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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26.4 (1985) 

SPECIAL POLYNOMIALS IN ORTHOMODULAR LATTICES 
Ladislav BERAN 

Abstract; In this paper the set MPn of all meet-Prattini 

polynomials and the set of all join-Prattini polynomials are 
studied. In particular, it is shown that the upper commutator 
belongs to MP . Some properties of friendly pairs of polynomi
als are established. Also quite complete information regarding 
the comrautativity relation in the free orthomodular lattice Pp 
is given and, as a by-product, a simple description of the quo
tient set corresponding to the equivalence relation defined by 
friendly pairs of polynomials in two variables is obtained. 

Key words: Commutativity relation, free orthomodular lat
tice with two generators, commutator, Prattini polynomial, 
friendly pairs of polynomials. 

Classifications 06C15 

1. Preliminaries 

If a,b are elements of an orthomodular lattice %L « 

= (L, v , A , ',0,1), we say that a and b commute and write 

aCb, provided a =- (a Ab) v (a A b'). 

Recall the following result (cf., e.g., [1]): 

Limi 1.1. In every orthomodular lattice, 

(i) aCb <-* aCb' <=> bCa; 

(ii) (aCb * aCc) => aCbAc; 
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(iii) (aCb A aCc) =J> a*(bvc) = (aAb)v(aAc). 

For our purposes here, we need the fact that C has 

an exchange property of the following type: 

Lemma 1.2. For any elements a,b,c of an orthomodular 

lattice, 

(aCbAc It bCc) => aAbCc. 

For a proof, see [2J. 

Convention. In what follows, %L will always denote 

an orthomodular lattice. 

The 96-element lattice which represents the free 

orthomodular lattice F2 with two generators was studied 

in [4]. It should be noted that ita elemente can be 

decompoaed in a natural way in aix different Boolean 

algebras B- - Bg, where 

B1 « [0; com (x,y)J, 

B2 « [x A ( X ' vy) A Jx'vy'); x V(X'A y) v U ' A y')3, 

B3 * [yA (y'v x) A(y'yx'); y v(y'A x) v(y'Ax')], 

B4 s [ y A (y vx') A(y v x); y' v (y A X ' ) v (y A X ) 3 , 

B^ * [x'A (x vy') A (x vy); x' v (x Ay') v (x *y)3, 

B6 * [com (x,y); 1 3. 

For more about this and the basic properties of F2 the 

reader may consult [13• 

The set of all the polynomials in A ,v and 

of ri variables x.j,x2, ... ,xn will be denoted by P . 

To simplify notation we shall denote the value p(a1,a2, ... 

... ,an) of a polynomial p » p(x1fx2, ... fxn) in a,, 

a2, ... , «tt€L by p(a1,e). A similar formalism will be 
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retained also for p(x1,x2, ... ,x n). Two polynomials 

p(xt,•) and q(Xj,•) of P are said to commute if and 

only if for every %L and for every choice of elements 

alfa2, ... ,a in L the element p(alf«) commutes with 

q(a1 , • ) . 

Let a be an element of L. We define a = a and 

a" =- a'. Now it is easy to recall the concept of a commu

tator due to T3]. The upper commutator of a.j,a2", ... ,an* 

€ L is defined by 

com (alfa2> ... ,an) = A (a®(1 ) v a|(2) v . . . v a ^ ( n ) ) , 

where e runs over all the mappings e:(l,2, ... ,n} -* 

—•f-1,1}. The lower commutator of a<i,a2, ... ,a is 

defined dually, i.e., 

com (at,a2, ... ,an) = V (a®(1} A a|(2) A . . . A a p
( n ) ) . 

2. Frattini polynomials 

A polynomial f € P is said to be meet-Frattini if 

and only if it has the following property: For every p, 

q C P and for every a . , , a 2 , ... ,a of any %L the 

element p(a19e) commutes with q(a-,•) A. f (a. ,•) if and 

only if p(a<,•) commutes with q(a19e). A rioin-Frattini 

polynomial f is defined dually by the condition 

p(a1,e)Cq(a1,e)v f(a1,e) 4*> p(a1,e)Cq(a1,e). 

We shall denote the set of all meet-Frattini polynomials 

of P n and the set of all join-Frattini polynomials of P 

by MP and JF , respectively. 

Our first result is a technical lemma about polynomials 
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in P^ which will be useful later, n 

Lemma 2.1. Let P € Pn and let a1 ,a2, ... ,aneL. if 

e maps {1,2, ... ,nj into {-1,1>, then either 

P(alfa2> ... ,an) < a
e ( 1 )va| ( 2 ). ... , a

e ( n ) 

D'(a a a ) < ae(1)v ae(2) ̂  ^ ue^ p \a^ f&2> ••• >a
n! -e«1 v 2 v ••• v a 

Proof: Use induction on the rank: of p. 

