Commentationes Mathematicae Universitatis Caroline

Ladislav Beran
Special polynomials in orthomodular lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 4, 641--650

Persistent URL: http://dml.cz/dmlcz/106402

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SPECIAL POLYNOMIALS IN ORTHOMODULAR LATTICES Ladislar BERAN

Abstract: In this paper the set M_{n} of all meet-Frattini polynomials and the set of all join-Frattini polynomials are studied. In particular, it is shown that the upper commutator belongs to MFr ${ }_{n}$. Some properties of friendly pairs of polynomials are established. Also quite complete information regarding the commutativity relation in the free orthomodular lattice F_{2} is given and, as a by-product, a simple description of the quotient set corresponding to the equivalence relation defined by friendly pairs of polynomials in two variables is obtained.

Key wards: Commutativity relation, free orthomodular lattice $\bar{W} \mathrm{Ith}^{2}$ two gemerators, commutator, Frattini polynomial, friendly pairs of polynomials.

Classification: 06C15

1. Preliminaries

If a, b are elements of an orthomodular lattice $\quad L=$ $=(L, \vee, \wedge, \prime, 0,1)$, we say that a and b commute and write $a C b, p r o v i d e d \quad a=(a \wedge b) \vee\left(a \wedge b^{\prime}\right)$.

Recall the following result (cf., e.g., [1]):

Lema 1.1. In every orthomodular lattice,
(i) $\quad \mathrm{aCb} \Leftrightarrow \mathrm{aCb} \Leftrightarrow \mathrm{bCa}$;
(ii) $(a C b * a C c) \Rightarrow a C b \wedge c$;
(iii) $(a C b a a C c) \Rightarrow a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.

For our purposes here, we need the fact that C has an exchange property of the following type:

Lemma 1.2. For any elements a, b, c of an orthomodular lattice,

$$
(a C b \wedge c \& b C c) \Rightarrow a \wedge b C c .
$$

For a proof, see [2].

Convention. In what follows, ${ }^{\circ}$ L will always denote an orthomodular lattice.

The 96-element lattice which represents the free orthomodular lattice F_{2} with two generators was studied in [4]. It should be noted that its elements can be decomposed in a natural way in six different Boolean algebras $B_{1}-B_{6}$, where

$$
\begin{aligned}
& B_{1}=[0 ; \text { com }(x, y)], \\
& \left.B_{2}=\left[x \wedge\left(x^{\prime} \vee y\right) \wedge \downarrow x^{\prime} \vee y^{\prime}\right) ; x \vee\left(x^{\prime} \wedge y\right) \vee\left(x^{\prime} \wedge y^{\prime}\right)\right], \\
& B_{3}=\left[y \wedge\left(y^{\prime} \vee x\right) \wedge\left(y^{\prime} \vee x^{\prime}\right) ; y \vee\left(y^{\prime} \wedge x\right) \vee\left(y^{\prime} \wedge x^{\prime}\right)\right], \\
& B_{4}=\left[y^{\prime} \wedge\left(y \vee x^{\prime}\right) \wedge(y \vee x) ; y^{\prime} \vee\left(y \wedge x^{\prime}\right) \vee(y \wedge x)\right], \\
& B_{5}=\left[x^{\prime} \wedge\left(x \vee y^{\prime}\right) \wedge(x \vee y) ; x^{\prime} \vee\left(x \wedge y^{\prime}\right) \vee(x \wedge y)\right], \\
& B_{6}=[\overline{\operatorname{com}(x, y) ; 1] .}
\end{aligned}
$$

For more about this and the basic properties of F_{2} the reader may consult [1].

The set of all the polynomials in \wedge, v and of n variables $x_{1}, x_{2}, \ldots, x_{n}$ will be denoted by P_{n}. To simplify notation we shall denote the value $p\left(a_{1}, a_{2}, \ldots\right.$ $\left.\ldots, a_{n}\right)$ of a polynomial $p=p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in a_{1}, $a_{2}, \ldots, a_{n} \in I$ by $p\left(a_{1}, 0\right)$. Δ similar formalism will be - 642 -
retained also for $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Two polynomials $p\left(x_{1}, \bullet\right)$ and $q\left(x_{1}, \bullet\right)$ of P_{n} are said to commute if and only if for every ' L and for every choice of elements $a_{1}, a_{2}, \ldots, a_{n}$ in L the element $p\left(a_{1}, 0\right)$ commutes with $q\left(a_{1}, \bullet\right)$.

