Commentationes Mathematicae Universitatis Caroline

W. Poreda; Elzbieta Wagner-Bojakowska; Władysław Wilczyński Remarks on I-density and I-approximately continuous functions

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 3, 553--563
Persistent URL: http://dml.cz/dmlcz/106392

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

REMARKS ON I-DENSITY AND I-APPROXIMATELY CONTINUOUS FUNCTIONS
W. POREDA, E. WAGNER-BOJAKOWSKA and W. WILCZYŃski

Abstract

Special properties of I-density points, topologies J_{I} and I-approximately continuous functions are investigated on reals, where I is a proper σ-ideal of sets.

Key mords: Density point, approximately continuous function.
Classification: 54H05, 26A99

This paper is a refinement of a paper [2] in which we have introduced the notion of I-density point and proved that it leads in a natural way to an interesting topology on the real line.

We have found also basic properties of real functions which are continuous with respect to this topology. Here we present some special properties of I-density point, topology \mathcal{S}_{I} and I-approximately continuous functions.

Let (X, S) be a measurable apace and let ICS be a proper orideal of sets. We shall say that some property holds I-almost everywhere (in abbr. I-a.e.) if and only if the set of points which do not have this property belongs to I. We shall say that the sequence $\left\{f_{n}\right\}_{n \in N}$ of S-measurable real functions defined on X converges with reapect to I to some S-measurable real function f defined on X if and only if every subsequence $\left\{f_{n_{m}}\right\}_{m \in N}$ of $\left\{f_{n}\right\}_{n \in N}$ contains a subsequence $\left\{f_{n_{m_{p}}}\right\}_{p \in N}$ which converges to f I-a.e. We shall use the denotation $f_{n} \xrightarrow[n \rightarrow \infty]{I} f_{\text {. }}$

Now let $X=R$ (the real line), let S be a σ-algebra of Lebengue measurable sets and mas Lebesgue linear measure. 4 point 0 is a density point of a set $A \in S$ if and only if $\lim _{h \rightarrow 0^{+}}\left[(2 h)^{-1}\right.$. - $m(A \cap[-h, h])]=1$. Observe that this condition is fulfilled if and only if $\lim _{n \rightarrow \infty}\left[\left(2^{-1} n\right) \cdot m\left(A \cap\left[-\frac{1}{n}, \frac{1}{n}\right)=1\right.\right.$. The 1ast 11mit can be described in terms of convergence in measure in the following way: 0 is a density point of A if and only if the aequence $\left\{x(n, A) \cap[-1,1]^{\}} n \in N\right.$ of characteriatic functions (where $n \cdot A=\{n x: x \in A\}$) converges in measure to 1 on the interval $[-1,1]$. This fact is the basis for the following definition, where $X=R, S$ is a 6 -aigebra of aubsets of R invariant with respect to linear tranmformations and ICS in a σ-ideal, which is almo invariant with reepect to linear transformations.

Definition 1. We shall say that 0 is an I-density point of

We mall say that x_{0} is an I-density point of $A \in S$ if and onIy if 0 is an I-density point of $A-x_{0}=\left\{x-x_{0}: x \in A\right\}$. We shail say that x_{0} is an I-diaperaion point of $A \in S$ if and only if x_{0} is un I-density point of R - A. Observe that O is on I-diapersion point of A if and only if $x(n, 1) n[-1,1] \underset{n \rightarrow \infty}{I} 0$.

Similarly one can define right- and left-hand I-density pointe. We can take some interval $[-a, a], a>0$, inmtead of $[-1,1]$.