Lemma 2.2. For any e:{l,2, ... fn/->. {-1 ,1 / , 

ře(1)4J ve(2) w t- тe(n), 

n *• "~n 
x

2
~'v ... v x~*"'€ MF_ 

and 

X?(1)Ax«(2)A ...A X^(n)6JP . 
' *- n n 

Proof: First note that 

(1) p(a1,«)Cq(a1,*)A(a
e(1)v •) 

is equivalent to 

(2) p'(a1,«)Cq(a1,•)A (a
e(1} v • ) . 

Now, ae* 'v • commutes with q(a1,») and with pd(alf«)f 

where d « ±1. Thus, by Lemma 1.2, (1) is equivalent to 

(3) Pd(alf») A(a
e(1)v •)Cq(a1,a). 

From Lemma 2.1 we infer that (3) is equivalent to 

(4) pd(a1 ,»)Cq(a1,•). 

Consequently f it follows by Lemma 1.1 that (1) is equivalent 

to p(a1,»)Cq(a1,•). 

Similar reasoning yields the remainder of the proof. 

As a direct consequence of Lemma 2.2 we have the 

following useful proposition. 

- 644 -



Proposition 2.3. For any n**N, 

col (xt,x2, ... ,xn)€MFn 

and 

com (x1,x2, ... ,xn)6JFn. 

3. Friendly pairs of polynomials 

Let p,q,r,s£Fn. The pairs (p,q) and (r,s) are 

said to be friendly (written (p,q)~(r,s)) if and only if 

the following condition is satisfied for any %h and any 

a^a^, ••• >a
n
€ L: T n e element p(a^,e) commutes with 

q(a)9e) if and only if the element r(a^,e) commutes 

with •(a1,e). 

Our next lemaa givee information regarding the 

relation ~ . 

leStaSLlsl* I»»t p.qfr,s€Pn. Then 

(i) £(p,q)~(r,a)] <*> £(q,p) - (r,s)J 4-> £(r,s)~ (p,q)J. 

(ii) The relation ~ is an equivalence relation on P2. 
n 

Proof: Obvious. 

fropyalHtft 3 ,2. Let p f qcP n , l«t • i > f j » \ , ? v 

( 1 * 1 * * , 1*j#*bf 1 * * * c , 1*v*d) be mappings of 

{1,2, . . . ,nf into ( -1 ,1/ •»* lwt • f b f c f acl f 0 . If 

w , i € H f l f mA 

r U , , * ^ . . . fXm)»[pw(jr.ifx2f...f.i1|)A ^ U , 1 v i j 1 v . . . 

• i ( I I ) , t r V , f i ( t ) f i ( 2 ) f i ( a ) i 
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c E ( 1 ) E ( 2 ) 
s ( x 1 , x 2 , . . . , x n ) - - [ q z ( x 1 , x 2 , . . . , x n ) A A ( x - u v x 2

u 

E n ( n > , r w *\-(1> F ^ ( 2 > -?„<n) 

. . . V X n

U ) J V [ V ( X 1

V A X2

V A . . . A X n

V )J, 

then the pairs ( r ( x 1 , x 2 , . . . ,x ) ,8(x . ,x 2 » ••• >x )) and 

( p ( x 1 , x 2 , . . . , x n ) , q ( x 1 , x 2 , . . . |Xn>) are fr iendly. 

Proof: Let 

a e . ( 1 ) a e . ( 1 ) 
A 1 * Л ( x 1 v •), %A = Л ( a / v •); 

i=1 ' i=1 ' 

b f . ( 1 ) b f . d ) 
B, = V ( x . J л •), %B = V ( a , ° A •); 

1 j*1 ' j=1 ] 

c E ( 1 ) c E (1) 
C. * Л ( x - u v •), %C • Л ( a u v •); 

1 u*1 ' u=1 ' 

d F (1) d F M ) 
D. • \ / ( x / л # ) , *D « V(*i A • ) ; 

1 т»1 * т*1 ] 

%P • p(m 1 t a) y

 %Q * q ( a t , « ) . 

How, % B 0 % P A % A . This, together with the dual of 

Lemma 1.2, implies that 

(5) C ( % P A % A ) V % B ] C C ( % Q A % C ) V % D ] 

la •quiTalaat to 

(6) ( % P A % A ) C ( % Q A % C ) v %D v%B. 

From Lemma 2.2 we infer that (6) ia equiTalent to 

(7) CB A
%
A)C[(

%
Q A

%
C ) v

 %
D v

%
B] A(

%
D v

 %
B) '. 

HowoTar, (
%
D V

%
B ) C (

%
Q A

%
C ) and (

%
D v

%
B)C(

%
Dv

 %
B) '. 

It than follow* from Lemma 1.1 that 
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[ ( % Q A V C ) V % D V % B ] A C D V % B ) ' « ( % Q A % C ) A ( % D V % B ) \ 

Note that, by Lemma 2.2, D.. v Bj e MFn- Therefore, (7) is 

equivalent to 

(8) ( % P A * A ) C ( % Q A % C ) . 