Let a be an element of L. We define $a^{\prime}=a$ and $a^{-1}=a^{\prime}$. Now it is easy to recall the concept of a commutator due to [3]. The upper commutator of $a_{1}, a_{2} ; \ldots, a_{n} \epsilon$ ϵL is defined by
$\overline{\operatorname{com}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\Lambda\left(a_{1}^{e(1)} \vee a_{2}^{e(2)} \vee \ldots \vee a_{n}^{e(n)}\right)$, where e runs over all the mappings $e:\{1,2, \ldots, n\} \rightarrow$ $\rightarrow\{-1,1\}$. The lower commutator of $a_{1}, a_{2}, \ldots, a_{n}$ is defined dually, i.e.,

2. Frattini polynomials

A polynomial $f \in P_{n}$ is said to be meet-Frattini if and only if it has the following property: For every p, $q \in P_{n}$ and for every $a_{1}, a_{2}, \ldots, a_{n}$ of any ${ }^{\circ} L$ the element $p\left(a_{1}, \bullet\right)$ commutes with $q\left(a_{1}, \bullet\right) \wedge f\left(a_{1}, \bullet\right)$ if and only if $p\left(a_{1}, \bullet\right)$ commutes with $q\left(a_{1}, \bullet\right)$. A join-Frattini polynomial 1 is defined dually by the condition
$p\left(a_{1}, \bullet\right) C q\left(a_{1}, \bullet\right) \vee f\left(a_{1}, \theta\right) \Leftrightarrow p\left(a_{1}, \theta\right) C q\left(a_{1}, \theta\right)$.
We shall denote the set of all meet-Frattini polynomials of P_{n} and the set of all join-Frattini polynomials of P_{n} by M_{n} and $J F_{n}$, respectively.

Our first result is a technical lema about polynomials - 643 -
in P_{n} which will be useful later.
Lemma 2.1. Let $p \in P_{n}$ and let $a_{1}, a_{2}, \ldots, a_{n} \in L$. If
e maps $\{1,2, \ldots, n\}$ into $\{-1,1\}$, then either

$$
p\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leqq a_{1}^{e(1)} \vee a_{2}^{e(2)} \vee \ldots \vee a_{n}^{e(n)}
$$

or

$$
p^{\prime}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leqq a_{1}^{e(1)} \vee a_{2}^{e(2)} \vee \ldots \vee a_{n}^{e(n)}
$$

Proof: Use induction on the rank of p.

Lemma 2.2. For any $e:\{1,2, \ldots, n\} \rightarrow\{-1,1\}$,

$$
x_{1}^{e(1)} v x_{2}^{e(2)} v \ldots v x_{n}^{e(n)} \in M F_{n}
$$

and

$$
x_{1}^{e(1)} \wedge x_{2}^{e(2)} \wedge \ldots \wedge x_{n}^{e(n)} \in J F_{n}
$$

Proof: First note that
(1) $p\left(a_{1}, \bullet\right) \operatorname{Cq}\left(a_{1}, \bullet\right) \wedge\left(a_{1}^{e(1)} \vee \bullet\right)$
is equivalent to
(2) $p^{\prime}\left(a_{1}, \bullet\right) C q\left(a_{1}, \bullet\right) \wedge\left(a_{1}^{e(1)} \vee \bullet\right)$.

Now, $a_{1}^{e(1)} v$ commutes with $q\left(a_{1}, \bullet\right)$ and with $p^{d}\left(a_{1}, \bullet\right)$, where $d= \pm 1$. Thus, by Lemma 1.2 , (1) is equivalent to
(3) $\quad p^{d}\left(a_{1}, \bullet\right) \wedge\left(a_{1}^{e(1)} v \bullet\right) C q\left(a_{1}, \bullet\right)$.

From Lemma 2.1 we infer that (3) is equivalent to
(4) $p^{d}\left(a_{1}, 0\right) C q\left(a_{1}, 0\right)$.