In the sequel we whall consider only seta having the Baire property as the 6 -algebra S and for I we ahall alway take the family of meager eets. Under these assumptions we haves

Lemma 1. If 1 is an open set and the sequences $\left\{i_{n}\right\}_{n \in N}$ and $\left\{f_{n}\right\}_{n \in H}$ have the following propertiess $i_{n}>0, j_{n}>0$ for each $n \in N$, $\lim _{n \rightarrow \infty} i_{n}=\infty, \lim _{n \rightarrow \infty} j_{n}=\infty, \lim _{m \rightarrow \infty} \frac{j_{n}}{i_{n}}=1$ and if

$$
\begin{array}{lll}
x_{\left(i_{n} \cdot A\right) n[-1,1]} & \longrightarrow \rightarrow \infty \\
x_{\left(j_{n} \cdot A\right) n[-1,1]} & \text { I - a.e., then al.eo } \\
& \text { I - a.e. }
\end{array}
$$

Proof. Suppose that $X_{\left(i_{n} \cdot A\right) \cap[-1,1]} \longrightarrow \boldsymbol{m \rightarrow \infty} 0 \quad I-$ a.e. Then the set of all $x \in[-1,1]$, for which the sequence
$\left\{\chi_{\left(1_{n} A\right) n[-1,1]}(x)\right\}_{n \in \mathbb{I}}$ does not converge to $z e r o$, belongs to I. The lant aet is equal to $[-1,1] \cap \lim _{n} \sup \left(i_{n} \cdot A\right)$, so we have $[-1,1] \cap \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty}\left(1_{k} \cdot 1\right) e$. I. Since the last sot in of type G_{σ} and meager, it must be nowhere dense. We shall prove that $[-1,1] \cap \bigcap_{m=1}^{\infty} \varliminf_{k=m}^{\infty}\left(J_{k} \cdot A\right)$ is also nowhere dense. Let $[a, b] \in[-1,1]-$ - $\{0\}$ be an arbitrary non-degemerate interval. For convenience suppose that $a>0$ (in the case $b<0$ the proof is analogous). It follows that there exdsts a non-degenerate interval $[c, d] \in[a, b]$ such that $[c, d] \cap \bigcap_{n=1}^{\infty} \bigcup_{k=m}^{\infty}\left(i_{k} \cdot A\right)=\varnothing$. So for every $x \in[0, d]$ there exista a natural number $n(x)$ anch that for every natural number $k \geq n(x)$ we have $x \nmid i_{k}$. A. Let $E_{n}=f x \in[0, d]_{; ~} n(x) \leq n$. The sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ of sets is increasing and $\bigcup_{n=1}^{\infty} E_{n}=\{0, d\}$. Hence thore existe a number $n_{0} \in I$ and non-degenerate interval $[e, f] \subset[c, d]$
 $\left(E_{n_{0}} \cap[e, f]\right) \cap\left(1_{k} \cdot A\right)=\varnothing$, so $\left(\overline{E_{n_{0}} \cap[\theta, f]}\right) \cap\left(1_{k} \cdot A\right)=\varnothing$ (it follow immediately from the fact that i_{k}, \perp is open). But $\overline{E_{n_{0}} \cap[e, f]}=[e, f]$ so at last we have $[\theta, f] n_{k} \bigcup_{n_{0}}^{\infty}\left(i_{k}-A\right)=\varnothing$.Take $\varepsilon>0$ auch that $g=(1+\varepsilon) \cdot \bullet<(1-\varepsilon) \cdot \mathrm{P}=\mathrm{h}_{0}$ Let $\mathrm{H}_{0} \simeq \mathrm{n}_{0}$ be euch a number that for $n>H_{0}$ we have $(1-\varepsilon) i_{n}<j_{n}<(1+\varepsilon) i_{n}$ (such n_{0} does exiat aince $\frac{j_{n}}{I_{n}} \xrightarrow[m \rightarrow \infty]{ } 1$). Observe that for each $\mathrm{m} \geq \mathrm{H}_{0}$ and for arbitrary $\mathrm{J} \in \mathbb{A}$ we have $i_{m} \cdot J<e$ or $i_{m} \cdot \mathrm{y}>1$. Hence for $m \geq N_{0}$ and for $J \in A$ we have $j_{m} \cdot j<(1+\varepsilon) \cdot i_{m} y<(1+e), e=$ $=g$, when $i_{m} \cdot y<e$ or $j_{m} \cdot j>(1-\varepsilon) \cdot i_{m} \cdot y>(1-\varepsilon) \cdot \rho=h$, when
 = 毋. - 555 -

