Commentationes Mathematicae Universitatis Caroline

Věra Trnková

Countable Hausdorff spaces with countable weight

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 4, 749--770
Persistent URL: http://dml.cz/dmlcz/106413

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26.4 (1985)

COUNTABLE HAUSDORFF SPACES WITH COUNTABLE WEIGHT Vėra TRNKOVA

Abstract: We show that every countable commutative semigroup admits a productive representation in the class of countable Hausdorff spaces with countable weight. As a consequence, we obtain a countable Hausdorff space X with countable weight, homeomorphic to $\mathbf{X} \times \mathbf{X} \times \mathbf{X}$ but not to $\mathbf{X} \times \mathbf{X}$.

Key words: Countable Hausdorff space.
Classification: 54B10, 54G15
I. Preliminaries and the Main Theorem. Let ($\mathrm{S},+$) be a commutative semigroup, \mathcal{X} be a category with inite products, \mathscr{C} a class of its objects. A collection

$$
\{X(s) \mid s \in S\}
$$

of objects of \mathscr{C} is called a productive representation of $(S,+)$ in ℓ if
(i) for every $s_{1}, g_{2} \in S, X\left(s_{1}\right) \times X\left(s_{2}\right)$ is isomorphic to $X\left(s_{1}+m_{2}\right)$,
(ii) if $s_{1} \neq s_{2}$, then $X\left(s_{1}\right)$ is not isomorphic to $X\left(s_{2}\right)$. The field of problems which commutative semigroups have productive representations in which categories generalises some problems investigated e.g. by S. Ulam [17], A. Taraki [10],[11], W. Hanf [3], B. Jónsson [4],[5], A.I.S. Corner [2], J. Ketonen [6], R.S. Pierce [9] and others. For example, if the represented semigroup $(s,+)$ is a cyelic group $c_{2}=\{0,1\}$ of order $2(1, e .1+1=0)$ and
$\{X(0), X(1)\}$ is its productive representation, then $X=X(1)=$ $=X(1+1+1)$ is isomorphic to $X^{3}=X_{\times} X \times X$ but not isomorphic to $X^{2}=I \times X \simeq X(1+1)=X(0)$.

In [15], a survey of results concerning productive representations of commutative semigroups in classes of topological spaces was presented and six open problems concerning this topic were formulated. Let us mention that some of them have been already aolved, namely Problem 1 in [7], Problem 2 in [16]and Problem 4 in [8]. Here, we solve Problem 5 aboud productive representations in the class of countable spaces with countable weight. Problems 3 and 6 of [15]remain open.

Let us recall here the situation concerning classes of countable topological spaces. If a countable metrizable space \mathbb{X} is homeomorphic to X^{3}, then it is homeomorphic to X^{2}, by [13]. On the other hand,
every countable commatative semigroup has a productive re-
presentation in the class of all countable paracompact spaces. This is proved in [14]. The construction in [14] uses an infinite collection of pairwise incomparable ultrafilters (in the RudinKeisler order) on a countable set and the constructed representing apaces are far from having countable weight. The reault conceming countable spaces with countable weight is much weaker. By[15], every countable commutative semigroup has a productive representation in the class of all countable I_{1}-spaces with countable weight.

In this assertion, T_{1}-spaces cannot be replaced by T_{3}-spaces because a T_{3}-space with countable weight is metrizable and, as mentioned above, the group o_{2} has no productive representation in the class of countable metrizable spaces. Problem 5 of [15]
is to fill up the gap between T_{1}-spaces and T_{3}-spaces. The aim of the present paper is to prove the following

Main Theorem. Every countable commutative semigroup has a productive representation in the class of all countable T_{2}-span ces with countable weight.

Let us sketch the contents of the next parts of the paper. In II, we introduce the notion of irreguarity degree of a topological space and investigate its basic properties. By means of this new topological invariant we prove in III and IV the above Main Theorem. In III, we construct the representing spaces, in IV we prove that they really form a productive representation in the class of all Countable Hausdorff Spaces with Countable Weight (let us use the name CHSCW for this class). In the part IV, we present some strengthenings and generalizations of the Main Theorem.

