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SPECIAL LATTICES OF COMPACTIFICATIONS 
Alessandro CATERINO 

Abstract. Given any compactification ox of a Tychonoff space X , let 

f . gx • OX denote the canonical quotient map from the Stone-Cech com«* 
pactification of X onto OX . It is known that the complete upper semi-lat--
tice K(X) of all compactifications of X becomes a lattice whenever the set 
F (OX) » {f~ (p) i |f". (p)| > 1} is finite for all ox E K(X). In this paper 
we give some necessary and sufficient conditions, in terms of X and &X - X, 
for F*(ox) to be finite for all OX t K(X). 

AMSU980) Subject Class. Primary: 54D35, 54D40. Secondary: 54C45, 54G05, 
54G10. 

Key-words. Lattice, compactification, remainder, C -embedded, cf-space, 
P-space, F-space. 

Introduction. Let X be a Tychonoff space. Denote by K(X) the family 

of T -compactifications of X. Two compactifications OX and yx are consi

dered equivalent if there is a homeomorphism between OX and yx, which leaves 

X pointwise fixed; we do not distinguish between equivalent compactifications 

in K(X). K(X) is partially ordered by the relation: o x £ o X if there is 

a continuous map from a X onto a X , which leaves X pointwise fixed. 

It is known that K(X) is always a complete upper semi-lattice and that it is a 

complete lower semi-lattice (hence a complete lattice) iff X is locally com«-

pact (cf.[M]). 

In general K(X) is not a lattice, for example when X is first countable but 

not locally compact (cf.[FV]). 

Work partially supported by G.N.S.A.G.A.-CN.R. and by Gruppo Nazionale di To«* 
pologia under the auspices of M.P.I.- 515 -



In this paper we study questions related to the problem of when K(X) is 

a lattice. 

In the following, we will use the term compactification instead of T -com« 

pactification. 

If aX e K(X) , BX will denote the Stone-Cech compactification of X and 

f . gx », QX ttle canonical quotient map. Define the 3"family of oX to 
a -1 * 

be F(otX) « {f (p) : p e aX - X} and set F (otX) - {F e F(otX) : |F| > 1}. 
Recall that any family of bounded continuous functions, S C C (X), which sep

arates points from closed sets, generates a compact!fication a X « e (X) , 

where e : X • VI K , K - f (X) , is the topological embedding defin= 
fes 

ed by eg(x) - {f(-<)}f£g . 

Moreover, observe that, if F ,... ,F C $X - X are disjoint compact sets with 
1 n 

JF \>l , then the quotient space otX of BX , obtained by shrinking each com* 

pact F to a point, is a compactification of X and one has F (oX) * 

* {F ,...,F } . Obviously oX coincides with the compactification generated 
* 6 B 

by S -* {f e C (X) : f • is constant \fi-lM..,n}, where f is the exten« 
lFi 

sion of f to Bx . 

Some topological spaces have the property that all their compactifications 

are obtained as previously described, that is F (otX) is finite for all 

otX c K(X). In this case, it is easy to prove that K(X) is a lattice. In fact, 

if oX and Y X a re compact!fications of X , then ax A Y x is generated by 

the family of continuous functions 
{ f e e (x) : f , is constant V F e F (ax) u F (vx)}. 

|F 

In ([c], th.5.6; see also [FV], proof of th. 1) it is pointed out that if 

BX - X is discrete and C -embedded in BX , then F (ax) is finite for all 

oXeK(X). More generally, one obtains the same result when BX - X is a P-space 
and CI (Bx - X) is an F-space(cf.[uj). Recall that a P-space is a space in 

pX 

which every cozero-set is C-embedded and an F-space is a space in which every 

cozero-set is C -embedded (for equivalent definitions cf. 4j, 14.25, 14.29, 

14N in (GJ)). 

Among the results of the present paper is the following proposition gener

alizing the above mentioned results: if BX - X is a.cf-space (that is a space 

whose compact sets are finite) and every countable discrete subset of B* - X 



is C -embedded in f3x , then F (ax) is finite for all aX e K(X). 

