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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

POLYADIC SPACES OF ARBITRARY COMPACTNESS NUMBERS 
Murray G. BELL *> 

ABSTRACT; We investigate a compact Hausdorff topology on the set of all 
subsets of cardinality at most n of a given set S. For each n we construct 
a polyadic and Eberlein space of compactness number n of weight m^ which la 
the union of finitely many discrete subspaces. 2 , Our topology on Csj*11' is 
such that both the compactness numbers of Cs3 n~ and Cs3 n are n + 1 
for uncountable S's. 
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1. Introduction. 

In this paper we construct new examples of spaces with arbitrary 

compactness number. These spaces are particularly simple to construct 

and most common topological properties are easy to determine. However, 

the property which we are interested in, compactness number, is not so easy. 

One of these spaces answers a question of M. HuseJc, namely, it Is an 

Eberlein compact space which is not supercompact. It is also a second 

example of a continuous image of a supercompact space which is not 

supercompact; the first example being due to C. Mills and J., van Mill. Our 

example has different properties than theirs, for example, it is polyadic. 

Another of these spaces answers a question of J. van Mill and the author, namely, 

*This research was supported by Grant No. U0070 from the Natural Sciences and 
Engineering Research Council of Canada. 
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it is a continuous image of a space of finite compactness number which has 

infinite compactness number. 

Most definitions appear in section 2. Section 3 is devoted to the basic 

combinatorial set theory that is needed. We define our spaces in section 4 as 

well as finding upper bounds for their compactness numbers. In section 5 our 

main Theorem 5.1 produces lower bounds. We thus get our spaces X such that 
n 

cmpn(X^ ) » cmpntt _) =- n + 1. 
2n 2n-x 

2. Preliminaries. 

If S is a collection of sets and S is a set then S denotes the 

set {n F : F is a finite subset of S}, [S]n denotes the set of all subsets 

of S of size n and [S] denotes the set of all subsets of S of size 

at most ny this latter includes the empty set $. If 2 £ n < to then S 

is said to be n-linked if n F * <}> for all F e [S] . S is said to be n-ary 

if every n-linked subset of S has a non-empty intersection. 

Polyadic (or m-adic) spaces are Hausdorff continuous images of some 

power of the Alexandroff one point compactification of a discrete space. 

These were defined by Mrowka [8] as a good generalization of dyadic spaces. 

Eberlein spaces, Amir and Lindenstrauss [1], are those spaces homeomorphic 

*to a weakly compact subset of a Banach space. They include, in particular, 

all compact sub spaces of the subspace of 2 consisting of functions with 

finite support, for any cardinal *• 

A space X has compactness number at most n, cmpn(X) £ n , if X 

possesses an n-ary closed subbase. If m is the least such n then we write 

cmpn(X) * m. If no such n < u> exists and X is compact then we say that 
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X has infinite compactness number. Spaces of cmpn 2 are called supercompact 

spaces, de Groot [6]. Bell and van Mill 15] have constructed compact Hausdorff 

spaces of arbitrary cmpn. Different examples appear in Bell [2]. This paper 

will produce yet a third class of examples. 

If S is n-ary then so also is S . Hence every space X with 

cmpn(X) < n possesses an n-ary closed subbase S with S = 5 . The advantage 

of closing S under finite intersections is the following: A collection 

S « S of closed subsets of a compact space X is a closed subbase iff 

for every closed K contained in an open set 0 there exists a finite 

F c S such that K c u F c o. 

3. A Free Set Lemma for [w.3 . 

For 1 -J k <. n < o) and s e [w.3 we define s(k) to be the 

kth element of s under the induced order of w.. Therefore for every 

s e [ty.3 we have s = {s(l),... ,s(n) } where s(l) < ... < s(n). 

Assume that f : [w.3 •*• [w.3 is such that for every s € [cO 

we have s n f (s) = <J>. A subset A of u. is said to be free if for 

every s e [A3 we have A n f (s) =- $ and A is said to be almost free 

if for every s e [A3 we have A n f (s) c {y : s(l) < Y < s(n)}. 

Example (due to S. Todorcevic) There exists f : [« ] •*• [GJ.3 such that 

2 
for every s € [OJ.3 we have s n f (s) =- $ but there is no free subset of 

cardinality 3 and there is no almost free subset of order type at + 1. 