II. The irregularity degree id.

II.1. The inductive definition of the irregularity degree of a topological space P (similar in its form to the definition of ind - the small inductive dimension) is as follows (\mathbb{A} denotes the closure of A).
id $\varnothing=-1$
If $x \in P$ then

$$
\begin{aligned}
& \text { id } x \leq n \equiv \text { for every neighbourhood } U \text { of } x \text { in } P \\
& \text { there exists a neighbourhood } V \text { of } x \text { in } P \text { such that } \\
& \quad \text { id } \bar{v} \backslash u) \leq n-1 ; \\
& \text { id } P \leq n \equiv \text { for every } x \in P, 1 d_{p} x<n ; \\
& \text { id } x=n \equiv i d_{p} x \leq n \text { end non }\left(i d_{p} x \leq n-1\right) ; \\
& \text { id } P=n=\text { id } P \leq n \text { and non }(i d P \leq n-1) .
\end{aligned}
$$

Since in our constructions in III and IV we are interested only in spaces with finite irregularity degree, we aimply put
id $P=\infty \equiv$ for no nataral number n, id $P \leq n$.
Observation. id $P \leqslant 0 \Longleftrightarrow P$ is regular.
The proofs of the following lemmas are straightforward inductions; the cases $n=0$ and $n=\infty$ are usually trivial, wo we shall indicate in each case the induction step.
II.2. Lemma. If $Q \subseteq P$, then id $Q \leq i d$ P。

Proof. Use the inequality

$$
\overline{v \cap Q^{Q}} \backslash(u \cap Q) \subseteq \bar{v}^{P} \backslash u .
$$

II. 3. Lemma. If $P=P_{1} \cup P_{2}$ and P_{1}, P_{2} are closed, then id $P=\max \left\{1 d P_{1}\right.$,id $\left.P_{2}\right\}$.
Proof. It suffices to show that id $P_{P} \leq \max \left\{i d P_{1}\right.$, id $\left.P_{2}\right\}$ for each $x \in P$. For $x \in P_{i} \backslash P_{3-1}$ it follows readily that $i d_{p} x=$ $=1 d_{P_{1}} x$ so we take $x \in P_{1} \cap P_{2}$. Now, use the fact that if V_{1} is a P_{i}-neighbourhood of x for $i=1,2$, then $V^{\prime}=V_{1} \cup V_{2}$ is a P-neighbourhood of x and if U is eny other neighbourhood then

$$
\nabla^{P} \backslash u \subseteq\left(\bar{v}_{1}^{P_{1}} \backslash\left(u \cap P_{1}\right)\right) \cup\left(\bar{v}_{2}^{P_{2}} \backslash\left(u \cap P_{2}\right)\right)
$$

II.4. Lemma. Let x be a point of P such that

$$
i d_{P} x=1 d P=n<\infty
$$

Then for every neighbourhood U of x

$$
\text { id } \bar{u}^{P}=n_{0}
$$

Proof. Straightforward.

II.5. Proposition Let $P=P_{1} \times P_{2} \neq \varnothing_{\text {. Then }}$
id $P=1 d P_{1}+1 d P_{2}$
Proof. First observe that if $V_{i}, U_{i} \leq P_{i}$ are open for $i=1,2$ and $v=v_{1} \times v_{2}, u=u_{1} \times u_{2}$, then
$\mathcal{v} \backslash u \leq\left(\left(\bar{v}_{1}^{P_{1}} \backslash u_{1}\right) \times \bar{v}_{2}^{P_{2}}\right) \cup\left(\bar{v}_{1}^{P_{1}} \times\left(\bar{v}_{2}^{P_{2}} \backslash u_{2}\right)\right)$.
Then \leqslant follows in a atraightforward way and \geq follows, fixing $x_{1} \in P_{i}$ with $i d_{P_{i}} x_{i}=i d P_{i}$ for $i=1,2$ and then, using II.4, showing that $1 d_{p}\left(x_{1}, x_{2}\right) \geq$ id $P_{1}+$ id P_{2}.
II.6. Example. Let $m \geq 1$ be a natural number. Let us define a space Z_{m} as follows: Let $\left\{D_{1} \mid i=0, \ldots, m\right\}$ be a pairwise disjoint system of countable dense subsets of the interval ($0,1>$ of the real numbers, let B be the set of all rational numbers in the intervel $\langle-1,0\rangle$. Put

