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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,3 (1885)

BIEQUIVALENCES AND TOPOLOGY IN THE ALTERNATIVE
SET THEORY
Jaroslav GURICAN and Pavol ZLATOS

N

Abstract: The topological problematics in the AST is enriched
by simultaneous study of indescernibility phenomena represented by
a St-equivalence together with accessibility phenomena represented
by a e€-equivalence. A pair {=,&») where = is a X-equivalence
and ¢» is a e-equivalence is called a biequivalence if both = and
« have the same set-theoretically definable domain and = is a sub-
class of «». Basic properties of biequivalences, compatible biequi-
valences (each infinite set of pairwise accessible elements con-
tains two indiscernible elements) and compact clessses are listed.
Some questions concerning continuous functions and relations are
studied. In particular, some compactness results concerning spaces
of continuous functions and relations are established.

Key words: s-, 6-equivalence, biequivalence, monad, galaxy,
figure, compact, revealed, continuous, function, relation.

Classification: Primary 54J05
Secondary 54D45, 54C05, 54C60

This paper goes on investigating of topological problematics
in the Alternative Set Theory (AST) in the spirit of Vopé'nka's book
[v], .i.e. on‘the base of some "indiscernibility" equivalence enabl-
ing to formalize such notions as "nearness" and "continuity" in a
different and - at least in our opinion - more natural way than in
the classical topology. The relation of "indiscernibility" or "in-
finitesimal nearness" serves as a mathematization of the horizon
of discerning ability either of a man or of a measuring device. The
majority of observations, however, meets with one more‘ horizon yet

= the horizon of "accessibility" or "reachability within sight".
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This is in fact the most common appearance of the phenomenon of
horizon in everyday life, nevertheless, as far as we know, it was
not studied by the classical topology up to this time. Our article
is the first attempt to fill this gap within the framework of the
AST.

Needless to emphasize, neither the indiscernibility nor the
accessibility relations as occurring e.g. by optical observations
are transitive. Hence, though they both are naturally reflexive
and symetric relations, they need not be equivalences. If all 1
the same restrict our study to equivalences of indiscernibility
and accessibility, it will be a useful idealization enabling to
treat the problematics by means similar in some sense to the clas-
sical ones. Last but not least, the understanding of the finite
and infinite within the AST throws quite a different light upon
this question, as far as for a general equivalence relation R and
an arbitrary sequence (set function) (xo,x1,...,x,) such that
(V<) {(Xy1%,41) € R, the conclus?on (xo,x,) € R follows only
for "small" i.e. finite natural numbers Y. For a "large" i.e. infi-
nite natural number y (xo,x,) ¢ R may well happen.

Each observation produces a sequence of "sharp" discernibilir
ty eriteria leading to the horizon of discernibility and a sequen-
ce of "sharp" accessibility criteria leading to the horizon of
accessibility. Two objects are indiscernible under such an obser-
vation if all criteria fail to distinguish between ;hem, they are
accessible if they are accessible at least according to one such
criterion. The phenomenon of indiscernibility was formalized by
the notion of a ¥=-equivalence (i.e. an equivalence which is a
X=-class) in [V]. We will formalize the phenomenon of accessibili-
ty by the notion of a e¢=-equivalence (i.e. an equivalence which is

a @=class). A simultaneous investigation of both these notions
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requires the satisfaction of a single natural condition: any two
indiscernible points are accessible.

A pair of classes {&,é4) where & iz a F-equivalence and «»
is a @F-equivalence is called a biequivalence if = is a subclass
of ¢4, L.0, iff for all x,y x &y 4mplies x«€»y. x = y i3 read
"x is indiscernible from y" or "x and y are infinitesimally near"
and x ¢ y 1is read as "x is accessible from y" or "x and y are
finitely distant” ete. x @ y 4is abbreviated to x £ ¥y ("x is dis-
cernible from y") snd 80 15 “Ix ey to x &y ("x ig not acces-
sible from y").l

The aim of the first part of this paper is to list only some
very basical results concerning biequivalences. A more detailed
study of several naturally arising questions is postponed into the
nearest future, The traditional education countenanced by the mo-
dern phyaics contributes to the general extenision 6f the opinion
that the macrostructure (e.g. that of the Universe) is determined
by the microstructure. Our investigation remains still tributary
to this viewpoint, ae well., The miain attention will be paid to the
study of indiscernibility phenomena (¥-equivalences). The accessi-
bility phenomena (Cwequivalences) will play rather an suxiliary ro-
le: they enable a natural restriction of the domain of our investi-
gation (e.g. to a single galaxy - the clags of objects accessible
from a given object). Such restrictions often bring substantisl
simplifications. This restrioction principle slss motivates the
study of RX-equivalences identifying sets whose shapes in & given
F=-equivalence have the same trace on a given e€-c¢lass,

The second part of our paper deals with the notions of oofiti-
nuous function and relation., The comneoctions bvetween several poss~
ible concepts of continuity are investigated. For a large family
of "well behaved" relations all these notions coinecide. Various



"natural" %X-equivalences which can be introduced on classes of
functions or relations are shown to give the same result for con-
tinuous relations from a given R-equivalence to another one. Us=—
ing this fact, sSvme compactness properties for continuous relations

between compacta can be proved.

Lad
The authors are indebted to the members of the Prague seminar

on the AST especially to Petr Vopenka for valuable discussions.

Preliminaries

The reader is assumed to be familiar with [V]. FZ denotes the
class of finite integers. Variables k,m,n are used sometimes also
for finite integers not just for natural numbers.