Consequently, it follows by Lemma 1.1 that (1) is equivalent to $p\left(a_{1}, 0\right) C q\left(a_{1}, 0\right)$.

Similar reasoning yields the remainder of the proof.

As a direct consequence of Lemma 2.2 we have the following useful proposition.

Proposition 2.3. For any $n \in \mathbb{N}$, $\overline{\operatorname{con}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in M F_{n}$
and

$$
\operatorname{com}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in J F_{n}
$$

3. Friendly pairs of polynomials

Let $p, q, r, s \in P_{n}$. The pairs (p, q) and (r, s) are said to be friendly (written $(p, q) \sim(r, s)$) if and only if the following condition is satisfied for any ' L and any $a_{1}, a_{2}, \ldots, a_{n} \in L$: The element $p\left(a_{1}, 0\right)$ commutes with $q\left(a_{1}, \bullet\right)$ if and only if the element $r\left(a_{1}, \bullet\right)$ commutes with $\left(a_{1}, \bullet\right)$.

Our naxt lema gives information regarding the relation ~.

Le:n3.1. Let $p, q, r, s \in P_{n}$. Then
(i) $[(p, q) \sim(r, s)] \Leftrightarrow[(q, p) \sim(r, s)] \Leftrightarrow[(r, s) \sim(p, q)]$.
(ii) The relation \sim is an equivalence relation on P_{n}^{2}.

Proof: Obvious.

Epopositisn 3.2. Let $p, q \in P_{n}$, let $e_{i}, F_{j}, F_{u}, F_{v}$
 $\{1,2, \ldots, n\}$ into $\{-1,1\}$ and let $a, b, c, d \in \mathbb{N}_{0}$. If $\nabla, B \in\{-1,1\}$ and
 $\left.\left.\ldots x_{i}^{e_{i}^{(n)}}\right)\right] \vee\left[V_{j=1}^{b}\left(x_{j} \mathcal{P}_{j}^{(1)} \wedge x_{j}^{P_{j}(2)} \wedge \ldots \wedge x_{j}^{(n)}\right)\right]$. 645 -
$s\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[q^{z}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \wedge \bigwedge_{u=1}^{c}\left(x_{1}^{E_{u}(1)} \vee x_{2}^{E_{u}(2)} \vee \ldots\right.\right.$

then the pairs $\left(r\left(x_{1}, x_{2}, \ldots, x_{n}\right), s\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ and $\left(p\left(x_{1}, x_{2}, \ldots, x_{n}\right), q\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ are friendly.

Proof: Let

$$
\begin{array}{ll}
A_{1}=\bigwedge_{i=1}^{a}\left(x_{1}^{e_{i}(1)} \vee \bullet\right), & { }^{\prime} A=\bigwedge_{i=1}^{a}\left(a_{1}^{e_{i}(1)} \vee \bullet\right) ; \\
B_{1}=\bigvee_{j=1}^{b}\left(x_{1}^{f} j^{(1)} \wedge \bullet\right), & \bullet B=\bigvee_{j=1}^{b}\left(a_{1}^{f}{ }_{j}^{(1)} \wedge \bullet\right) ; \\
C_{1}=\bigwedge_{u=1}^{c}\left(x_{1}^{E_{u}(1)} \vee \bullet\right), & { }^{\bullet} C=\bigwedge_{u=1}^{c}\left(a_{1}^{E_{u}(1)} \vee \bullet\right) ;
\end{array}
$$

$$
D_{1}={\underset{V}{V}=1}_{d}\left(x_{1}^{F_{v}(1)} \wedge \bullet\right), \quad \bullet D={\underset{V}{V}}_{\mathbb{d}}\left(a_{1}^{F_{V}(1)} \wedge \bullet\right) ;
$$

$$
\cdot P=p\left(a_{1}, \bullet\right), \quad \bullet Q=q\left(a_{1}, \bullet\right) .
$$

Now, ‘be'PA`A. This, together with the dual of Lemma 1.2, implies that is equivalent to From Lemia 2.2 we infor that (6) is equivalent to However, (\(\left.{ }^{\prime} D v^{`} B\right) C\left(` Q A^{\circ} C\right)\) and (\(\left.D V^{`} B\right) C\left(` D V^{`} B\right)^{\prime}\).
It then follows from Leme 1.1 that

Note that, by Lemma 2.2, $D_{1} \vee B_{1} \in \mathrm{MF}_{\mathrm{n}}$. Therefore, (7) is equivalent to
(8) ($\left.{ }^{\prime} P \wedge \wedge^{\prime} A\right) C\left(` Q \wedge^{\circ} C\right)$.