$$
Z_{m}=B \cup \bigcup_{i=0}^{m} D_{1}
$$

Let τ_{m} be the Euclideen metric on $Z_{m} \subseteq\langle-1,1\rangle$, denote $K_{z, \varepsilon}=$ $=\left\{x \in Z_{m} \mid \tau_{m}(x, z)<\varepsilon\right\}$. The topology of Z_{m} is defined such that
if $z \in D_{i}$. then its local base is $\left\{K_{z, \varepsilon} \cap\left(\bigcup_{j=i}^{m} D_{j}\right) \mid \varepsilon>0\right\} ;$
if $z \in B \backslash\{0\}$, then its local base is $\left\{K_{z, \varepsilon} \mid \varepsilon>0\right\} ;$
the locel base of 0 is $\left\{(-\varepsilon, 0\rangle \cup\left((0, \varepsilon) \cap D_{m}\right) \mid \varepsilon>0\right\}$.
Observation. Z_{m} is an element of the class CHSCN and
a) if $z \in D_{i}$, then $1 d_{Z_{m}}=$ is
b) $z \in B \backslash\{0\}$ iff z has a clopen ($=$ closed-and-open) neighbourhood, which is a regular spaces
c) $1 d_{z_{m}} 0=m$ moreover, 0 is the unique point z of z_{m} with the following property:
id $z>0$ and any neighbourhood of z contains a clopen (in Z_{m})
subset. which is a regular space.
III. The besio conetructions.
III.1. First, let us describe a method which has been used several times for constructions of productive representations. Ve atart from a collection $\mathcal{X}=\left\{X_{k} \mid k \in \omega\right\}$ of apaces, where ω
denotes the set of all nonnegative integers. For every $f \in \omega^{\omega}$, we put

$$
X(f)=\prod_{k \omega} X_{k}^{f(k)}
$$

1. ©. each $X_{k}^{f(k)}$ is the product of $f(k)$ co pies of X_{k} (if $f(k)=0$, then $X_{k}^{f(k)}$ is a one-point apace) and $X(f)$ is the product of all $X_{k}^{f(k)}, k \in \omega$. Then, clearly,

$$
X(f) \times X(g) \text { is homeomorphic to } X(f+g) \text {. }
$$

Denote by 4 the semigroup of all countable infinite subsets A of $\omega^{\omega} \backslash\{0\}$ (where 0 is the function which maps the whole ω to 0) with the operation + defined by

$$
A+B=\{I+g \mid I \in A, g \in B\}
$$

For every $A \in U$ denote by $X(A)$ the coproduct ($=$ a disjoint union as olopen subsets) of y_{0} copies of each $X(f)$ with $f \in A$. Then, cleurly,
$X(A) \times X(B)$ is homeomorphic to $X(A+B)$ for all $A, B \in U$. If the starting collection $\mathscr{X}=\left\{X_{k} \mid k \in \omega\right\}$ is constructed such that the following implication is fulfilled,
$X(A)$ is homeomorphic to $X(B) \Longrightarrow A=B$, then $\{I(A) \mid A \in U\}$ is a productive representation of U. And, by [12], every countable commutative semigroup can be embedded into V.
III.2. In the present paper, we have to modify the above method because the spaces $X(f)$ are usuelly uncountable. The idea is to choose mitable aubspaces, say $Y(f)$ e, such that still
$Y(f) \times Y(g)$ is homeomorphic to $Y(f+g)$.
In our conatruction, however, the topology on the subset of the product is also modilied a little. Thus, let us muppose that the etarting collection $K=\left\{x_{k} \mid k \in \omega\right\}$ of elements of CHSCW has been already construoted (this will be done in III.3) and let us
suppose that a semigroup $S \subseteq U$ is given such that its support supp $S=\bigcup_{A \in S} A$
is countable (every countable subsemigroup of U has countable support, of course). Let us describe the spaces $X(f)=$ $=\prod_{k \omega} \mathrm{X}_{k}^{f(k)}$ in a way more suitable for handling with coordinates. Por every $f \in \omega^{\omega} \backslash\{\mathbb{O}\}$, denote

