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UTILITY THEORY IN THE ALTERNATIVE SET THEORY
K. TRLIFAJOVA, P. VOPENKA

Abstract. Theory of utility in the alternative set theory
enables us to comprehend more delicately a preference relation,
especially its infinitesimal differences. We prove that there is
a valuation for any class with a preference relation .New, non-
traditional, but natural questions arise and we solve some of
them.

Ke¥ words: Alternative set theory, utility theory, preferen-
ce relation, valuation. ' ’

Classification: 03E70, 90A06, 90A12.

Introduction. Utility theory was formulated by John von Neu-
mann and Oscar Morgenstern in 1943.In the present paper we devel-
op it from the point of view of the alternative set thebry. The
both theories are compared in § 4. We modify the approach of von
Neumann and Morgenstern in the following way.

Let S be a class of objects. Let us imagine a man before
whom we put various elements of this class and he chooses among
them. When we put before him two elements of S he is able to
choose one of the two.

Let us extend this picture. Let him choose not only between
objects, but also between their combinations with stated proba-
bilities. A combination of n elements Ups..-nlp (neFN) of S
with probabilities «;,..., o, C(o¢;e FRN, o; Z O, Zea; = 1)
represents a game in which <, is a probability of gaining up,

c£2 is a probability of gaining u,, etc. We denote this game by
- 699 -



mw
cLlu1 +...% o u or ié% ®%;u;. Thus when we put before the man
two combinations ) gciui, ’,'};1 ﬁjvj' he either prefers
Eou; to E{szj ( S“‘i"i - = pjvj) or vice versa
( Epjvj & Z ;u;) or he considers them to be indifferent
( aniui ~ = pjvj).
We uae notions defined in (V]. N denotes the class of natu-

ral numbers, ZN of integers, RN of rational numbers. FN is the

class of finite natural numbers, FRN of finite rational numbers.

§ 1. Class S and a Preference Relation. In what follows we

shall denote the class of objects by S.

Definition. Let o be an element of FRN such that 0 £ cc £ 1.

Then we call « a probability coefficient.

Definition.lLet SFRN be a linear space with the basis S over
FRN. Let us denote SU]SSFRN the class of all convex combinati-

ons of elements of S, i.e.
stn - "-gq“i”i‘ (Vi)(14i&n){u;¢ S &« is a probability
4=

L3
coefficient & .2‘.1 ©,; = 1t.

4=

SL11 is a class of games described in the introduction. We
"
write X oju; instead of %?1 o ;u; for some ne FN and letters

U,V WUy, for elements of S and a,b,c,a for elements of

gre--
S[11 in the short-hand notation.

’

Definition. § is a preference relation on S, provided

% € S[1x S[1) and it holds: if a,b,c are elements of S[1], o
being a probability coefficient, then

(P1) A (a ¢ a),
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(P2) (a}b&bsc)=p ajrc,
(P3) (A (akb) & 1 (bsc)) = (akc),
(P4) apb=oga+ (1 -g)c kb + (1 -« )c.

In what follows let S always be a claés of objects with a

preference relation §# .

Theorem 1.1. Let a,b,c, d be elements of S[11, « be a pro-
bability coefficient. Then
(atb&c¥d) = «a + (1 -w)c b + (1 - )d and
(n(asrb) &(crd)) = 7 (xa + (1 ~ac)c b + (1 - )d).

Remark. Assuming (P4), these two assertions are equivalent

to (P2) and (P3).

Definition. Let a,b be elements of SL1]1. a~ b (a is indif-

ferent to b) if = (agFb) & S (bsa).

Theorem 1.2. Ar'I‘ indifference relation is an equivalence.

Proof. Reflexivity from (Pl), symmetry from the Definition,

transitivity from (P3).

Theorem 1.3. Let us define a relation % on S[1] /~ as

follows: [a) »[b) iff a > b. & is a preference relation on S/~

and it is a strict linear ordering of S/~s .