But the polynomials A_{1}, C_{1} are also meet-Frattini. Thus, (8) is equivalent to ${ }^{P} P C^{`} Q$.

4. The commutativity relation in the free or thomodular lattice F_{2}

Similarly as in [1], let x, y denote the free generators of the free orthomodular lattice F_{2}.

Given two polynomials p, q of the infinite set P_{2}, one can ask what means the condition "p commutes with q". An answer to the question is evidently given, provided we can characterize what means the condition

$$
\begin{equation*}
p(x, y) \subset q(x, y) \tag{9}
\end{equation*}
$$

in F_{2}
Since F_{2} has exactly 96 elements, we have $\binom{96}{2}=$ $=48.95=4,560$ possibilities how to choose the couples (p, q) in (9). However, we shall see that no computer is needed to give a complete survey of the corresponding situations.

The next two lemmas are of critical importance for what follows but are also of independent interest.

Lemma 4.1. Let $p \in P_{2}$. If $p(x, y) \in B_{1} \cup B_{6}$, then $p(x, y) C q(x, y)$ for every $q \in P_{2}$.

Proof: Suppose $p(x, y) \in B_{6_{f}}$. Then $p(x, y)$ is equal to a meet of some elements $x^{e_{i}} f_{i} \quad\left(e_{i}, f_{i} \in\{-1,1\}, i \in I\right)$. Since $x^{e_{i}} v_{y}{ }^{f_{i}}$ belongs to the center of $F_{2}, x^{e_{i}}{ }^{\prime} f_{i}$ commutes with $q(x, y)$. By Lemma $1.1, p(x, y) C q(x, y)$.

A similar argument can be used if $p(x, y) \in B_{1}$.
Lemma 4.2. Let $p(x, y)$ and $q(x, y)$ be elements of B_{i}, where $1 \leqq i \leqq 6$. Then $p(x, y) C q(x, y)$.

Proof: By Lemma 4.1, the assertion holds whenever $i=1$ or $i=6$. In the sequel we suppose that $2 \leqq i \leqq 5$.

Using the information found in Figure 18 of [1], we can see that

$$
p(x, y)=\left[z_{i} \wedge \overline{\operatorname{com}}(x, y)\right] \vee d(x, y)
$$

and

$$
q(x, y)=\left[z_{i} \wedge \overline{\operatorname{com}}(x, y)\right] \vee e(x, y)
$$

where $d(x, y), e(x, y) \in B_{1}$ and where $z_{2}=x, z_{3}=y, z_{4}=$ $=x^{\prime}, z_{5}=y^{\prime}$. Therefore, by Proposition 3.2, $p(x, y) C q(x, y)$ is equivalent to $z_{i} C z_{i}$ which is always true.

Theorem 4.3. Let $2 \leq i<j \leqslant 5$ and let $p(x, y) \in B_{i}$, $q(x, y) \in B_{j}$. Then $p(x, y) C q(x, y)$ if and only if either

$$
i=2 \quad \alpha \quad j=5
$$

or

$$
i=3 \quad \& \quad j=4
$$

Proof: Similarly as in the proof of Loma 4.2 we have
(10) $p(x, y)=[z \wedge \overline{\operatorname{com}}(x, y)] \vee d(x, y)$
and
(11) $q(x, y)=[\nabla \wedge \overline{\operatorname{com}}(x, y)] \vee e(x, y)$,
where $d(x, y), e(x, y) \in B_{1}$ and $\{z, v\} \subset\left\{x, x^{\prime}, y, y^{\prime}\right\}$. Hence $p(x, y) C q(x, y)$ if and only if $z C v, i . e .$, if and only if either $\{z, v\}=\left\{x, x^{\prime}\right\}$ or $\{z, v\}=\left\{y, y^{\prime}\right\}$.