$$
L(f)=\{(k, j) \mid k \in \omega, j=1, \ldots, f(k)\}
$$

and for every $\ell=(k, j) \in I(f)$ put $\bar{l}=k$. Then, clearly,

$$
X(f)=l \prod_{\ell L(f)} X_{\bar{l}} .
$$

Por every $f, g \in$ supp S, we choose a bijection

$$
\mu_{f, g}: I(f) \dot{U} L(g) \longrightarrow I(f+g),
$$

where $L(f) \cup L(g)$ denotes the diajoint union of $L(f)$ and $L(g)$. Let us define a map

$$
\rho_{f, g}: X(f) \times X(g) \longrightarrow X(f+g)
$$

by

$$
\rho_{f, g}(x, y)=z,
$$

where for every $l \in L(f+g)$, the l-th coordinate z_{l} of z is procisely the ℓ^{\prime}-th coordinate of either x or y, with $\ell^{\prime}=\mu_{f,}^{-1}(\ell)$, depending on the fact whether ℓ^{\prime} is either in $L(f)$ or in $L(g)$. Thus $\rho_{\rho, g}$ only permutes coordinates (so it is a homeomorphism of $X(f) \times X(g)$ onto $X(f+g))$.

If $1, g \in$ supp S, σ^{\prime} is a finite decomposition of $L(f)$ and σ^{\prime} is a finite decomposition of $L(g)$ then $\left\{\mu_{f, g}(Z) \mid Z \in d^{\sigma}\right.$ or $\left.z \in \delta^{\prime}\right\}$ is a finite decomposition of $L(f+g)$; denote it by $\mu_{f, g}\left(\delta^{\prime} \dot{\prime} \sigma^{\prime}\right)$. Conversely; if $\sigma^{\text {r }}$ is a finite decomposition of $L(f+g)$, then $\left\{L(f) \cap \mu_{f, g}^{-1}(z) \mid z \in \delta^{\prime}\right\}$ and $\left\{I(g) \cap \mu_{f, g}^{-1}(z) \mid z \in \delta\right\}$ form finite decompositions of $L(f)$ and $L(g)$; let us denote them by $\mu_{f, g, 1}^{-1}\left(\delta^{\prime}\right)$ and $\mu_{f, g, 2}^{-1}\left(\delta^{\sigma}\right)$.

For every $f \in$ supp S, we define a countable set $\mathscr{D}(f)$ of
finite decompositions of the set $L(f)$ as follows (simultaneousiy for all $f \in \operatorname{supp} S$, by induction):
$D_{0}(f)=\{\{L(f) \backslash K\} u\{\{k\} \mid k \in K\} \mid K$ is a finite subset cf $L(f)\}$, $\mathscr{D}_{n+1}(f)=\mathscr{D}_{n}(f) \cup\left\{\mu_{f, g, 1}^{-1}\left(\delta^{\sim}\right) \mid g \in \sup : S\right.$ and $\left.\sigma^{\prime} \in D_{n}(f+g)\right\} \cup$
$\cup\left\{\mu_{g, f, 2}^{-1}\left(\delta^{\prime}\right) \mid g \in\right.$ supp S and $\left.\delta^{\prime} \in D_{n}(f+g)\right\} U$
$\cup\left\{\mu_{g, h}\left(\delta^{\prime} \dot{U} \delta^{\prime}\right) \mid g, h \in\right.$ supp $\left.S, E+h=1, \delta^{\prime} \in D_{n}(g), \delta^{\prime} \in D_{n}(h)\right\}$, $D(1)=\bigotimes_{n=0}^{\infty} D_{n}(1)$.