Proof. The definition of % is correct. This follows from
(P2) and (P3). The assertion Z og;lu;l = [Z «;u;] follows
from 1.1. Hence (S5/~s) (1] = S{11/~As & Sgpy/~ . All axioms
(P1) - (P&4) hold. When u,v are elements of S such that Lul# [v]
then either {u) $ [ vlor (vl $ [ul.
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By 1.3, from now on, we shall w.l.0.g. consider any prefer-

ence relation to be also a strict linear ordering of S.

i
§ 2. The Definition and the Existence of a Valuation. One

of our main goals is to find a valuation of S, i.e. an embedding
of S into RN, which preserves a preference relation. In this way

we find prices of objects of S.

The following definition proves to be useful.

Definition. S[01 = § = &ju (\/i)(uie S & o € FRN) &

id
K Zw; =0 %=l | > 0%
Each element of SL0) can be evidently written in this form:

Z ju; + = - ﬁivi, where the relations Zoc,i = Z{Ji =
o !
i i
= y>0and - u; € SI1) and T - Vic S(1] hold.

Definition. Let Zeoiui + X - (sivi be an element of S{0),
zo(,i= 2{31=7>0.Wer;l:f‘1ne A
T oobyuy + s - (51"1>0 ifz—;l uy » = -'1—1 vy and
. <5 Ry
Sooguy * Z - Pyyvy<0 it Z—'f' u; < z—r Vi-
According to this definition we divided the class S[0] into
two parts. In.the first part, there are elements greater than or

equal to zero, and in the second one, there are elements less than

or equal to zero.

Theorem 2.1. Let a,b be elements of SL01, A» being an ele-
ment of FRN. Then
(1) (a>0&b>0) =»(a + b>0),
(ac08bg0) =p(a + bg0).
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(2) & >0=(a>0 = H.2a>0),
Q> < 0=(a>0 = A+ ac0).

Definition. Function F is a valuation of S if dom(F)E& S,

rng(F)c RN and if Egc,iui is an element of S[0] then

Z“’x“f 0 =Z x; Fu;)>0 and
= wjuj<0 = = o, Flu;)<0.

A valuation F of S is a total valuation if dom(F) = S.

Theorem 2.2. Let {Fn,nc. FN} be a sequence of valuations of
S such that Ens Fn+1 for all n. Then F= U4 Fn,nsFN§ is a func-
tion and it is a valuation.

Theorem 2.3. Let F be a valuation of S and let F be at most
countable. Let w be an element of S which is not an element of
dom(F). Then there is a z& RN such that F v §{ <w,z>} is a valu-
ation.

Proof. Put Y = {Euciui;
%= o = -1%. If = «ju; is an element of 'Y then w + = o Uy
is an element of S[0]. Put

(Vi)(use dom(F) & ;¢ RN) &

Xz"i”i ={xeRN; x£Z - ociF(ui)}, for w + Tt u; €0,
- . xZ -
xi-oiui ={xeRN; xZX ocirgui)i, for w +£wiuiz 0.
Evidently X are intervals on one side unbounded. The-

id’iui
re are at most countably many of them.

We claim that Z = N { XZ"‘iui’ Z wju e YE is not empty.

Classes )(2."'“"i are set-theoretically definable. Thus if Z is

empty, the intersection of finitely many of these intervals is
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empty. And by the definition of XZ}‘ u. We see that already the
iti

intersection of two of these intervals is empty. Say {x; x &« & -

-« Fu)dd n x5 xz Z - 3,F(v;)} = 8. Hence w + Fovju; £0

and w + = (B;v;Z 0. By the theorem 2.1, -w - = f3;v; &0 and

Z w;u; - X (B;v;€0. Consequently
ZetiFlug) - ERF(vI£0, = - f,F(v,) £ 5 - o;Fluy,
and it is a contradiction.
Now, we take zeZ. The function FU f<w,z>} is the desi-

red function.