But the polynomials A^,C« are also meet-Frattini. Thus, 

(8) is equivalent to %PC%Q. 

4. The commutativity relation in the free orthomodular 

lattice F^ 

Similarly as in fl], let x,y denote the free 

generators of the free orthomodular lattice ¥p* 

Given two polynomials p,q of the infinite set P2, 

one can ask what means the condition Mp commutes with qN. 

An answer to the question is evidently given, provided we 

can characterize what means the condition 

(9) p(x,y)Cq(x,y) 

in Fp. 

(1). Since F~ has exactly 96 elements, we have 

= 48.95 s 4,560 possibilities how to choose the couples 

(p,q) in (9)* However, we shall see that no computer is 

needed to give a complete survey of the corresponding 

situations. 

The next two lemmas are of critical importance for 

what follows but are also of independent interest. 

Lemma 4.1. Let p€P 2- If p(x,y) € B1 uB 6, then 

p(x,y)Cq(xty) for every Q€P 2. 
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Proof: Suppose p(x,y)€B^. Then p(x,y) is equal to 
e- °f • 

a meet of some elements x 1y y x (e. ,f. €/-1,l/f i£I). 
e. f. x x e. f. 

Since x vy belongs to the center of Fp, x vy 

commutes with q(x,y). By Lemma 1.1, p(x,y)Cq(xfy). 

A similar argument can be used if p(x,y)€ B1. 

Lemma 4.2. Let p(x,y) and q(xfy) be elements of 

Bif where 1£i*6. Then p(x,y)Cq(x,y). 

Proof: By Lemma 4.1, the assertion holds whenever 

i » 1 or i * 6. In the sequel we suppose that 2£i£5. 

Using the information found in Figure 18 of f 1 ], 

we can see that 

p(x,y) » fziACom (x,y)Jv d(x,y) 

and 

q(x,y) » [ziACoi (x,y)J ve(x,y), 

where d(x,y) ,e(x,y) € Bj and where z2 » x, z^ » y, z, » 

« x', z5 » y'. Therefore, by Proposition 3.2, p(xfy)Cq(x,y) 

is equivalent to z-Cz. which is always true. 

Theorem 4.3. Let 2*i<j^5 and let p(xfy)^B^, 

q(x,y)€B.. Then p(x,y)Cq(x,y) if and only if either 

i » 2 v i « 5 

or 

i » 3 * j » 4. 

Proof: Similarly as in the proof of Lemma 4.2 we have 

(10) p(xfy) » [lAcoi (x,y)Jv d(xfy) 

and 

(11) q(xfy) » [VACOI (xfy)J ve(x,y)f 
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where d(x,y),e(x,y)£ Bj and {z,v }c fx,x',y,y '/ . Hence 

p(x,y)Cq(x,y) if and only if zCv, i.e., if and only if 

either {z,v} = ix,x'| or {z,v} « fy,y7-

Remark 4.4. Figure 1 indicates all the relations of 

commutativity in Fp. The edge joining B-. and B. means 

that any two elements p^B., q €B, commute. No two 

elements p<€ B2, p2 € B^ commute and, therefore, there is 

no edge joining B 2 and B-.. The loop at B, means that 

p3 C p4 w n e n e v e r P3»P4 € Bi • 

C\) ťh), 

Fig. 1 

Theorem 4.5. Two polynomials p(x 1 tx 2) and q(x1 ,x2) 

of P 2 either commute or in any %L the element p(a 1 9a 2) 

commutes with q(a 1 fa 2) ( a ^ a ^ D if and only if ajCa2* 

Proof: Suppose there exists an orthomodular lattice %T 

and elements b . , , b 2 c T such that pCb-,^) does not commute 

with q(b t,b 2). Then the elements p(x,y)fq(x,y) do not 

belong to B.uB,. Moreover, by Lemma 4*2 and Remark 4*4 

neither lp(x,y),q(x,y)jcBi nor fp(x,y),q'(x,y)i C B ^ 
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Hence we may assume that p (x ,y) and q(x,y) are of the 

form given in (10) and (11) . Therefore, i f a 1 , a 2 e L , then 

p(a.j , a 2 ) = [ Z 0 A com (a^ ,a 2 )J vd(a^ , a 2 ) , 

q ( a 1 t a 2 ) = [ V Q A com (a.. , a 2 ) J v e(a1 , a 2 ) , 

where i z 0 , v 0 ) C }a1 >a)>a2>
a2 ^ an^ v 0 * zo ^ v0* w i t n o u t 

l o s s of generality we may assume that zQ =- a. and vQ « 

* a 2 . .From Proposition 3.2 i t follows that p (a . , a 2 )Cq (a . , a 2 ) 

i f and only i f zQCyfQ> !•«•> i f and only i f a.jCa2. 

As a d i rect consequence of Theorem 4 .6 we have the 

following .result. 

Corollary 4 . 6 . For any p , q € P 2 e i ther ( p ,q )~ (0,1) 

or (p ,q) -'(x1 ,-Cj,). 
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