From the above reasoning it follows that for every interval $[a, b] \subset[-1,1]-\{0\}$ there exists a non-degenerate interval
$[g, h] \subset[a, b]$ arch that $[g, h] \cap \lim _{m} \sup \left(f_{n}, A\right)=\emptyset$ so $\lim _{m} \operatorname{mup}\left(j_{n}, A\right)$ is nowhere dense and obviously belongs to I. So we obtained that $X_{\left(j_{n}-A\right) \cap[-1,1]} \xrightarrow[n \rightarrow \infty]{ } 0 \quad$ I-a.e. which ends the proof of the lemma.

Corollary 1. A point x_{0} is an I-density point of the set $B \in S$ if and only if for every increasing sequence $\left\{t_{n}\right\}_{n \in H}$ of poaitive real numbers tending to infinity there exists a sabsequence $\left\{t_{n_{m}}\right\}_{m \in N}$ such that $X_{\left(t_{n_{m}} \cdot\left(B-x_{0}\right)\right) n[-1,1] \overrightarrow{m \rightarrow \infty} 1 \quad \text { I-a.e. } .}$

Theorem 1. There exists an open set $E=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$ where $\left\{b_{n}\right\}_{n \in N}$ tends decreasingly to zero, $a_{n+1}<b_{n}<a_{n}$ for each $n \in N$ such that 0 is an I-dispersion point of E.

Proof. Observe that from the definition it follows immediately that 0 is an I-dispersion point of some set $E \in S$ if and only if for every increasing sequence $\left\{n_{m}\right\}_{m \in N}$ of natural numbers there exists a subsequence $\left\{n_{m}\right\} p \in \mathbb{p}$ such that $\left.\chi_{\left(n_{m}\right.} E\right)_{a}[-1,1] \xrightarrow[n \rightarrow \infty]{ }$ $\xrightarrow[i \rightarrow \infty]{ } 0$ I-a.e. So we ought to construct a set E fulfilling the above described condition. In virtue of the fact that E will, consist only of positive numbers we shall consider the characteristic function in the interval $[0,1]$ instead of $[-1,1]$.

Let $\left(a_{1}, b_{1}\right) c(0,1), a_{1}>0$ be an arbitrary interval. There exists exactly one natural number q_{1} such that $\left(q_{1} a_{1}, q_{1} b_{1}\right) \cap$ $n[0,1]+\varnothing$ and $\left(\left(q_{1}+1\right) \cdot a_{1},\left(q_{1}+1\right) \cdot b_{1}\right) \cap[0,1]=\varnothing$. Choose $b_{2} \in(0,1)$ anch that $\left(q_{1}+1\right) \cdot b_{2}<2^{-1}$. Let $a_{2}=\frac{2}{3} b_{2}$ and q_{2} be a natural number much that $\left(q_{2} a_{2}, q_{2} b_{2}\right) \cap[0,1] \neq \emptyset$ and $\left(\left(q_{2}+1\right) \cdot a_{2}:\left(q_{2}+1\right) \cdot b_{2}\right) \cap[0,1]=0$. There is exactly eape such - 556 -
${ }^{9}{ }^{\circ}$
Suppose that we had already ahosen a_{i}, b_{i} and q_{1} for $1=$ $=1,2, \ldots, k$. We choose a_{k+1}, b_{k+1} and q_{k+1}. Let $b_{k+1} \in(0,1)$ be such a number that $\left(q_{k}+1\right) \cdot b_{k+1}<2^{-k}$. Put $a_{k+1}=\frac{k+1}{k+2} \cdot b_{k+1}$ and let q_{k+1} be such that $\left(q_{k+1} \cdot a_{k+1}, q_{k+1} \cdot b_{k+1}\right) \cap[0,1] \neq \varnothing$, $\left(\left(q_{k+1}+1\right) \cdot a_{k+1},\left(q_{k+1}+1\right) \cdot b_{k+1}\right) \cap[0,1]=\phi_{\text {. }}$

So by the induction we have defined a_{n}, b_{n} and q_{n} for eaqh natural n. Observe that the sequence $\left\{\mathrm{q}_{n}\right\}_{n \in \mathbb{N}}$ is increasing. Put $E=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right)$. We mall prove that E is the required set.