Theorem 2.4. For any S, there is a total valuation of S.

Proof. If S is finite, we use several times the last theo-
rem. Otherwise either {un,ne FNY or iu‘ , X € D% is an enumera-
tion of S depending on S being countable or uncountable.

We choose F(ul)e RN arbitrarily. By the induction, we prolon-

gate the function by 2.2 and 2.3,

Theorém 2.5. Let k, g be elements of RN, k be a positive

———

number, F is a valuation of S iff keF + q is a valuation of S.

Theorem 2.6. For any class S there is a valuation G such that

(1) rng(G)E N,
(2) for Ew,u;s 5[11 holds Eot,G(u)eN .

Remark. The theorem has the following economic interpreta-
tion. For any class S there exists a monetary unit so small that
both values of elements of S ‘and all values of their combinations
can be expressed ir; this unit.

m tet F be any valuation of S. By LV], it holds: there
is a Y and a set d such that.F"S is similar to Y and Y € d. As
x @ RN is the set-formula and as (V x)(xsF"S&Fin(x) = x SRN)
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we see that deRN. As F"S is similar to Y, there is an endomorph-
ism H such that H"(F"S) = Y.

Each element of d can be written as 5— where x and y are ele-
ments of N which are prime to each other. The set{y;(gzsd)(u%)}
is linearly ordered by < . Thus it has the greatest element m.

If ma@N\FN, put k = m!, if meFN, put k = n!, where n is any ele-
ment of NN\ FN. s

Each element He F(u) of d can now be written as k_u , where

dus IN. If d contains also negative numbers, put

q = -min{du, :—ue d§, otherwise put g = O. .

We define the function G as follows. Let ueS. Supposing
Ho F(u) = ;E put G(u) = d, * a.

He F is a valuation , as H is an endomorphism and as the pro-
perty "to be a valuation" is set-theoretically definable with pa-
rameter S. G is also a valuation, as G = ke(HoF) + q.

It is easy to prove that ZeciG(ui)c.N for Zociuis SL[1).

.

§ 3. Partial Preference Relation

Definition. Let » be a preference relation on S. Let

& &« & . Then ¥ is called a partial preference relation on S,

Let ne FN. A partial preference relation of degree n is de-

M ~
fined by »_ = » t {(&?’_4 iUy 1,’.2'_1 ﬂivi) 6 S[1)xS[11; 1&m,

14k, mtk&nt.

The structure of S with a preference relation can be rather
rich and complicated. A question offers: does hot a partial pre-
ference relation, say of a certain degree n, suffice for finding
a total valuation? And if not, what is determined by a given

partial preference.relation?
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Definition. Z(S) = {)’ , > is a preference relation on Sf.

Definition. Let = be a partial preference relation on S.

(1) Let a, b be elements of SL1L A relation of a, b is de-

termined by ¥ if (V> e X (S)(V s & = ()
((F & #253<¥)=> + P§{<a,bd}= » P<a,bd}).
(2) Leta= Eu + = - Byv;es[0), T; = ZTB; =

= 4> 0. The a is determined by X if the relation of

oy By . =
= ?ui,z?vi is determined by > .

(3) > determines a preference relation if every a& S[0] is

determined by > .

Example 1. Let o« be a probability coefficient. Let § =
= {u,w,vl. Define %, by: ul, w >, v. Obviously =, does not

determine a relation of w and ocu + (1 - o )v.

Example 2. Let o be a probability coefficient. Let
S ={u,v ,w,2%. Define Sy by u Fg v Fsw gz

vr3(1-%)u+%wandv >3 (1-%)u+%zand

-rl;d\«(l—%)z y,wand%v»f(l-%)z)—BwforeveryneFN.

¥ does not determine the relation of ocu + (1 - o€ )z,
&€V + (1 - ¢ )w, elements of S[1], i.e. ¥y does not determine

ou + (1 -06)z - v - (1 - o¢)weSEO].

