.F. BROWDER: Formal solvability and the Fredholn alternative for mappings into infinite dimensional manifold, J. Funct. Anal. (1971), 250-274.
$[4]$ J. CARISTI: Fixed point theorems for mappinge aatisfying inwardneys conditions, Trans. Amer. Math. Soc. 215 (1976) 241-251.
[5] S.A. HUSAIF and V.M. SBHGALs A remark on a fixed point theorem of Caristi, Math. Japonion 25(1980), 27-30.
[6] W.A. KIRX and J. CARISTI: Mapping theorams in metric and Banach spaces, Bull. Lcad. Pol. Sci. (Ser. Sci. Math.) 23(1975), 891-894.
[7] J.-P. PEROT: A characterization of tangential ragularity, Nonlinear Analysis TMA 5(1981), 625-643.
[8] V.M. SEHGAI and R.E. SMITHSON: 1 fixed point theorem for weak direotional contraction multifunctions, Math. Japonica 25(1980), 345-348.
[9] M. TURTNICI: Mapping theorems via variable dropa in Banacl spaces, Rend. Ist. Lombardo Sci. Lett. (A) 114 (1980), 164-168.
[10] M. TURINICI: A generalization of Brézis-Browder a ordering principle, An. Sti. Univ. "Al.I.Cuza" Iagi (S.I-a) 28(1982), 11-16.
[11] M. TURINICI: Mapping theorem via contractor directions in metrizable locally convex apaces, Bull. Acad. Pol. Sci. (Ser. Sci. Math.) 30(1982), 161-166.
[12] M. TURIMICI: A maximality principle on ordered metric apaces, Rev. Colomb. Mat. 16(1982), 115-124.

Seminarul Matematic "Al. Mgiler", University of Iagi, 6600 Iagi, Romania
(Oblatum 9.10. 1984)