We shall start from proving that for every natural number i $\chi_{(n, E) \cap\left[2^{-1}, 1\right]} \xrightarrow[n \rightarrow \infty]{ } 0$. Let i_{0} be a fixed natural number. From the construction it follows that for $n>q_{i_{0}}$ the set ($\left.n \cdot E\right) \cap$ $n\left[2^{-i} 0,1\right]$ either is empty, or consists of one interval $\left(n \cdot a_{i(n)}, n \cdot b_{1(n)}\right) \cap\left[2^{-1}, 1\right]$ where $i(n)>1_{0}$ and $i(n) \underset{n \rightarrow \infty}{ } \infty$. From the fact that $a_{k}=\frac{k}{k+\gamma} b_{k}$ it follows that the length of the above mentioned interval (which may be open or half closed) tends to zero, when n tends to infinity. Let $\left\{n_{i n}\right\}$ m $\in \mathbb{N}$ be an inoreasing sequence of natural numbers. If for infinitely many natural numbers the set $\left(n_{m} \cdot E\right) \cap\left[2^{-1} 0,1\right]$ is empty, then we can ohoose the subsequence $\left\{n_{m_{p}}^{\}} p \in \mathbb{N}\right.$ for which $X_{\left(n_{m}-\mathbb{k}\right) \cap\left[2^{-1} 0,1\right]}$ tends to zero everywhere. In the opposite case we have a sequence
$\left\{x_{\left(n_{m} \cdot E\right) \cap\left[2^{-1} \rho, 1\right]^{\}_{m>m}}}\right.$ where m_{0} is a suitably chosen number of characteristic functions of intervale with lengthe tending to zoro. Choose a subsequence $\left\{n_{m p}^{\}} p \in I\right.$ to assure that the left-hand onds of those intervals are convergent to a number $x_{0} \in\left[2^{-1} 0,1\right]$. Then we can see that $\left.X_{\left(n_{m}-E\right) \cap[2}{ }^{-1} \rho, 1\right]$ tends to zero everywhere except, perhaps, the point x_{0}. In both cases we have convergence I-a.e. on the interval $\left[2^{-1} 0,1\right]$.

How we shall prove that 0 is I-diapersing point of E. Let $\left\{_{m}\right\}_{m \in I}$ be an increasing sequence of natural numbers. Let
$\left\{n_{i n}^{(1)}\right\}_{\text {mal }}$ be a aubsequence for which convergence holde I-a.e. on $\left[2^{-1}, 1\right],\left\{n_{m}^{(2)}\right\}_{m \in N}-a$ aubsequence of $\left\{n_{m}^{(1)}\right\}_{\text {meII }}$ which is good for $\left[2^{-2}, 1\right]$ and so on. For the diagonal subsequence $\left\{n_{p}^{(p)} \xi_{\xi} p \in H^{\text {we }}\right.$ tain convergence I-a.e. on $[0,1]$. This endes the proof.

From the above theorem it follows that the notion of an Idensity point is rather delicate and different from the notion of a residual point.

Let $\Phi(A)=\left\{x_{;} x\right.$ is an I-density point of $\left.A\right\}$ for $A \in S$. It is obvious that $\Phi(A) \in S$ for $A \in S$ and it is known that the operation Φ is 80 called "lower density" and that $T_{I}=\{\Phi(A)-1 ;$ $A \in S, H \in I\}$ is a topology (see [2]).

How we shall oocupy ourselves with some properties of topology T_{I}. In the sequel T_{I} - Int A and J_{I} - CI A shall denote the interior and closure of the set A reapectively in J_{I}.