For every Y < <-», choose an injection <p t y -+ a. For each 

0 < Y define f ( {0 ,Y ) ) " {* < Y : <P (») -- <P (3) > - {0,?}- Tlie basic 
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property of f from which both conclusions follow is that whenever 

a < 8 < y then either a c f({8,y}) or $ c f({a,Y}). 

Lemma 3.1. Assume that n is a positive integer and that f s t&i.1 •> [<a ] 
""" "" •«• 1 

is such that for every s c [o».1 we have s n f (s) = ^ Then for every 

N •> n there exists an almost free subset A of cardinality N. 

Proof: Use induction on k = 1 to k = N to choose denumerable subsets 

A^ of at. such that: 

(a) if j < k, a c A. and 8 c K then a < 8 

(b) A n f (s) « $ for every s c [ U A,] n. 
j<k j 

Use induction on k » N to k -» 1 to choose {a : 1 < k £ N } such 

that: 

(O ak c Ak 

(d) ak { f (s) for every s c [{a : k < j £ N}]11. Then A - {a : 2. 1 k £ M> 

is an almost free subset. 0 

4. The Tychonoff topology on [S] 

If S is an infinite set and 1 S n < UJ then we define a compact 

Hausdorff topology on [S] as follows: If s c S then put 

s + - {p c [S]*n : s c F} and put s" *- {p c [S]*n : s { F}. Use the collection 

S «• U {s ,s~} as a closed (also open) subbase for a topology on [S] 

scS ^ 
This topology is called the Tychonoff topology on [S] n. [S] with this 

topology is ZF-compact, i.e., it is both defined and provably compact without 

k 

the aid of any choice principles. If 0 <. k 5 n then [S] is a discrete 

subspace of [S] Hence [S] is a space which is the union of n + 1 

discrete subspaces. 
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Let A(S) • S u {»} be the Alexandroff one point compactification of 

the discrete space S and let A(S) be the Tychonoff product of n copies 

of A(S). The mapping <p : A(S)n + [S]*n defined by (p ((x ,... ,x )) « 

{x ,...,x } n S is seen to be continuous and onto. Hence the spaces [S] 

are polyadic and Eberlein as well. 

The subbase S as above is n + 1 -ary? because if F is an n + 1 -linked 

subset of S then {s € S : s € F} e n F. Hence cmpn([S) n) <. n + 1. This 

can be improved substantially for totally orderable S's as follows: 

Theorem 4.1. To each total order < on S there is a naturally associated 

n + 1 - ary closed subbase R of [S] 

Proof: If s € S then put L -*{F€S J |{t c P : t < s}| i n - 1} and put 

R - {F € s : |{t € F : s < t}| <- n - 1}. Since both L and R are closed 

8 S S 
and s «• L u R we get that R = U { L ,R ,s } is a closed subbase of 

S S S€S S S 

IS)* . Observe also that {s} € L n R . 
s s 

Let F • { L : S C A} U {R : S € B} U { S : s € C } be an n + 1- linked 
s s 

subset of R where A u B u C * $. He claim that A u B € n F. 

To see this put T - L if t 6 A and put T - R if t € B - A. 

If s c A then | { t c A U B : t < s}| <. n - 1. This is so because if 

D 6 [ { t € A U B : t < s}]n then fl T n L -* $ but this contradicts 
tcD s 

n + 1 - linkage of F. Analagously, if s € B then | {t € A u B : s < t} | -S n - 1. 

Both of these implications together imply that |A U B| <. 2n and that 

A u B e H L n 0 R . If t c A U B and s € c then T n s~ * ^. 
SCA S S€B s 

Thus t * s and therefore (A u B) n C - ^. Hence A u B c n F and therefore 

R is n + 1 - ary. Q 
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The case n =- 1 in the above theorem was proven in Bell and Ginsburg [4) 

-S2 
where it was also proven that for uncountable S, [S] does not have a 

2 - ary closed subbase consisting of clopen sets. 

It is shown in [5] that if K is a clopen subspace of a compact space X 

<.k 
then cmpn(K) <. cmpn(X). If 1 <. k £ 2n then [S] is embedded as a clopen 

subspace of [S] as all supersets of a fixed set of size 2n - k. So we 

<Jk 
see that if 1 <. k <. 2n then cmpn([S) ) £ n + 1. In the next section we 

will show that, in general, this is the best upper bound possible. 