The composition of classes X and Y is defined by
XeY = {{x,y> i (32)({x,2) € X & (z,¥) € V)},
and the y-th iterated composition of the class X is

©

{(x,x); X € V} = Id,

x»

[(xy); ) (dom(£) =9+ 1 & x=2£(0)4 £(v) =y &
(Vo ey) { £la),£@+1)) € X)}

if yeN-{0} aad x’=(x")"' if -ye N-{0}. The nota-
tion X” will be used in this sense solely for X being a relation.
According to the context it will be always clear whether X® denotes

the iterated composition or the Y-th cartesian power
X® = {f; dom(f) =¥ & rng(f) ¢ X}
(here the function f with domain Y is identified with the "y-tuple”

{£(0),£(1),0ee, 2V=1))).
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Recall that a class X is called revealed if for each its
countable subclass Y there is a set u such that Y S u & X; X is
a fully revealed class if for each normal formula c{(xo,XO) of the
language FL (or F'LV -~ it is the same - see [S=V 1]) the class
{ %; ¢(x,X)} is revealed. A relation R will be called conditional-
1y revealed if for each revealed class XC dom(R) the restricted

relation RIX is revealed.

Theorem 1. The following conditions are equivalent for every
relation R:
(1) R is conditionally revealed;
(2) for every set u € dom(R) Rlu is revealed;
(3) for every at most countable relation S € R such that
dom(S) € u € dom(R) for some set u there is a set relation

r such that S € r € R.

Proof. (1) =%(2) is trivial.
(2) => (3): Let SC R, S 4 FN, dom(S) & u & dom(R).
Then S € Rfu. Since RMu is revealed there is an r such that
8C r < RMu €R.
(3) = (1): Let X ¢ dom(R) be a revealed class, S ¢ RMX, S & FN,
Then dom(S) is an at most countable subclass of X. Hence,
dom(S) € u € X € dom(R) for some u. Thus there is an r such that
S € r £ R. Then also S ¢ rfX. Since X and r are revealed, rlX is

also revealed and S € s € rlX ¢ R}'X holds for some s.

A relation S is called a prolongation of the relation R if
R = Sldom(R). Thus a function G is a prolongation of a function F
iff F CG.

Corollary. Every revealed relation is conditionally revealed.

More generally, every relation with revealed prolongation is con-
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ditionally revealed. If R is a relation and dom(R) is revealed then
R is conditionally revealed iff R is revealed.

We record without proof one more result:

Theorem 2. If R and S are revealed (conditionally revealed)

relations then the relation ReS is revealed (conditionally reveal-
ed).

1. Biequivalences, compatibility and compact classes

For well known reasons (sse [V]) it suffices to assume that
all the equivalences considered have the same domain - the whole
universal class V. All the results obtained for them apply to equi~
valences with arbitrary set~theoretically definable domains, part-
icularly, to equivalences on sets. In such a case both the %= and
the e¢-equivalences taking part in a biequivalence are assumed to
have the same domain, called the domain of the biequivalence. Note
that a common domain of a X~ and a e€-equivalence is necessarily
a set-theoretically definable class.

A codable system {Rn; n € F2} of set-theoretically definable,
reflexive and symetric relations is called a bigenerating sequence
provided for each n holds Rn"Rn 4 Rn+1' Similarly as for R'-equi-
valences in [V], the following theorem can be proved.

Theorem 3. A pair of classes (=,¢s) is a biequivalence iff
there is a bigenerating sequence {Rn; n € FZ} such that &= is the

intersection end «» 1is the union of all the relations R,.

In this case {Rn; né pz] is called the bigenerating sequen~
ce of the biequivalence {=,¢+) . Then for each m one can obtain a
generating sequence {pn; n é FN} of the RF~equivalence = putte

ing Py = v2 gnq P, =Ry p 1;:31;):1) 0. Similarly, for each



m {S;; n & FN} where Sy = Id and S, = Ry, for n>0, can be call-
ed the generating sequence of the ¢-equivalence s, The precise
definition is left to the reader.

Given a biequivalence (%,¢») the notions of the monad and
the galaxy of a point x and those of the figure snd the expansion

of a class X ocan be introduced as follows:

Mon(x) = {y; yox} , PigX = {y; (Ixex)yx},

Gal(x) = {y; y¢»x} , Bxp(X) = {y; (Ixe X) y > x}.

When the distinction between several biequivalences e.g.
(Zes) , (3,&B), ete. will be necessary, we will write Mon'(x),
Gel'(x), Pigh(x), eto.

Many results from [V] concerning compact X'~equivalences
(equivalences of indiscernibility in the terminology of [V]) remain
valid for arbitrary 3'-equivalences or can be generslized easily to
them. We state here only those generalizations which are necessary
for our aims, The reference to [V] enables to shorten some proofs
to mere sketches or completely to drop them.

We shall formulate a further condition imposed on biequivalen-
ces resulting from the following observation: No infinite set can
be grasped perfectly at once in its totality within discernation of
each of its individual elements. Thus any infinite set of peirwise
accessible elements has to contain at least two indiscernible ele-
ments; or which is the same, any infinite set of paipwise discern-
ible elements hes to reach beyond the horizon, i.e. it must contain
at least two inaccessible elements.

A biequivalence {=,&») is called compatible if for each infi-
nite set u holds

(¥, 7€ u) xeoy w» ;?IX.ycu)(x;‘y& x=y),




or equivalently
(Yx,yeu)(x2y wb x=y) = (Ix,yeu) xeoy.