It is easy to prove that

Theorem 2. Every set of the ilrat category is \mathcal{J}_{I}-isolated.
Theorem 3. The femily of sets which are $\mathfrak{T}_{I^{-}}$-Borel sets coinoide with the family of sets having the Baire property.

Proof. If aset A is J_{I}-open, then it has the Baire prow perty. Hence overy set which is a $\mathbb{T}_{I^{\prime}}$-Borel set has the Baire property.

Conversely, if a set A has the Baire property then $A=$ $=\left(G-P_{1}\right) \cup P_{2}$ where G is on open set in the natural topology and $P_{1}, P_{2} \in I_{\text {. Hence } G}-P_{1} \in \mathcal{J}_{I}$ and P_{2} is $\mathcal{J}_{I^{-c l o s e d}}$ wo 4 a $\mathfrak{J}_{I^{-}}$ Borel set.

Corollany 2. Every set which is a $T_{I^{-}}$-Borel set is the sum of \mathcal{T}_{I}-open set and \mathcal{T}_{I}-closed set.

Theorem 4. A set is T_{I}-nowhere dense if and only if it is of the first category.

Proof. If A is a set of the first category then A is $\mathcal{T}_{I^{-}}$ closed and $\mathcal{J}_{I}-\operatorname{Int} A=\varnothing$ so 1 is $\mathcal{J}_{I^{-n o w h e r e}}$ dense.

Conversely, if $A \notin I$ then $\mathcal{T}_{I}-C 1 A \in S-I$, so $\mathcal{T}_{I^{\prime}}-C 1 A$ ($G-P_{1}$) $\cup P_{2}$ where G is a non-empty open set in the natural topolo$\mathrm{gy}, \mathrm{P}_{1}, \mathrm{P}_{2} \in$ I. Obviously, $\varnothing \neq G-P_{1} \subset \mathcal{T}_{I}-$ Int $\left(\tau_{I}-C 1 A\right)$, Hence A is not \mathcal{J}_{I}-nowhere dense.

Now we shall study some properties of continuous functions from (R, \mathcal{T}_{I}) into R equipped with the natural topology.

Definition 3. We shall say that a function $f: R \rightarrow R$ having the Baire property is I-approximately continuous at x_{0} if and onIf if for every $\varepsilon>0$ the set $f^{-1}\left(\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)\right)$ has x_{0} as an I-density point.

Definition 4. We shall say that a function $f: R \rightarrow R$ is I approximately continuous if and only if for every interval (y_{1}, y_{2}) the set $f^{-1}\left(\left(y_{1}, y_{2}\right)\right)$ belongs to T_{I}. From the above definitions we obtain immediately the following theorem.

Theorem 5. A function $\mathrm{f}: \mathrm{R} \longrightarrow \mathrm{R}$ in I-approrimately continuous if and only if it is I-approximately continuous at every point.

Recall that in real analyais there are at least two froquently used definitions of (ordinary) approximate oontinuity at point x_{0} : first of them (aimilarly as dof. 3 above) says that f is approximately continuous at x_{0} if and only if for every $\varepsilon>0$ the
set $f^{-1}\left(\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)\right)$ has x_{0} as a density point (this get includes a neighbourhood of x_{0} in the density topology): the second deals wi th some restriction of f, namely, 1 is approximately continuous at x_{0} if and only if there exists in the density topology a neighbourhood E of x_{0} such that $f \mid E$ is continuous at x_{0} (in the natural topology relativised to E).
If we took any topology \mathcal{T} instead of density topology, we should obtain the "topological" definition and "restrictional" definition of continuity at x_{0}. According to [1], th. 5 these conditions for topology \mathcal{T} invariant with respect to translations are equivalent if and only if the following condition (w*) is fulfilled (we quote the condition in the formulation more convenient for our purposes): ($W *$) For every descending sequence $\left\{E_{n}\right\}_{n \in N}$ righthand (left-hand) T-neighbourhoods of 0 there exists a sequence $\left\{h_{n}\right\} \quad n \in N$ such that $h_{n} \geqslant 0$ and the set $\{0\} \cup \bigcup_{n=1}^{\infty}\left(E_{n} \cap\left[h_{n+1}, h_{n}\right)\right)$ $\left(\{0\} \cup \bigcup_{n=1}^{\infty}\left(E_{n} \cap\left(-h_{n},-h_{n+1}\right\}\right)\right)$ includes a right-hand (left-hand) \mathcal{T}-neighbourhood of 0 .