How, let us suppose that the starting collection $\mathfrak{X}=\left\{X_{k} \mid k \in \omega\right\}$ has been constructed such that each X_{k} is an element of CHSCW and, moreover,
*) there is a distinguished infinite subset H in each of them (the same set for all the $X_{k}{ }^{\circ}$ s) and
b) for each $k \in \omega$, a continuous metric σ_{k} is given on X_{k} auch that diam $X_{k}=1$, all the metrica $\sigma_{k}, k \in \omega$, coincide. on H (i.e. $\sigma_{k}(a, b)=\sigma_{k}(a, b)$ for all $k, k \in \omega, a, b \in H$) and determine the topology of H .

Then we have two topologies on each $X(f)$, namely the product topology p and the topology of uniform convergence of the collection of the metric apacea $\left\{\left(\mathbf{x}_{\mathbf{k}}, \sigma_{\mathbf{k}}\right) \mid \mathbf{k} \in \omega\right\}$.

Por every $\mathcal{P} \in \operatorname{supp} S$ put
$H(f)=\{x \in X(f))$ there exists $\sigma^{\prime} \in \mathscr{D}(f)$ such that x is constant on each $Z \in \delta^{\circ}$ and, for each $Z \in \delta^{\prime}$, the value x_{l} of x at $l \in Z$ is in H$\}$,
$Y(f)=\left\{x \in X(f) \mid\right.$ there exists $J \in H(f)$ such that $x_{\mathcal{L}}=J_{\ell}$ for all $l \in I(f) \backslash K$, where K is innite?.

The topology investigated on $Y(f)$ is the infimum of the topologies p and m, i.e. a local base of a point $x \in Y(f)$ is formed by 211 the sets

$$
\begin{array}{r}
Y(f) \cap\left(v x_{k} \prod_{k K} U_{k}\right), \\
-756-
\end{array}
$$

where $K \subseteq L(f)$ is finite such that $x_{l} \in H$ for all $\ell \in L(f) \backslash K, U_{k}$ is a neighbourhood of x_{k} in X_{k} for each $k \in K$ and V is a neighbourhood of $\left\{x_{\ell} \mid \ell \in L(f) \backslash K\right\}$ in the space $\ell \in L^{T \quad(f) \backslash K}\left(\frac{x_{l}}{l}, \sigma_{\bar{l}}\right)$, where $T \cdot T$ denotes the product of metric spaces endowed with the metric

$$
\sigma(a, b)=\sup _{l} \sigma_{l}\left(a_{l}, b_{l}\right)
$$

Proposition. For each $I \in \operatorname{supp} S, Y(f)$ is an element of CHSCW. Moreover, for every $f, g \in$ gupp S,

$$
Y(f) \times Y(g) \text { is homeomorphic to } Y(f+g) \text {. }
$$

Proof. Every $Y(f)$ with $f \in \operatorname{supp} S$ is in CRSCW, evidently. The bijection $\rho_{f, g}$ maps $Y(f) \times Y(g)$ precisely onto $Y(f+g)$, this follows from the definition of $\mathscr{D}(f), \mathscr{D}(g), \mathscr{D}(f+g)$; since it only permutes coordinates, it is a homeomorphism.
III.3. We finish this part with the construction of the starting collection $X=\left\{X_{k} \mid x \in \omega\right\}$ of elements of CHSCW, the syaten of continuous metrics $\left\{\sigma_{\mathbf{k}} \mid \mathbf{k} \in \omega\right\}, \sigma_{\mathbf{k}}$ on X_{k}, and the distinguished subset H of all the X_{k}. ${ }^{\text {e. The proof that this col- }}$ lection really leads to a productive representation of a given semigroup $S \equiv \mathbb{U}$ (with countable support) will be given in the next part IV.