Let us point out two extremal cases:
A ¥-equivalence = is called compact if (é,Vz) is a compatible
biequivalence. Dually, a &-equivalence > is called discrete if
{14,&4) is a compatible biequivalence. Thus «~ is discrete iff

each of its galaxies is at most countable.

Example 1. The ¥-equivalence "x = y iff for each set-theore-
tical formula (f(xo) € PL holds Q(x) = @(y)" is compact (see
[v1). It is the equivalence of the orbital partition of the group

of all automorphisms of the universe V acting on V.

Example 2. The €& -equivalence "x AN Yy iff there is a set~the-
oretical formula ¢ (xy,x;) € FL such that

(¥x5)(31x%)) @(xg0xq) & (Vxy)(Alx)) @(x55%y) & P(x,3)"

is discrete. It is the equivalence of the orbital partition of the
group of all set-theoretically definable without parameters one-to-
~one maps F:V —» V., Note that for each such an F and each auto-
morphism A holds TFeA = AoF and both the groups have only the i-
dentity map in common. Thus the least group of one-to-one maps

V — V containing both the mentioned groups is isomorphic to their
direct product. Though 2 and «» are dual in some sense, {2,¢») is

not a biequivalence.

Example 3. The biequivalence { =,¢&+) on the class of all ra=
tional numbers RN defined by
‘x2y wm (¥ne ™) |x -yl <1/(n+1)

x¢»y = (In € PN) |x -~ y[<n
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is compatible.

Example 4. Using the biequivalence (é,é) from the previous
Example one can define for each a € RN a compatible biequivalence

{2, ) on RN as follows:
x8y m x=a=y v (xdagyt (x-a)y-a)ii)
x&y=x=a=yv(x,éa,éygo;g(x_a)/(y_a)‘;’”.

These biequivalences seem to be promising for the study of functi-

ons on rationals and complex rationals near their singularities.

Example 5. For each set u let us introduce a biequivalence
{=",#") on the class RN = { £; dom(f) = u & rng(f) ¢ RN} vy

£ g m (¥xeu) £f(x) = g(x)
e g m (Vx €u) £(x) & g(x)

where {=,«4) is taken from Exemple 3. Then (=",&s") is compat-
ible iff u is finite. Moreover, every set-theoretically definable
class X &€ RN containing the monad of at least one f € RN con-
tains a set v &u of pairwise discernible elements.

The reader is kindly asked to complete the proofs of the ase

gsertions from Examples 1 - 5.

Let us recall that given a symetric relation R a class X is
called an R-net if for all x,y€ X {x,y)e& R implies x = y.
X is a maximal R-net on Z if X is en R-net and Z & R"X. A rela~
tion R is called an upper (lower) bound of the F-equivalence =
( @ -=equivalence «-») if R is set-theoretically definable, reflex-
ive, symetric and = is a subclass of R (R is a subclass of ¢).
R is called a mean bound of the biequivalence {=,&») if it is si-

multsneously an upper bound of & and a lower bound of «. Clearly,
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each relation from the bigenerating sequence is & mean bound of
(6)

Let = be & %¥-equivalence, A olass X is called pseudocompact
in &% if every infinite submset of X contains at least two different
indiseernible elements., Acocording to this definition every subclass
of a pseudocompact class is pmeudocompact. Pseudocompactness is a
rather weak property since there are e.g. uncountsble clesses with-
out any infinite subsets whioh are automatically pseudocompact.

Notice that for an upper bound R of & and any class X holds
X @ R"X, and even more

(¥xe X)(3y e X) Mon(x) s R"{y} ,

hence the oodable olass {R"{ ylsvs X} forms an "open cover"
of X.

Theorem 4. Let = be s ¥=squivalence snd X be a revealed class.

The following conditions are equivalent:

(1) X is pseudocompsot in &;

(2) for each upper bound R of & there is a finite maximal R-net
ugX onX;

"(3) for eaoh upper bound R of = there ia a finite set u & X such
that X ¢ R™u,

Proof. (1) =» (2): If for each n there were an R-net u & X
with exaotly n elaments then by the prolongation axiom an infinite
Renet w @ X oould be obtained, contradioting the pseudocompaciness
of X, Hence, there ia an n & M such that each R~-net u § X has at
mest n=elemants, Then every R-net u ¢ X with maximal possible num-
ber of elements is maximal on X.

(2) wb (3) is trivial.
(3) = (1)1 et {Rync« M} be a generating sequence of & end
for each n u, S X be & rmifesg:t_luoh thet X &R "w,. Let



v @X be an infinite set. For esach n € FN there is an X, € ugsuch
that the set v n Rn" { xn} is infinite. By the axiom of prolonga-
tion there is en x € X such that the class v n Mon(x) contains

at least two elements,

A class X is called compact in the ®=equivalence = if it is
pseudocompact and revealed, We let to the reader the proof of the
following

Theorem 5. Let X be a compact class in the x-aquival'enoe =,
Then for each VY € N=-FN there is a set u 3 y such that
u g X ¢ Pig(u), Hence Fig(X) = Fig(u) is a compact X'~class,

Corollary. For a revealed class X the following conditions are
equivalent:
(1) X is pseudocompact; (2) X is compact; (3) Fig(X) is pseudo-
compact; (4) Fig(X) is compact; (5) Pig(X) is a compact ® ~class;
(6) (YveN-m)(Ju)(uR v & u & X & Fig(X) = Fig(u)).