Remark 4.4. Figure 1 indicates all the relations of commutativity in F_{2}. The edge joining B_{3} and B_{4} means that any two elements $p \in B_{3}, q \in B_{4}$ commute. No two elements $p_{1} \in B_{2}, p_{2} \in B_{3}$ commute and, therefore, there is no edge joining B_{2} and B_{3}. The loop at B_{i} means that $\mathrm{p}_{3} \mathrm{Cp}_{4}$ whenever $\mathrm{p}_{3}, \mathrm{p}_{4} \in \mathrm{~B}_{\mathrm{i}}$.

Fig. 1

Theoren 4.5. Two polynomials $p\left(x_{1}, x_{2}\right)$ and $q\left(x_{1}, x_{2}\right)$ of P_{2} either commute or in any ${ }^{\circ} L$ the element $p\left(a_{1}, a_{2}\right)$ commutes with $q\left(a_{1}, a_{2}\right)\left(a_{1}, a_{2} \in L\right)$ if and only if $a_{1} C a_{2}$.

Proof: Suppose there exists an orthomodular lattice ${ }^{\circ} T$ and elements $b_{1}, b_{2} \in T$ such that $p\left(b_{1}, b_{2}\right)$ does not commute with $q\left(b_{1}, b_{2}\right)$. Then the elements $p(x, y), q(x, y)$ do not belong to $B_{1} \cup B_{6}$. Moreover, by Lemma 4.2 and Remark 4.4 neither $\{p(x, y), q(x, y)\} \subset B_{i} \underset{\sim}{\text { nor }} \quad\left\{p(x, y), q^{\prime}(x, y)\right\} \subset B_{i}$. 649 -

Hence we my assume that $p(x, y)$ and $q(x, y)$ are of the form given in (10) and (11). Therefore, if $a_{1}, a_{2} \in L$, then

$$
\begin{aligned}
& p\left(a_{1}, a_{2}\right)=\left[z_{0} \wedge \overline{\operatorname{com}}\left(a_{1}, a_{2}\right)\right] \vee d\left(a_{1}, a_{2}\right), \\
& q\left(a_{1}, a_{2}\right)=\left[\nabla_{0} \wedge \overline{\operatorname{com}}\left(a_{1}, a_{2}\right)\right] \vee e\left(a_{1}, a_{2}\right),
\end{aligned}
$$

where $\left\{z_{0}, \nabla_{0}\right\} \subset\left\{a_{1}, a_{1}^{\prime}, a_{2}, a_{2}^{\prime}\right\}$ and $v_{0} \neq z_{0} \neq \nabla_{0}^{\prime}$. Without loss of generality we may assume that $z_{0}=a_{1}$ and $v_{0}=$ $=a_{2}$. From Proposition 3.2 it follows that $p\left(a_{1}, a_{2}\right) C q\left(a_{1}, a_{2}\right)$ if and only if $z_{0} C v_{0}$, i.e., if and only if $a_{1} C a_{2}$.

As a direct consequence of Theorem 4.6 we have the following result.

Corollary 4.6. For any $p, q \in P_{2}$ either $(p, q) \sim(0,1)$ or $(p, q) \sim\left(x_{1}, x_{2}\right)$.

References
[1] L. BERAN: Orthomodular Lattices (Algebraic Approach), D. Reidel Publishing Co., Dordrecht-Boston,Mass. 1984.
[2] L. BERAN: Extension of a theorem of Gudder and Schelp to polynomials of orthomodular lattices, Proc.Amer. Math.Soc. 81 (1981), 518-520.
[3] G. BRUNS, G. KALMBACH: Some remarks on free orthomodular Iattices, Proc.Univ. of Houston,Lattice Theory Conf. Houston, 1973, 397-403.
[4] J. KOTAS: An axiom system for the modular logic, Studia logica 21 (1967), 13-38.

Department of Algebra, Charles University, Sokolovaká 83, 18600 Praha 8, Czechoslovakia
(Oblatum 10.4. 1985)