5. Lower bound on cmpn ([S3 ). 

Theorem 5.1. For every n with 2 £ n < to, [w 3 n~ cannot be embedded 

as a neighbourhood retract in any space K with cmpn(K) <. n. 

Proof: Let us put K *- in . Assume that C K3 c K, K is compact, U is 

an open subspace of K, r . U + W is a retraction and that S -* S is 

a closed subbase for K. For every a < K there exists a finite S c S 
a 

with a c uS c r" [o ]. Since K has uncountable cofinality there exist a 

m < a> and a subset E of K of cardinality K such that if a c E then 

S «• {S ,...,S }. Since each S € S is closed for each s e [E3 let us 
a a a 

choose a finite F c K such that F n s «- <J> and 
s s 

n a+ n H &~ nU{S : i <. m, a e s and s ,( S ^ - * . 
acs 0cF a a 

s 

Put p -» m + n . Invoking Ramsey* s theorem of the partition calculus, 

choose N < w such that N -* (2n)n. Define f : [E3n-*-[E3<W by f (s) «• 

E n F . Apply Lemma 3.1 to produce an almost free subset A of E of 
s 

cardinality N. We now define a partition of [A3 into p parts. For 
n . 

every i <. m define Q. « {s € [A3 : s € H S .. . }. For every 
1 k*l 8{k} m . 

(p : {l,...,m} •> {l,...,n} define R - {s € [A3n : s k U Sfi( (i)} }• By 
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Ramsey's theorem, there exists H € CA] and either a Q. or a R„ 

such that CH] C Q. or CH] C R H is an almost free subset 

because H c A. 

We rule out the possibility that CH] C R for some (p. Put 

L -= H - (H(l)}. Then L £ CK] . There exists j £ m such that L £ SZ , . -
L(n) 

Since L has cardinality 2n - 1 we can choose an s consisting of n 

consecutive elements of L such that s(c/?(j)) = L(n). Since s £ R we have 

that s k S3. ..... Therefore s ( S3, , By definition of F we get that 
* s(<p(3)) ' L(n) s 

•» o n J \ 3 n S? , , = <f>. This is a contradiction since L is in this 
aes (3eF L(n) Y * 

intersection. 

We deduce that CH] C Q. for some 1. The collection {S : a € H} IS 
x a 

n . 
n-linked; because if s € CH] then s e Q. . Therefore S € D S ,, . = H s 

1 . _ s (K) a 
However H S c fir C a ] and hence is empty, because there are no sets 

acH a acH <2n-l 
of size 2n in C *c] . Thus S is not n-ary. 0 

Corollary 5.2. If 1 <. n < o> then cmpn(Cw ] n ) and cmpn(Cto ] ) both 

equal n + 1. 

Proof: Use Theorem 5.1 together with the result of section 4 that if 

<3c 
1 < k £ 2n then cmpn(Co> ] ) ̂  n + 1. 

Examples 5.3. The spaces Cw ] are polyadic, Eberlein spaces of weight 

a) and cmpn n+1 and are the union of 2n discrete subspaces. 

These spaces answer Problem 3 of M. Husek C9] on whether every 

Eberlein space is supercompact. They also serve as second examples of a 

continuous image of a supercompact space which is not supercompact; the fA ~+-
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such example was due to C. Mill and J. van Mill C7l. The question of whether 

every dyadic space is supercompact remains unanswered. 

Let K be the Alexandroff one point compactification of the disjoint union 

of the spaces Cw ] n"" K is a space of infinite compactness number that is 

a continuous image of one of finite compactness number, indeed K is polyadic, 

Eberlein and the union of countably many discrete subspaces. This answers 

question 4.3. in [51. 

Questions 5.4. Is there a compact space K of weight w that is not a 

continuous image of any space of finite compactness number? In [5], it is 

proven that 0N is not the continuous image of any space of finite compactness 

number, so we do not want a consistent example of such a space K. The existence 
W2 of K would enable one to prove that the hyperspace of closed subsets of 2 

is not the continuous image of a space of finite compactness number , cf. Bell [33. 

Finally, we repeat question 4.1. of [5l: Is there a sequence of first countable 

separable spaces X. for which cmpn(X ) = k? 
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