Theorem 6. Let {Rn, n ¢ F'N} be a generating sequence of
the %X-equivalence =, {}%, n € FN} be a sequence of classes and
{un; n € FN} be a sequence of seta such for each n X & X .4
and X, € R "w,. Then for every set u such that U{un; né€ FN} Cu
holds Y[{X,3 n € N} ¢ Fig(u).

Proof. If x € X, then there is a sequence {yk; k € FN}
such that ¥y €w . ARM {x} . By the axiom of prolongation, there
is a y € u such that x = y.

Using Theorem 6 one can prove similarly as in [V]

Theorem 7. Let = be a X-equivalence, {xn; ne€ FN} be a se-

quence of revealed classes and X = U{&) ne M}, Te following
conditions are equivalent:

(1) X is pseudocompact;

(2) for eachn € FN X, ia p;eudocompaot (hence compaot);
: 5 -



(3) for each infinite natural number Y there is a set ug v
such that X ¢ Fig(u);
(4) for each infinite set u ¢ X +there is an infinite set v cu

such that (Vx,y e v) x = y.

A class which is the union of countably many compact classes

will be called 6=compact (in =).

Corollary. If X is a ®&-compact class then Fig(X) is a

@g-compact @Xx=-class,

Corollary. A biequivalence (=,¢4) is compatible iff for

each x Gal(x) is @=-compact in =,

Theorem 8. Let be a X=-equivalence end A be & @-class
which is a figure in =. If A is €=-compact then there is a compact

¥-equivalence £ such that (=fA) = (ZPA).

Proof. Put x Xy = Mon(x)n A = Moxr(y) n A.

Theorem 9. Let

class in £ and C be a conditionally revealed relation such that

and I ve two X=-equivalences, K be a compact

K ¢ dom(C), for each x e K the class e { x} is compact in = and

(Vx5 € dom(C))(x £y = c"{ x}=c"{y]).

Then the class C"K is compact in =.

Proof. It suffices to show that for every revealed relation C
such that dom(C) is compact in %, c* {x} is compact in = for each
x € dom(C) and for all x,y € dom(C) x £ y implies c" {x}=c"{y}
also rng(C) is compact in =. Obviously, rng(C) is revealed., Let
u ¢ rng(C) be an infinite set. As for each x € dom(C) ‘the class
unc'lx} 'is revealed, it suffices to show that for some
x € dom(C) the class u n C"f‘ x} is infinite. Then it will contain
an infinite subset and the compactness of C"{ x} will complete the

proof. Contrarywise, assume that for each finite set w ¢ dom(C)
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un C'w is also finite. Then one can construct two sequences

(%; ne N} and logsne PN}  such that for each n holds

b € dom(C) end a € (u=-c"{b; i¢n})ac"{b,}.

Then F = {(bn,a,n) ; n€FN}CC is a one-one countable function
and rng(F) ¢ u. Then there is a one-one set function f such that
FSfGC and rng(f) ¢ u. Then dom(f) is an infinite subset of
dom(C). There has to be an infinite set v ¢ dom(f) such that
(¥Vx,y € v) x f y. According to the last property of C, for all

x,y € v holds f(y)e c"{y}=cC"{x}, thus

(Vxev) £ cun c"{x}. As f is one-one, f"v is infinit;.

This contradiction proves the Theorem.

In particular, putting (=) = (¥) = C in the last Theorem,
one obtains a new proof of the fact that the figure of a comnact

class is compact.

Theorem 10. Let = be a %=-equivalence. The following condiv
tions are equivalent:
(1) there is a ¢=-equivalence <> such that (é,q-'->> is a com~
patible biequivalence;
(2) there is an upper bound R of = such that the class R"{«x}

is compact for each x.

Proof. (1) = (2): Any mean bound R of the compatible biequi-

valence {&,¢+) has the required property.

(2) => (1): Let S be an upper bound of = such that SeS ¢ R.
Then the relation C = Se(&) is revealed, satisfies x = y « C"{x}=
= C"{y} and the class C"{x} ¢R"{x} is compact for each x.
Applying Th;orem 9, the compactness of all the classes (e { x}
(n ¢ W - {0} ) follows by en induction argument. Hence all the
classes (SP)=» [x} ¢ (c“)"{x} are compact, &s well. Then

() = Y{s®; n € MW} is a €-equivalence, = is a subclass of
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4, and the biequivalence {=,¢») has ¢-compact galaxies.

Remark. Theorem 10 reminds of the following result from the
classiocal topology:
"For a topological space

X the following conditions are
equivalent:

(1) X is the direct sum (dsjoint disconnected union) of &=-compact
spaces;

(2) +the topology of X is induced by a uniformly locally compact
uniformity;

(3) X is looally compact and paracompact.”
(See e.g. [K].)

As any galaxy of a biequivalence is a clopen class (see [V]),
the conditions (1) of Theorem 10 and of our Remark seem to
be very similar. (However in the AST the domain of a biequivalence
can be well connected even if it consists of mors than one galaxy.)
The relationship of conditions (2) is even more transparent. This
could suggest the idea to combine the Stone result on paracompact—
ness of metrizable spaces (see [K]) from the classical topology
end the Ml¥ek’'s metrization theorem for X-equivelences (see [M2])
from the AST. Thus one could expect that the following condition
is equivalent to conditions (1) and (2) of Theorem 10:

(3) Por each x there is a set-theoretically definable class X
suoh that Mon(x)C X eand X is compact in =,

Though (2) =» (3) is trivial, the following example shows
that this implication cannot be reversed,

Example 6. Let 3 be an infinite natural number and = be
the X-equivalence on BN“ introduced in Example 5. We put

Tm [(f,8«) CRx RN xN; {2¢V; £(3) £ g(M)} 3 1
2 (V2w | £ -sgéa)\ ¢ {o,1/2*"}},



= {(ga)eRN"xv; g0)=a &
(¥2<»Ak0 »gd)=0)}.