The same conclusion is achieved if the following three conditions are satisfied: 

a) 6X - X is C -embedded in BX, b) $X - X is countably normal (we say that 

a space is countably normal if any two disjoint countable closed sets are com*-

pletely separated), and c) every infinite subset of &X - X contains an infi58 

nite discrete and closed subset of $X - X . 

An application of the last proposition is obtained when BX - X is an Mi-space 

(that is, dense in itself and whose dense subsets are open), countably normal 

and C -embedded in @X . 

Moreover, we prove that £X - X is a cf-space if P (aX) is finite for all 

oX e K(X) and, under additional hypotheses on X or $X - X , we give some * 

equivalent conditions for F (aX) to be finite for all ax e K(X). 

We will denote with N and R the sets of natural numbers and real num

bers , respectively. 

1. All spaces we deal with are Tychonoff. Let aX be a compactification of a 

space X and let f : 0X • ax be the canonical quotient map. A subset 
01 -1 

A of 0X is said to be saturated (relative to f ) when A - f (f (A)). 
a a a 

Given F C A C $X , where F • f (p) with p e aX and A is an open subset 

of 0X , then, since f is a closed map, there exists an open saturated 

subset U of $X such that F C U C A . 

LEMMA 1. Let aX be a compactification of X , G « {F,}, .C.F -F (ox) and 
E A A E^ let A * {x.}- . with x. e F. for every X e A . Then 

X XeA X X *• 

(CV u V) -s - (cv) -s 

XEA 

where S «- [J F . 
FCF 

Proof. 

Obviously (Clgx A ) - S C (Cl^t (J F^)) - S . Conversely if x ^ |ci A ) - S 

then we can suppose, without loss of generality, that x t S . Let V C $X be 

an open set such that x e V , Vf) A - 0 . Then there exists an open saturated 

subset U of $X with x e U C V . it is clear that U fl F - 0 for all 

X e A , since U is saturated and x ftf U for all X e A . Thus x *(CV u V)-s 

XeA 
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COROLLARY 2. Let G * {r V r F*(aX) and let A -= {x, V , , B * {y > A , 

x , y t F for every X e A. Then 

(«aff-) - • ' (CIBXB) " s • 
PROPOSITION 3. Xf $X - X is a cf-space and every countable discrete subset 

of Bx - X is C*-embedded in @x , then F*(ax) is finite for all aX e K(X). 

Proof. 

Suppose that, for some ctX C K(X) , F (aX) is infinite. It follows that D « 

« f (F*(oX)) is infinite. If T - {p } is countably infinite discrete subset 
a -1 n 

of D , set F « f (p ) for every n e N, and let A * {x } , B * {y } where 
n a n n n 

x , y e F , x + y . Since T is discrete in aX - X , it follows that S « 
n n n n n 
• A u B is a discrete subset of (3X - x . In fact, for every n e N , there is 

an opan set V of OX - X such that p e V iff m » n . n m n 
Then setting U * f"* (V ) 3 F , ona has U n F, » 0 for every k j* n , 

n a n n n k 
otherwise p, c V , 

*K n 

By assumption S is C -embedded in $X , hence A and B , which are com* 

pletely separated in $ , are completely separated in gx . Thus we have 
c lo« A ft c lo« B * 0 > moreover it follows from Corollary 2 that CI A n x » 

pX pX pX 
• CI B fl X . We conclude that both A and B have no cluster points in X, 

pX 
hence Cl A c {3x - X . This is a contradiction, because (3X - X was supposed 

PX 
to be a cf-apace.. 

As a conaequenee of the above proposition we obtain the known results : 

COROLLARy 4. (fFVl) Xf 0X - X ia discrete and C*-embedded in Bx , then 

F*(ox) is finite for all ox e K(X) . 

COROLLARY S. ( M ) If 0X - X is a P-apace and Cl ($X - X) ia an F-space, 
— ex 

then F (ox) is finitefor all ox e K(X) . 

Proof.. Every countable aubset of a P-space is closed and discrete, so every 

P-apace is a cf-spaee (cf. 4K in (GJ]>. Also every countable subset of an 

F-space ia C -embedded (cf. 14N in [GJ]). Then apply the Tietze-Urysohn 

theorem. 