Since for any descending sequence $\left\{E_{n}\right\}_{n \in N}$ of sets having 0 as a point of right-hand density there exista a sequence $\left\{h_{n}\right\}_{n \in \mathbb{N}}, h_{n} \geqslant 0$ for which the set $\bigcup_{m=1}^{\infty}\left(E_{n} \cap\left[h_{n+1}, h_{n}\right)\right)$ has also 0 as a point of right-hand density, the above quoted two definitions of approximate continuity are obviously equivalent. Observe also that the above condition can be also formulated in terms of points of dispersion.

From the following theorem we cen conclude immediately that for J_{I} topology the "restrictional" and "topological" definitions are not equivalent. Obviously, "restrictional" continuity always implies "topological".

Theorem 6. There exists an increasing sequence $\left\{A_{n}\right\}_{n \in N}$
of sets having the Baire property such that for every natural n 0 is an I-dispersion point of A_{n} and for any sequence $\left\{h_{n}\right\}_{n \in N}$ of numbers tending decreasingly to zero a point O is not an Idispersion point of the set $A=\bigcup_{n=1}^{\infty}\left(A_{n} \cap\left[h_{n+1}, h_{n}\right)\right.$.

Proof. We shall use two obvious lemmas:
Lemma 2. If 0 is an I-dispersion point of B_{1} and B_{2}, then 0 is en I-diepersion point of $B_{1} \cup B_{2}$.

Lemma 3. If 0 is an I-diapersion point of B, then for every number $a \in R \quad 0$ is an I-dispersion point of $a \cdot B$.

Now let F be the open set having 0 as an I-dispersion point, $E=\bigcup_{i \equiv 1}^{\infty}\left(a_{i}, b_{i}\right), b_{i} \geqslant 0$ (see the proof of th. 1). We can (and whall) sappose that for every natural i we have $b_{1}=\left(1_{1}\right)^{-1}$, where I_{i} is a natural number. Put $A_{1}=E$ and for $n>1 \quad A_{n}=$ = $\mathcal{A}_{n-1} \cup \bigcup_{i=1}^{n-1}\left(\frac{1}{n} \cdot E\right)$. From 1 emmas 2 and 3 it follows immediateIy that for each n zero is an I-dispersion point of A_{n}.

Let $\operatorname{in}_{n}{ }_{n \in N}$ be a sequence of numbers decreasing to zero. We shall show that O is not an I-dispersion point of $A=$ $={ }_{n} \bigcup_{1}^{\infty}\left(A_{n} \cap\left[h_{n+1}, h_{n}\right)\right)$. Namely, we shall show that for much $\left\{h_{n}\right\}_{n \in I}$ there exists a sequence $\left\{m_{k}\right\}$ keN such that for every subsequence $\left\{m_{k}\right\}_{p} p \in I H$ of $\left\{m_{k}\right\}_{k \in N}$ the sequence $\left\{x_{[0,1] \cap\left(m_{k}, A\right)}\right\}_{p \in N}$ does not converge to zero I -a.e. (obviousiy it suffices to consider $[0,1]$ instead of $[-1,1]$, because d_{n} and A consist only of positive numbers). How we construct a sequence $\left\{m_{k}\right\}_{k \in M^{\prime}}$ Let $m_{1}=\frac{1}{b_{i}}=I_{1}$, where i is the smallest natural number such that $b_{1}<h_{1}$. Suppose that we have defined $m_{1}, \ldots, m_{k^{\prime}}$. Let $m_{k+1}=$ $=\frac{1}{b_{1}}=1_{1}$, where 1 is the malleat natural number such that $b_{1}<b_{k+1}$ and $l_{1}>\max \left(m_{1}, \ldots, m_{k}\right)$. So we have defined by induc-
tion an inoreaning sequence $\left\{\text { m }_{\mathbf{K}}\right\}_{k \in I}$ of natural number.
Let $\left\{m_{m_{p}}\right\}_{p \in I}$ be a mubequence of $\left\{m_{k}\right\}_{k \in I}$. Denote $f_{p}=$