Let $M=\left\{M_{k} \mid \mathbf{L} \in \omega\right\}$ be a pairwise disjoint astem of infinite subsets of $\omega \backslash\{0,1\}$. Let us expreas each M_{k} as an increeaing sequence, i.e. $H_{k}=\left\{m_{L_{p}} \mid i \in \omega\right\}$, where

$$
1<m_{k, 0}<m_{x, 1}<m_{k, 2}<\ldots
$$

 of the syoter $\left\{z_{m_{k, 1}} \mid i \in \omega\right\}$ of apaces. We maltiply them by onepoint apaces to make them diejoint, then we form their (disjoint) union and add one point more. Thus,

$$
x_{k}=\left\{\sigma^{\prime}\right\} \cup \bigcup_{i=0}^{\infty}\left\{2^{-i}\right\} \times z_{m_{k, i}}
$$

Let us denote

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{k}}=\bigcup_{i=0}^{\infty}\left(\left\{2^{-1}\right\} \times \bigcup_{j=0}^{m} \mathrm{D}_{j}\right), \\
& \mathrm{G}=\bigcup_{i=0}^{\infty}\left\{2^{-1}\right\} \times(B \backslash\{0\}) \\
& \mathrm{H}=\left\{\sigma^{\infty}\right\} \cup \mathrm{G} .
\end{aligned}
$$

Clearly, $H \subseteq X_{k}$ for all $k \in \omega$. We define the topology of X_{k} as follows:
each $\left\{2^{-1}\right\} \times Z_{m_{k, 1}}$ is a clopen subspace of X_{k} (homeomorphic to $Z_{m_{k, 1}}$ as in II. 6 , under $\left.\left(2^{-1}, x\right) \sim x\right)$, a local base of σ in x_{k} is $\left\{\{\sigma\} \cup \bigcup_{i=j}^{\infty}\left\{2^{-1}\right\} \times z_{m_{k, i}}\right.$ $\left.\mid j \in \omega\right\}$.

$$
\begin{aligned}
& \text { Now, we define the continuous metric } \sigma_{k} \text { on } X_{k} \text {. } \\
& \sigma_{k}(x, y)=\frac{2}{3}\left(2^{-1}+2^{-j}\right) \text { whenever } 1 \neq j, x \in\left\{2^{-1}\right\} \times Z_{m_{k, i}}, \\
& y \in\left\{2^{-j}\right\} \times Z_{m_{k, j}} ; \\
& \sigma_{k}(x, \sigma)=\frac{2}{3} \cdot 2^{-1} \text { whenever } x \in\left\{2^{-y_{2}} \times Z_{m_{k, 1}}\right\} \\
& \sigma_{k}(x, y)=\frac{1}{3} \cdot 2^{-i} \cdot \tau_{m_{k, i}}(\tilde{x}, \tilde{y}) \text { whenever } \tilde{x}, \tilde{y} \in z_{m_{k, i}} \text { and } \\
& x=\left(2^{-1}, \tilde{x}\right), y=\left(2^{-1}, \tilde{y}\right) \text {, where } \tau_{m} \text { is as in II. } 6 \text {. }
\end{aligned}
$$

Then diam $X_{k}=1$ and, since each $\tau_{m_{k, i}}$ is a continuous metric on $Z_{m_{k, i}}, \sigma_{k}$ is really a continuous metric on X_{k}. Moreover, since every τ_{m} determines the topology on B (see II.6), σ_{k} really determines the topology on H and all the metrics $\boldsymbol{G}_{k}, k \in \omega, \infty$, incide on H. Finally, let us denote

$$
p_{\mathbf{k}_{, 1}}=\left(2^{-1}, 0\right) \in\left\{2^{-1}\right\} \times z_{m_{k, 1}} \subseteq X_{k}, 1 \in \omega
$$

Ve concludes let a semigroup $S S U$ with countable mpport upp S be given, let $\mathcal{X}=\left\{X_{k} \mid k \in \omega\right\}$ be the collection of spaces just constructed; for each $I \in$ aupp S, let $Y(f)$ be the apace
constructed by means of \mathcal{X} as in III. 2 and, for every $A \in S$, let $Y(A)$ be a coproduct of \mathbb{H}_{0} copies of each $Y(f)$ with $f \in A$. Then () $Y(A)$ is an element of CHSCW and
β) if $A, B \in S$, then $Y(A) \times Y(B)$ is homeomorphic to $Y(A+B)$. In the next part IV, we prove the following implication. (*) $\quad\left\{\begin{array}{l}\text { if } A, B \in S \text { and } Y(A) \text { is homeomorphic to a clopen sub- } \\ \text { space of } Y(B) \text {, then } A \subseteq B .\end{array}\right.$