We five now another sufficient condition for F (ox) to be finite for 
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all ax e K(X) . 

PROPOSITION 6. Let X be a space such that ; 

a) gx - X is C*-embedded in gx 

b) gx - X is countably normal 

c) every infinite subset of gx - x contains an infinite discrete and closed 

subset of gx - X . 

Then F (oX) is finite for all ax e K(x) 

Proof. 

First observe that, if T C gx - X is infinite, then there exists a countably 

infinite subset of T , which is closed and discrete. 

Now suppose that there is an aX E K(x) such that F (ax) is infinite. Then 

there exists a countably infinite set A" c [J {F '• F e F (aX)} , which is 

closed and discrete in gx - X . Since every F E F (aX) is compact, then 

A' 0 F is finite for all F £ F (aX) . Thus, one can suppose that A* meets 

every F £ F (aX) in at most one point. If A' * {x } , let F « f" (f (x )) 
n n a a n 

for every n e N . Then consider a countably infinite set B c I I F - {x } 
n7N n n 

closed and discrete in gx - x . As above, we can suppose 

that |B fl F I < J for all n e N . If B - {y„ } with y„ e Fn , let 
» n' — nj nj "j 

A = {xn } . By arguments similar to those in Proposition 3 , we obtain that A 

has no cluster points in X and so it is closed in gx . This is a contradic* 

tion since A is an infinite discrete set. 

COROLLARY 7. Let gx - X be an Mi-space, countably normal and C -embedded in 

gx , then F (oX) is finite for all oX £ K(X) . 

Proof, 

It is easy to prove that, every infinite subset of a Hausdorff Mi-space Y 

contains a countably infinite closed and discrete subset. In fact, if T c Y 

is infinite, consider a copy N of N in T . N has no interior points, 

otherwise, since N is discrete, such points would be isolated in Y . Thus 

Y - N is dense in Y , hence open. We conclude that N is closed and discrete 

in Y . 

Next, we will give an example in which gx - X is C -embedded in gx , 
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and it is neither a P-space nor an Mi-space, but satisfies the hypotheses of 

Proposition 3 or 6. 

Recall that a space is said to be extremally disconnected if every open set 

has an open closure. It is said to be basically disconnected if every cozero-

set has an open closure. One can also give an equivalent definition of an 

F-space as being a space in which disjoint cozero-sets are completely 

separated. 

Clearly, the following implications hold : 

extremally disconnected • •-> basically disconnected • > F-space . 

Let Z » N U {a} and let U be a free ultrafilter on N . In Z define the 

following topology : a subset A of Z containing o is open iff A =- U U io}, 

U e U , also all subsets of Z that do not contain o* are to be open. 

It is easy to prove that Z is a normal, extremally disconnected space ( and 

so an F-space), but it is not a P-space, nor an Mi-space (cf. 4M in [Gj]). 

Since Z is an F-space, then every subset of Z is C -embedded (cf. 14N 

in [GJ]). It is known that, if Y is a Tychonoff space, then there is a space 

X such that $X - X is homeomorphic to Y and is C -embedded in (3X (cf.[c] 

Cor.4.18). We apply this result to the case Y - Z . 

Now we show that every infinite subset of Z contains an infinite closed and 

discrete subset of Z , so Z is a cf-space. 

Let T' be an infinite subset of Z and let T - T' - {a} . If T « {x } , 
n 

set A - {x^ } and B * {x„ J . Now if A e U , then A U (N - T) e U . 
2n 2n+l 

Otherwise N - A e U . In the former case, we obtain that B is closed and 

discrete. In the latter A is closed and discrete. 

2. As we have seen in Proposition 3 and 6, the condition that 0x - X is a 

cf-space ensures, together with other conditions, that F (otX) is finite for 

all ax e K(X). Now we want to prove that this latter condition implies that 

$X - X is a cf-space. 

PROPOSITION 8. If F*(ax) is finite for all ax e K(X) then &x - X is a 

cf-space. 

Proof. 