Then the set T¥a ¢RN”  is the union of sets T { (g, a)} («<¥)
each of them consisting of the corresponding function g and 2y
functions differing from g in exactly one argument by the value
¥ 1,2%*" Dhen the X-equivalence &”}I"a satisfies (3) but not
(2) of the last Theorem.

I1f {""’n' ne€ F’N} is a sequence of ¢-equivalences then the

leaat equivalence
Uléns n e N} = U {((esp)eanio(e™))?; n € m}
containing all the equivalences ‘;’n is a @¢=-equivalence, again.

Theorem 11. Let {-'-n; n € m} be a sequence of f~equivelen-
ces and {‘:’n‘ n € FN} be a sequence of @-equivalences such
that for all m,n (:-m,o-'-on) is a compatible biequivalence. Then
( n{-’-n; n€m}, O{cuns n¢M}) is also a compatible bi-

equivalence.

Proof. We put (&) = p{&;n @ W] and (&) = (J{e; ne
PN }. Obviously, {%,¢s) 4s a biequivalence. By a slight modi-
fication of the proof of compactness of the intersection of count-
ably many compact X~equivalences (see [V]) it can be shown that
for each n the biequivalence (-'-,o-'-’n) is compatible. Let
S, k € N} be a generating sequence of «4,. Let

B = (Sp® e 8y ).
Then (e) = ) {Tk’ k € PN} . Similarly as in the proof of Theo-
rem 10 one can show that for each x and each k the cleass
Tk"{ x} is compact in =,

A biequivalence (=,¢») is called tighter than the biequi-
valence (,ds) (and (t,tt;§9 1s looser than (&,es) ) if




() € (&) end (&) € (3).

Theorem 12. If the biequivalence {=,&») is tighter than
the biequivalence (&%) and (%,&) is compatible then
{=,&») is also compatible.

For every &=-class A {(u,v) ;unA=vni} is a W-equi-
valence which is compact iff A is at most countable. More gene-
rally, let = be a %¥-equivalence and A be a €-class which is

a figure in =. The power equivalence of = restricted to A is
defined as follows:

u éA v = Pig(u) n A = Fig(v) n A.
Since A is a figure in =, we have
ue, v = Figu n 4) = Fig(vn 4).

Theorem 13. Let = be & X-equivalence and A be @-class
and a figure in =, PFor arbitrary u,v holds

u -'-A v m (Iw)(unAd=wnAS§ Fig(w) = Fig(v)).

Proof. Let {%; n € FN} be an increasing sequence of set-
~theoretically definable classes whose union is A md{R; n € FN}
be a generating sequence of =, The reader can easily verify that
(¥n)(J k) R ,"A, € A since A is a figure. Withox;t loss of gene-
relity we can assume that the sequences were chosen in such a way
that Rn"LnQA holds for each n. Let us define a sequence of sets
by

wy=(WnAR"A) U (v=a4A).

Then for eacp n holds u nA =wnA, and Fig(wn) = Fig(v).
To prove the last claim essume x € w,. If x ¢ A, then x€v

or xeun(R"A =-A)CunA. If xe€ then x€u nA. In
A
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any case x e Fig(v). Similarly, if x € v then either x ,e%
and x € W, or X € A, x € vn A, ¢ Fig(v) n%?ﬁg(u)n&ng
Fig(u n Rn"‘Ah) < Fig(wn). By the axiom of prolongation there is a
w such that u nA=w n A and Fig(w) = Pig(v).
Now, let w satisfy both the conditions. Then
Fig(u) n A = Fig(u n A) = Pig(w n A) = Pig(w) n A = Fig(v) n A.

Corollary. For every X-equivalence = and every @-class A
which is a figure in = the restricted power‘ equivalence E'A is a
W -equivelence. It is the least equivalence E such that for all u,v

unA=vnAw={uv) € E and Fig(u) = Fig(v) =3 {u,v) € E.

The reader will easily find examples that neither the Theorem
nor the Corollary have to be true without the assumption that A is
a figure.

Theorem 14, Let = be & 3F=equivalence and A be a §-class
which is a ¢-compact figure in =, Then the X=-equivalence ';A is

compact.

Proof. Let {An, n € FN} be an increasing sequence of set-
~-theoretically definable (hence compact) classes whose union is A.
For each n we put u =) v iff Fig(u n A)) n A = Fig(vn A)) n Aj.
Obviously, each '.'n is a 3¥-equivalence. We claim that it is compact.
Given any infinite set s, there are either u ¥ v in 8 such that
un An =vnNn %, or f(u) =un A, is a one-~to-one map of 8 onto
a subset of P(A)). Since &PA, is a compact ¥-equivalence, also
its (unrestricted) power equivalence is compact (see [V]). Thus
there are u® v in 8 such that u én v. Now, it suffices to show

that the compact X-equivalence n{éni n &« FN} is finer than =

If u é‘n v for each n then

UiFigu nA) nA; n e m} = U{rie(v na) n A ne mw}.
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The equality | {Fig(u n AN A;ne M} = Pig(u) n A concludes
the proof. In fact, one inclusion is trivial. Let x ¢ Fig(u) n A.
Then X = y for some Yyéu. Since A is a figure there is an n

such that x,y € A,. Then x €Fig(u nA ) nA.