This will complete the proof of the Main Theorem because overy countable commutative semigroup is isomorphic to a subsemigroup of U, by [12].
IV. The recognizing of A from $Y(A)$. In this part, we show that the set $A \in S$ of sequences can be recognized from the topological structure of the space $Y(A)$. We present the definitions 1-4 below and prove that $P(Y(A))=A$.
IV.1. Definition 1. Let P be a topological space. We say that $x \in P$ is essential in P iff id $x \geq 1$ and any neighbourhood of x contains a clopen subset of P, which is a regular apace. We say that x is distinguished if it is essential in P and there exists its neighbourhood V such that if $y \in V$ is essential in P, then $1 d_{P} J=1 d_{p} x_{0}$

Definition 2. Let P be a topological space. For every $x \in P$, we define
$q(x)=\{m \in \omega \mid$ every neighbourhood of x containa a distinguimhed point y with $\left.i d_{P} y=m\right\}$.

Definition 3. Let $H_{k}=\left\{\mathbf{m}_{\mathbf{k}, 0}, m_{k, 1} \ldots \ldots\right\}$ be as in III.3. Let P be a topological space. For every $I<P$ and every $k \in \omega$ define $c_{z}(k) \subseteq \omega$ and $g_{x}(k) \& \omega \cup\{\omega\}$ by
$j \in c_{x}(k)$ iff for every $\in \omega$ and every neighbotrhood U
of x there exists $z \in \mathcal{U}$ such that card $q(z)=j$ and $q(z) \subseteq$ $\subseteq M \backslash\{0,1, \ldots, m\}$,
$g_{x}(k)=\sup c_{x}(x)$.
Remark: For every topological space P and every $x \in P$, we have defined a function $g_{x}: \omega \rightarrow \omega \cup\{\omega\}$. Let us write

$$
g_{y}<g_{y}
$$

iff $g_{y}(k) \leqslant g_{x}(k)$ for all $k \in \omega$ and $g_{y} \neq g_{x}$.

Definition 4. Let P be a topological space. Put
$\nabla(P)=\{x \in P \mid$ there exists a neighbourhood U of x such that $g_{y}<g_{x}$ for every $\left.y \in U \backslash\{\geq\}\right\}$,
$F(P)=\left\{g_{x} \mid x \in V(P)\right\}$.
Remaric. As mentioned above, we are going to prove that for every $A \in S$,

$$
F(Y(\Lambda))=\Lambda
$$

(More precisely, ω is never a value of g_{x} for any $x \in V(Y(A))$, hence g_{x} can be regarded as a function $\omega \rightarrow \omega$ and in this sense $F\left(Y(A) I=\Lambda_{0}\right)$

This will imply (*) in III.3, as we thow below.
IV.2. Pirst, we discuss essential and distinguished points.

Observations. a) If Z_{m} is as in II. 6 , then 0 is its unique essential point, hence it is its distinguished point.
b) Since each copy of $Y(f)$ ith $f \in A$ is a clopen aubspace of $Y(A), X \in Y(f)$ is essential in $Y(f)$ and $i d_{Y(f)} x=n$ iff x is essential in $Y(A)$ and $i d_{Y(A)} x=n$. Hence x is diatinguished in $Y(f)$ iff it is distinguished in $Y(A)$ (more precisely, $X \in(Y(f))_{j}$, where $(Y(f))_{j}$ is a copy of $Y(f)$ in $Y(A)=\underset{j \in A}{i \frac{1}{6} \omega}(Y(f))_{j}$, H d noting the coproduct).

Lot $L(f)$ and \bar{l} be as in III, 2, let $X_{K}, E_{k}, G, P_{K, i}$ be as - 760 -
in III. 3.
Lemma A. Let $x \in Y(f)$ be such that all its coordinates x_{l}, $l \in L(f)$, are in G. Then x is not essential in $Y(f)$.

Proof. If $x_{l} \in G$ for $h \in L(f)$, then id $x=0$ hence x is not essential.