Let K be a compact subset of Bx - X and suppose that K is infinite. 
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Then there is a countably infinite discrete subset of K , which we denote 

by B • {x } . If {r } is the sequence of real numbers with r„ . » r_ • x nJ x nJ 2n-l 2n 
- 1/n , n £ N , then the map g : C1Q B -*• R defined by g(x ) • r 

PX n n 
and g(x) « 0 , if x £ (C1D B) - B , is continuous and thus it has a con« 

pX 
tinuous extension h to Bx . 

Now consider the family A of subsets of Bx - X defined as follows : 

A - {h-1(p) fl K : p e R} 

and let 
* S 

S - If £ C (X) : f , is constantVA e .4) . 
|A 

The family S separates points from closed sets of X . In fact if C c X 

is a closed set and x £ X , x t C , let F be a closed set in Bx such 

that P f l X - C . Then there exists f e e (Bx) such that f (x) « 0 and 

f (K u F) • 1 . The map f i belongs to S and separates x from C . 

The family, S , thus generates a compactification oX • aJC • e (X) ; more« 

over, if f is the canonical quotient map, one has f « e„ « I I f . 
a a s ty 

Now we show that F*(oX) « {A E A : |A| > 1} and so F*(aX) is infinite. 

If x, y E A , for some A E A , then obviously f (x) « f (y) . 

Conversely, suppose that x, y E pX - X do not belong to the same A £ A . 

If at least one of the two points, say x , does not belong to K , then there 

is a continuous map s : (3x • R such that s(x) • 0 and s(K u W) * 

« 1 . We have s i £ 5 , and (si )?x)- s(x) M ( y ) « (s j ) (y) , therefore 

f (x) j* f (y). Suppose then x, y £ K and h(x) j- h(y) , that is x and y 

do not belong to the same A £ A . The map h - hi £ S . Obviously one has 

h (x) « h(x) f h(y) « h (y) , and so again we have fa(x) t fa<y) • 

We note that the condition that (3x - X be a cf-space is not enough to 

imply that F (ox) is finite for all OX £ K(X) . In fact, it is possible to 

construct a space X such that 6x - X « N - N and CI N -- u)N , where u)N 
pX 

is the one-point compactification of N . Ifce conclusion follows from the fol* 

lowing fact : if there is a sequence in 0X - X converging to a point of X , 

then K(X) is not a lattice (cf. example 4.7 in [T]). 
The following corollaries are easy consequences of Proposition 3 and 8. 
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COROLLARY 9. Let 0X - X be locally compact and C*-embedaed in 0X . 

Then F*(aX) is finite for all aX c K(X) if and only if $X - X ie 

discrete. 

COROLLARY 10. Let X be locally compact. 

Then F*(oX) is finite for all aX e K(X) if and only if (3x - X is finite. 

COROLLARY 11. Let CI ($X - X) be an F-space. 

Then F (aX) is finite for all aX e K(X) if and only if (3X - X is a 

cf-space. 

Remark*. The hypotheses of Corollary 11 are satisfied, for instance, if X is 

an F-space or 0X - X is an F-space, C -embedded in $X (cf. in [GJ] 14.25 

(9) and (10) and 14.26 that every C -embedded subspace of an F-space is 

itself an F-space). 

We give now another necessary condition for F (ax) to be finite for all 

otX c K(X) . 

PROPOSITION 12. If F*(otX) is finite for all ox e K(X) , then X is pseudo" 

compact. 

Proof. If X were not pseudocompact, then it would contain a C-embedded copy 

N of N , in particular a closed C -embedded copy of N . Then we would have 

0N - N C (3X - X and so $X - X would not be a cf-space. 

Note that a pseudocompact space can contain a closed C -embedded copy of 

N and so the converse of the above proposition is false. For example, the 

space A -» 0R - (@N - N) is pseudocompact and <N is closed C -embedded in 

A (cf. 6P in [GJ)). 

COROLLARY 13. If_ X is realcompact and not compact, then there exists 

off e K < x ) w i t h F*(oX) infinite. 

We conclude with an open question: is there a space X such that 0X - X 

is a cf-space, C -embedaed in $x and X has a compact!fication aX with 

F (ax) infinite ? 
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