Corollary. Let (=,e+) be a compatible biequivalence. Then

for each point a ;Gal(a) is a compact AX'~equivalence.

2. Continuous relations

Throughout this section = and & denote two fixed #=equiva~-

lences with generating sequences {Rn‘ nefN} end {Sn; n ¢ W},
respectively. The variables R and S always denote upper bounds
of & and 3, respectively. Sometimes & and £ will ve consider-
ed as parts of biequivalences {&,&») ana (f,A).

The product of the biequivalences (<,é+) and {&,) 1s
the biequivalence {&,¢%) with domain V2 defined in the follow-
ing natural way:

{a,x) = (b,y) m eamdbaxiy,

(a,x) & (b,y> m aesb Lxeédy,

On the base of Theorem 4 it is routine to check

Theorem 15. The biequivalence (&,&) 1is compatible iff both
(&) end (:,0"-%) are compatible. In particular, & is compact
iff both % and % are compact; & is discrete iff both &+ and

& are discrete.

A relation C dis called pseudocontinuous from % to & in
the point x & dom(C) if for each y G dom(C) y % x dmplies
Fig(c" {y} ) = F4g(C" {x} ). C is oalled pseudocontimuous from =
to & on the class X ¢ dom(C) if it is pseudocontinuous in each
point x € X; C is paeudocontinuous from i to & if 1t is

pseudocontinuous on dom(C).
- 542 =



Thus a function P 1is pseudocontinuous from i to = on the

class X € dom(F) iff .

(¥x € X)(Vy ¢ dom(P))(x £y wp F(x) & F(y)).

Some further notions can be easily reduced to the notions al-
ready introduced. A relation C is pseudocontinuous from f to =
with respect to the class M (in the point x € M ¢ dom(C), on the

b4

class X ¢ M ¢ dom(C)) if CM is pseudocontinuous from to =

(in x, on X). Notice that if M = Fig"(M) < dom(C) then C 1is
pseudocontinuous from £ to = with respect to M iff it is pseu~
docontinuous on M.

In the sequel any continui#y notion always means continuity

3

from £ +to =,

Theorem 16. Let C be a relation. Then ¢ is pseudocontinuous
iff (&)ece(Epdom(c)) = (=)eC.

Proof. Let C be pseudocontinuous. If a &b, {(b,y)> € C and
Yy % x edom(C) then a ¢ Pig(C"{y} ) = Piglce {x}) end
{a,x) & (%)eC. The other inclusion is trivial, Now, assume that
the sbove equality holds. Let x,¥y &€ dom(C), x & y. Then

Pig(c” {x} ) = ((2)oC)" {x} = ((&)oCe(Xtdom(C)))"{ x}

= (()oco(Etdom(C)))"{ v} = ((%)eC)" (¥}
= Fig(c” [y} ).

Note- that every relation C satisfying the last presumption
of Theorem 9 is pseudocontinuous. If C is a conditionally revealed
pseudocontinuous relation then the relation D = (£)eCo(X dom(C))
= (%)eC 1is zlso conditionally revealed and satisfies the last pre=
sumption of Theorem 9. If C* {x} is compact in & then -D"{ x}=
-Fig'(C"{ x}) is also compact by the virtue of Theorem 5. Now, given
any revealed class X € dom(C) ' the class C"X 4is compact in =
iff D"X = Fig(C"X) 1is compact in &. We have proved the following
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generalization of Theorem 9:

Theorem 17. Let C be a conditionally revealed pseudoconti-

nuous relation. Let K Cdom(C) be a compact class in % such

that for each =z € K C" {x} is compact in =. Then the class C"K

is compact in =.

As each one point set is compact, Theorem 17 has the following

Corollary. Let F be a conditionally revealed pseudocontinuous

function. If K ¢ dom(F) is a compact class in % <then PF'K is

compact in =,

Even for functions with compact domains the notion of pseudo-

continuity is too weak to formalize the continuity phenomena.

Exemple 7. Let I = [x €RN; O ¢ x4 1} be the unit interval

of rational numbers, = be the common indiscernibility on rationals
introduced in Example 1 and FRN be the class of all finite rational

numbers (see [V]). Then the "Dirichlet function" on I

1 if x € I n Fig(FRN)
F(x) =

0 if x e I - Fig(FRN)

is pseudocontinuous from =P to =]I.

Extending the classical definition of continuity from functions
to relations, a relation C will be called continuous (from i to
=) in a point x ¢ dom(C) if for each upper bound R of = there
is an upper ’bound S of % such that (ces)"{ x }Q(Rac)" {x}.

C is called continuous on the class X ¢ dom(C) if it is conti~

nuous in each x € X; C 1is continuous if it is continuous on

dom(C). Finally, ¢ is called uniformly continuous if for each upper
bound R of = there is an upper bound S of % such that
CeSpPdom(C) ¢ ReC. - 544 =



The reader can asily verify the following facts:

(1) every uniformly continuous relation is continuous;

(2) if ¢ is continuous in x and C" {x} is revealed them ¢C
is pseudocontinuous in x;

(3) if C is continuous snd O"{ x} is revealed for each

x € dom(C) then C is pseudocontinuous.