We have proved that for each S with a preference relation
> there is its valuation |, i.e. its embedding F into RN, such
that {(S(1), » ) is isomorphic to {(F"S)I1], >7 -

Thus w.l.0.g. we consider S to be a subclass of RN.

Definition. Let x, y be elements gf RN

x £y (x is_less in order than y) if
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(1) 0£x<y&§='.-.0, or
(2) x<y<0g&f =0, or

(3) x<0<y

o
X =y (x and y are equal in order) if ﬂ(xg.y) &~y < x).

g
Remark. x < y denotes x £ yvy < x

Example 3. In the example 2, there is:

o o
(1) u-vZ u-w, u-v gu-z, W-Z < U-Z, W-Z < U-W;
l-oq

(2) o¢u+ (1-®) z = v + (1-¢) w iff u-v = = (w-2),
U + (l-¢) z >k Vv + (1-€) w iff u-v > 1;:‘(»:—1).

Lemma 3.1. Let x, y be elemen ts.of RN.
1 x<Z y implies x<y.
(2) x£1 iff xeBRN\Mon(0).
(3) If xZ 1 then x.y Zy.
(8) If the both x and y are positive then x+y £ max {x,y}.

Theorem 3.2. Let u -,u € S. Then lZuciuil £

1
£ max {\ul\,...,lun\} for all Ecciuie S[ol.
Proof. By 3.1, 1Z e u;l £ 2|cqiui\Z|nax -ﬂeclull,...
. \,(,nun\ig max £1ugb, ..o, lu ik,

Lemma 3.3. Let X be a countable subclass of positive ratio-
nal numbers. Then there is a positive rational number d such that

(VxeX)(d x).

Proof. 1If X has a minimal element m, put d=m. Otherwise,

= . 1 1
put H ={x € N; (3 xe X)m£x<;}. Evidently H is countable.
Thus theré"is a [ € N such that (Yo ¢ H)(ec < 3). Put

L.
P

Theorem 3.4. Let Upseooslp be elements of S. Then there is

d =
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a de RN such that, for all X « 1Y eS[D], if Zoc u;#0 then
| S o ulZ d.
Proof. Put X = {I= o€ u;l; &, .., cFRN, Z €, =0}

and use 3.3.

Definition. We denote the d from 3.4 by d(ul,...,un).
Theorem 3.5. Let ul,...u‘n,vl, ceea Vg be elements of S such
that (Vi) <ign) lui-vi\ gd(ul,...,un) Let = o u; be an e-

lement of SLO). Then
= xju>0 = chivi>0 and
= xjuj< 0= E «;v;<0.

Proof. Z"‘ivf Zooiui + Zoci(vi—ui) and
\Zeci(vi-ui)lz d(ul,...,un)z Izgciui\. By 3.1 we have the

desired properties.

Theorem 3. 6. Let >— be a partial preference relation on S.
Let mi’. eci i be an element of SID) which is not determined by
¥n - Then no element of S[D) which is a combination of n ele-

ments of {ul,...,u 1 equals zero.

n+l1
Proof. Let §1,...,n+1} ={al,...,an§u { b} and suppose
. 2 - 1 g
0= ‘}?_1 {sj“a is an element of S{0). Hence ual = A -;.?2 ﬂjuaj'
Since Ze(.u::ﬂ S'. u+ocu=2(u: -
iti alal,}.. xjaj b'b "3T2 J

4
- ucal. #)uaj + LU, we have &.i‘ o u; can be expressed as a

combination of n elements. Thus it is determined by > @ cont-

radiction.

Theorem 3.7. For each n there is an S = {ul,...,uml} , 8

partial preference relation of a degree n >- on S and an element

me 4
= o juy of S[DJ(whichAls not determined by )

i1 n°
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Proof. By induction we'construct -iuly-'-’um-l} =8 and4
+ 1 m -
y,..., «,,; elements of FRN, ’:;1 «; = 0, such that a.iq oCjuy=

m*1
is not determined by > and in addition 4?‘1 ouy = 0.