- $X_{[0,1] n\left(m_{r} ; \Lambda\right)}$. Observe thet for each natural k we have
$\wedge \cap\left(0, h_{k}\right) \perp A_{k} \cap\left(0, h_{k}\right)$, because the sequence $\left\{\mathcal{A}_{n}\right\}_{n \in N}$ was increasing. Hence, in virtue of the inequality ${h_{k_{p}}} \cdot m_{k_{p}}>1$ we have $[0,1] \cap\left(m_{K_{p}} \cdot \Lambda\right)=[0,1] \cap\left(m_{k_{p}} \cdot\left(A \cap\left(0, h_{k_{p}}\right)\right) \supset[0,1] \cap\left(m_{k_{p}} \cdot\right.\right.$
- ($\left.A_{r_{p}} \cap\left(0, h_{k_{p}}\right)\right)$. From the definition of $A_{k_{p}}$ we conclude that the set $[0,1] \cap\left(m_{c_{p}} \cdot\left(A_{k_{p}} \cap\left(0, h_{p_{p}}\right)\right)\right)$ includes the following in tervala: $\frac{1}{r_{p}} \cdot\left(m_{k_{p}} \cdot a_{1}, m_{k_{p}} \cdot b_{i}\right), \frac{2}{k_{p}}\left(m_{k_{p}} a_{i}, m_{k_{p}} \cdot b_{i}\right), \ldots$ $\ldots, \frac{k_{p}-1}{k_{p}}\left(m_{k_{p}} \cdot a_{1}, m_{k_{p}} \cdot b_{1}\right)$ where 1 is a number described during the construction of $\left\{m_{k}\right\} k \in \mathbb{N}$ (obviousily $m_{x_{p}} \cdot b_{i}=1$), hence the set $[0,1] \cap\left(m_{k_{p}} \cdot\left(\Lambda \cap\left(0,{h_{k_{p}}}_{p}\right)\right)\right.$ also includes the same intervals. Sinoe $\lim _{p} \operatorname{mip} f_{p}(x)=1$ if and only if

$$
x \in \lim _{p} \operatorname{aup}\left([0,1] \cap\left(m_{x_{p}} \cdot\left(\Delta \cap\left(0, h_{k_{p}}\right)\right)\right)\right)=
$$

$=\bigcap_{n=1}^{\infty} \bigcup_{p=n}^{\infty}\left([0,1] \cap\left(m_{k_{p}} \cdot\left(A \cap\left(0,{h_{k}}_{p}\right)\right)\right)\right.$, and each union in the last expression is an open set whioh is dense in $[0,1]$ (thim fact immediately follows from the above argument), we conolude that $\lim _{p} \operatorname{mup} f_{p}(x)=1$ I-a.e. It means that the sequence $\left\{X_{\left[0,11 \cap\left(m_{K_{p}}\right.\right.} \cdot A\right)^{\}}{ }_{p G I I}$ does not converge I-a.e. to zero, which ends the proof.

Theoren 7. A function $1: R \rightarrow R$ has the Baire property if and only if it is "restrictionally" I-approcimately continuous I-a.e.

For the proof compare the proof of the theorem 7 from [2].

R•I•renc••

$[1]$ J. JfprazJewsici: on linit numbers of real functions, Pund. Math LXXIII(1974), 269-281.
[2] W. POREDA, B. WAGIRR-BOJAKOWSKA, W. WILCZYISKI: A category analogue of the density topology, Fund. Math. (to appear).

Inatytut Mestematyki Univ. Lodž, S.Banacha 22, 90-228 Lodë, Poland
(Oblatum 6.8. 1984)