Mainly for the simplicity and transparentness of the notion
of pseudocontinuity we examine some fairly weak conditions under

which pseudocontinuity implies continuity or uniform continuity. '’

A relation D will be called an approximate prolongation of
the relation C with respect to the 7W=equivalence = if for each
x € dom(C) holds Pig(c" { x}) = Fig(D" {x}). In the sequel an
"approximate prolongation"” always means an approximate prolongation
with respect to the X=-equivalence = fixed at the beginning of the
section. Note that if D is an approximate prolongation of C then
dom(C) € dom(D) and (=)°D is a prolongation of (=)oC. Obviously
every prolongation of C is an approximate prolongation of C.

Theorem 18. Let C be a relation and x ¢ dom(C). Assume that
there is a set-theoretically definable class X such that
Mon*(x) € X and a revealed approximate prolongation D of CIMX
such fhat D" { x} is fully revealed and D is pseudocontinuous in

X. Then C is continuous in x.

Proof. Let m € FN be such that S-"{ x]g X. Let R be such
an upper bound of = that for each m > m <there is a pair
<bn'yn) € C such that (yn,x)esn and bnf (ReC)" {x} . Let
Ry be an upper bound of = satisfying RyeR; & R. Then for each
nn (bn.y‘) € (=)D and bn¢ (Rye D)" {x} . By the axiom of
prolongation there is a pair (b,y) € (&) D such that y & x

and b ¢ (R°D)" [x}. This contradietion proves the Theorem.
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Our next result is & direct consequence of the last Theorem.

Theorem 19. Let C Dbe 2 relation. Assume that for each
x € dom(C) there iz an X € S4, such that Mon*(x) ¢ X and a re-
vealed prolongstion D of CFX such that D"{ x} ia fully reveal-
ed amd D is pseudocontimmous im x. Then C is continuous.

Theorems 18 and 19 have the following

Corgllary. Let C be a revealed relation.

(1) If x ¢ dom(C) md the class C"| x} is either fully revealed
or pesudccompact (hence compact) in =» then C is continuous
in x iff C is pseudocontinuous in x.

(2) If for each x € dom(C) the class C"{ x} is either fully re-

vealed or compact in = then C is continuous iff C is
pasudocontinucus.

Proof. It is emough to prove (1). The case when C"{x} is=
fully revealed easily follows from Theorem 18. So let c*{ x} be
compsct and u be & set such that Pig(C"{x]) = Fig(u). Then the
class X =V amd the relation

D= (- (vx{x]}) u (ux}x])
sstisfy the presumptions of Theorem 18.

Note that for a function P all the clesses ix} = {P(x))
where x € dom(P) are both fully revesled and compact.

Thus peeudocentimmity implies continuity under some asssumptions
on loeal approximate prolongability to a2 revealed relation. To ensu-
re wniform contimzity the existence of certain global revealed
approximate i:molomtiom is needed. The next Theorem corresponds
rather to the last Corollary than to Theorems 18, 19. ’

Theorem 20. et C Dbe & relation and D Dde & revealed approxi-

mate pseudocontimuous prolongstion of C. If D is either fully re-
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vealed or for each x€ dom(D) the class D"{ x} is compact in =
then C is uniformly continuous.

Proof. Assume that D is fully rasvealed and R is such an
upper bound of = that for each n thers is a pair
{x,¥p> € Sy n dom(C)?> and an a, such that (a,x.> € C and
(%,yn) ¢ RoC. Let R, be an upper bound of = satisfying
Ry*RyCR. Then for each n also holds {x,,y,> € S, n dom(D)?,
(8x,) € ()oD end (s,n,yn) ¢ Ryo D, By the axiom of prolonge~
tion there is a pair <{x,y) ¢ () n dom(l))2 sand an a such that
{a,x) (=) oD and {a,y> £R;°D = & contradiction.

To prove the second case we record the following obvious

Lemma. A relation C is uniformly continuous iff for sach

countable class X € dom(C) +the restricted relation CMX is uni-

formly continuous.

Now, let all the classes D"{x} (x € dom(D)) be compact
and X = {xk; k € F’N} S dom(C) be a countable claas.

As all the classes Fig(C"{xk}) ares compact, for esch n
there iz a sequence {"nk‘ k € FN} of finite sets such that
(Vn,k) Wy € D"{x, } € R "w; . Then there is a set relation 4
such that

Ufuge x{x} 3 (xpm) em"’} g acgd ,
and consequently (¥k) Fig(a"{x }) = Pig(D" {x.}).
Hence there ie & set w C dom(d) containing X such that
(¥x €w) Pig(a"{ x}) = Pig(D" {x}) (=1l the classes PFig(D"{ x})
are WN=-classes). Then the set relation dlw is a p_nudoconti.nuous
approximate prolongation of C}X. By the first part of Theorem 20
which was alresdy proved C}X is uniformly continuous. The Lemma
completes the proof.

Theorems 18, 19, 20 are much mors general thay we really
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need. In most cases the functions and relations studied will be at
least fully revealed (or even set-theoretically definable or sets).
Our theorems can be then used to obtain results like the following:

Theorem 21. (1) Let C be a fully revealed relation. Then C

is continuous (in the point x € dom(C), on the class X ¢ dom(C))

iff C is pseudocontinuous (in x, on X).

(2) Let F be a revealed function. Then F is uniformly continuous
iff it is pseudocontinuous.