For n=3 see the example 2.

Suppose the assertion holds for n-1, we prove for n. Let v,w

be such that v>u,>w and v-ulg d(ul,...,un), up-w 2d’(u1,...,un).
We prove that >'n7‘<v,w,u2,...,un‘7 =>'nr<ul,u1,u2,...,un’1 for
all such v, w. Let a = ﬁlv + Bow +.. s ﬂn"'n be an element of
{v,w,uz,...,un} [0]) which is a combination of n elements. Denote
b= (By+BPuy +...+fu, c = Py(v-u) + B,o(w-u;). Thus & = b+
+ c. We have lcl = I3, (v-u;) + ﬂz(w-ul)l Zd(ul,...,un) £
d(ul,ul,...,un)é\b\. By 3.5, we have a>0=» b>0, a<0 =>b<0.

Never a = 0. Indeed if a = 0 then either Os%b = -c, a contradicti-
on with \clzlb\ or 0 = b = c, a contradiction with the induction
premise, by 3.6.

Let o be a probability coefficient. Put d = gbl(y'v +
+ (,:, -w) + %gz o quy. For example, let o¢,>0. Since
.;?—1"iui = -eu;, we have d>0 iff v + (1 -y)m>u1 and
d<0 iff v+ (1 -3')w<u1. Thus d is not determined by &n

We take v, w such that d=0. Then S = {v,w,uz,...,un}, de SLO]

have all desired properties.

Corollary 3.8. There is no n such that every partial prefe-

rence relation of a degree n determines a preference relation.

§ 4. A comparison of the Theory of Utility in the Cantor

Set Theory and in the Alternative Set Theory

The classical theory of utility differs from ours in the fol-
lowing three points. See [FJ.

(1) A preference relation is not given on the whole S[1) but
’ - 709 -



only on its subclass on SU{{w,xu + (1-xX)VD>; u,w,veS, ubw >
rv,x€E,, 0£oc £1%. I.e. only >3 is given.

(2) So called Archimedean axiom is assumed:
(Vu,w,veS)(upwirv)(3ec € Ej)(w = ccu + (1 -ec)v).

(3) A total valuation exists iff S contains a countable den~

S€e o

Commentery.

ad (1). Assuming (2), ¥y determines a preference relation.
Indeed, if = ol u; 6501, u; ... ¢u,, then (Vi)( 3 Bi€ED
(ui = fsiul + (1- {Bi)un). Thus Z o6 u; = = nciﬂi(ul- u,)>0
ift Z «; 3;,>0. Hence (1) is sufficient.

ad (2). Von Neumann and Morgenstern wrote about the Archime-
dean axiom: It is probably desirable to require it, since its
abandonment would be tantamount to introducing infinity utility
differences [NM]. Infinity differences are one of the basic noti-
on s in the alternative set theory.

In some situation the Archimedean axiom seems to be restric-
tive . Let us return to the Introduction to the man who chooses
between elements of S[1]. Let S contain a TV(t), a similar TV with
a small hash (h), a pencil (p). Let us imagine the man prefers t
to h and h to p. We can also imagine he prefers h to a game in
which he gains either t or p, though the probability of gaining
only p would be the smallest possible. I.e. if o 1is a probabili-
ty coefficient (o o 0,1) then

tyrh ot + (1-06)psp.

By this way we can describe incomparability of some values.
Heret-hzt-p.

ad (3). In the alternative set theory there is a total valu-
ation for any S.

There is another point very important for our conception. Probabij-
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lities which appear in our games are finite rational numbers. This
means that "the smallest possible" stands for very small but per-
ceptible, before the horizon of our discernibility. Also elements
of S[1] represent games for n elements of S, where n is a finite

natural number, i.e.easy to survey, before the horizon.
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