(3) Let C be a fully revealed relation. Then C is uniformly conti-

nuous iff it is pseudocontinuous.

When studying relations on the universe V endowed with diffe-
rent ¥ -equivalences = and ;, the power of the ¥-equivalence &

defined on the domain P(V2) by

r :‘p s m Pig(r) = Fig(s)

seems to be the most promising framework for classifying their sha-
pes. When studying functions then the A&’=equivalence

dom(f) = dom(g) & (¥x € dom(f)) £(x) = g(x))
seems to be more interesting and natural. It can be generalized to

arbitrary relations as follows

r=s = (Vx) Fig(r" {x}) = Fig(s" {x}).
The problem of finding the "best" i-equivalence on P(Vz) classi-
fying the behaviour of relations with respect to the original

X -squivalences = sand i hasa common solution for comtinuous

relations.

Lemma. Let C be a relation and D be a pseudocontinuous re-
lation such that dom(D) is a figure in %. The following conditions
are equivalent:

(1) (¥Yx,3)(x =y = Pig(c" {x}) ¢ rig(D" {y}));

e



(2) (¥x) (rig(c" {x}) € Pig(d" L x}));
(3) Fig"(c) ¢ Pig" (D).

Proof. (1) =» (2) is trivial.
(2) =» (3): 1f {(a,x) € C then a= Db for some be D" {x}
and  {a,x> = {b,xDeD.
(3) =» (1): Since D is pseudocontinuous and dom(D) 1is a figure
in :. Theorem 16 yields

Pig" (D) = (2)eDe(¥) = (&)oDe(¥Pdom(D)) = (a)eD.

It x¥y end (a,x) € C then {(m,y> € Pig"(D) and a =b,
{b,y) € D for some b. Thus a € Pig(dD"|y}).

Theorem 22, Let C and D be pseudocontinuous relations
such that dom(C) and dom(D) are figures in £, The following
conditions are equivalent:
(1) (¥x,3) (x*y = ridc"{x}) = Fig(d"{ y});
(2) (¥x) (rig(c"{ x}) = rig(D" {x}));
(3) Pig"(c) = Pig"(D).

Proof is trivial in view of the Lemma.

Note that the Lemma and Theorem 22 apply to arbitrary equiva-
lences =, & (without the assumption that they are X -classes)
under the obvious extension of the definition of pseudocontinuity.

Theorem 16 remains true, as well.

Let v be an infinite natural number. Put
o wmo/yap/y foru,pLY

n+

2
where = is the common %¥-equivalence on RN. Then f isa compact
% -equivalence on v+ 1. In fact * "coincides" with = on the
set X';', 0% & 4%} . Let us consider the linear space RO of an1
Y+ 1 « tuples of rationals with the operations defined component-

wise in the obvious way and wisth the norm
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k=Y tec@in.

« =0
Theorem 23. Let f,g € RN'*' ve continuous functions from ¥
to =, Then each of the conditions (1) = (3) of Theorem 22 is equi-
valent to

(4) lz=-gl =o0.

Broof. It is enough to consider the case g=[0}x (v+ 1),
If for each o« &% holds f(au) = 0 then obviously £l s 0. Let
[£(a)l >1/n for some d4y , n € PN = {0} . Then there are
g+ 8 4y such that yeu&d, rAS ma |2(p) > 1/2n for
esch b, 7‘5{955, Then

3
I£1 3 ) le(@l/s > (§=y+ 1)/20% Ko,

pNw
The result extends with some effort also to other norms e.g.

to v
1712 = ) 2w)?A.

“wl

OCondition (2) of Theorem 22 itself defines a ZX-equivalence on
RN"*!  induced by the norm

i£] = max {lf(u.)l;nuﬂo-‘l}.

The reader will emsily find examples of motions in the time »
with respect to the ¥w-equivalence = on RN omitting eny of the
implications (2) =» (1), (3) =b (2), (4) => (2), (3) = (4) and
(4) =» (3) between the conditions of Theorems 22 and 23. Thue the
pseudocontinuity assumption cannot be removed.

Applying the results on (restricted) power equivalences and
Theorem 15 to Theorems 22 and 23 a series of compactness results
concerning continuous relations can be obtained. Let us quote the
following two examples (nof the moat general ones):

Theorem 24. Let = and f be two compact X-squivalences and
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Ve dom(:) be a set. Then for every infinite set u of continuous
relations from % to = with common domein v there ars two

different relations r,s € u such that r = s,

Theorem 25. Let (=) and {%,&5) be two compatidle bi-
equivalences and Gal"'(z) be a semiset. Let u be an infinite set
of functions such that

(Ve u) 6al¥(z) ¢ dom(f),
(V2,8 € u)(V¥ x,y € Gal*(z)) £(x) > g(y)

and each f e u 1is continuous on Gal*(z). Then there are two dif-
ferent functions f,g € u such that

(Vx € ca1¥(z)) £(x) = g(x).

From sny of Theorems 24 and 25 one can derive a corollary on
"filling the screen by continuous curves"., This result was communi-

cated to the authors by P. Vopenka.

Corollary. Let « snd £ be two compact X -squivalences and
dom(X) = v be a set. Let R be a relation such that the codable
class R"{ x} /% is uncountable for at least one x € v. Then in
sach set u of continuous functions with domain v such that
R ¢ Fig"(Uu) there are at lsast two functions f ¥ g such that
(Vx e v) £(x) & g(x).

Proof. Obviously, u cannot be finite.
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