Lemme. B. Let x be in $Y(f)$ and there exists $t \in I(f)$ such that the t-th coordinate x_{t} of x is in $E_{\bar{t}}$. Then x is not essential in $Y(f)$ 。

Proof. Let us suppose $x_{t} \in E_{\bar{t}}$. Since $E_{\bar{t}}$ is open in $X_{\bar{t}}$, $Y(f) \cap\left(E_{\hat{t}} \times \ell \in L^{T}(f) \backslash\{t\}{ }^{X_{\bar{l}}}\right)$
is a neighbourhood of x in $Y(f)$ which does not contain a clopen regular subspace because $E_{\bar{t}}$ does not contain a clopen regular subspace.

Lemma C. Let $K \subseteq I(f)$ be non-empty and finite, let the coordinates of a point $x \in Y(f)$ fulfill the following:
x_{ℓ} is in G for all $\ell \in L(f) \backslash K$,
$x_{l}=p_{l} i(l)$ for all $\ell \in K$ (for a suitable $i(l) \in \omega$).
Then x is essential in $Y(f)$ and

$$
1 d_{Y(l)} x=\sum_{\ell K}{ }^{m} \overline{\ell, i(\ell)}
$$

Proof. Every neighbourhood of x in $Y(f)$ contains a neighbourhood of the form

$$
Y(f) \cap\left(V \times \prod_{l \in K} U_{l}\right)
$$

where U_{l} is a neighbourhood of $x_{l}=p_{\bar{l}, i(l)}$ in $x_{\bar{l}}$ and V is a subspace of the metrizable apace $\left.\ell \in \operatorname{TH}_{f}\right)_{K}(G)_{\ell}$ (where T丁 is as in III.2). Consequently every neighbourhood of x in $Y(1)$ containg a clopen regular subspace (by II.6) and $1 d_{Y(f)} x=\sum_{\ell \in K} m_{\vec{E}} i(l)>1$, (by II.5).

Proposition. Let x be in $Y(f)$. Then x is dis oguished in
$Y(f)$ iff precisely one coordinate of x is equal to $p_{k, i}$ and all the others are in G.

Proof. a) Let x be in $Y(f), x_{l} \in G$ for all $\ell \in L(f) \backslash\{t\}, x_{t}=$ $=p_{E, i}$. Put

$$
\begin{aligned}
& u_{\ell}=G \text { for all } \ell \in L(f) \backslash\{t\} \\
& u_{t}=\left\{2^{-1}\right\} \times z_{m_{\bar{t}, 1}}
\end{aligned}
$$

Then $U=Y(f) \cap_{l \in L} \prod_{L(f)} U_{l}$ is a neighbourhood of x in $Y(f)$. By Lemmas $A-C, y \in U$ is essential iff $y \in Y(f), y_{l} \in G$ for all $\ell \in L(f) \backslash\{t\}$ and $y_{t}=p_{E, 1}$. Then id $y=m_{E, 1}=1 d x$, hence x is a distinguished point of $Y(f)$.
b) Conversely, let x be a distinguished point of $Y(f)$. Since x is essential, none of its coordinates are in some E_{k}, by Lemma $B_{\text {. }}$ Hence all its coordinates are in $H=\{\sigma\} \cup G$, except, possibly, finitely many which are equal to some $p_{k, i}$ s. Pirst,we prove that no coordinate of x can be equal to σ. Thus, let us suppose that there exists $t \in L(f)$ such that $x_{t}=\sigma$. Then every neighbourhood of x contains infinitely many essential points z with id z all distinct. In fact,we can choose $z_{t}=p_{E, 1}$ with sufficiently large 1 and, aince no coordinate of x is in E_{k} and G is dense in each $X_{k} \backslash E_{k}$, we can find z_{ℓ} in G arbitrarily close to x_{ℓ} for all $\ell \in L(f) \backslash\{t\}$ such that $z=\left\{z_{\ell} \mid \ell \in L(f)\right\}$ is in $Y(\rho)$ and sufficiently close to x. Then z is an essential point of $Y(f)$ with id $z=m_{E, i^{\circ}}$ And x is an accumulation point of all such z 's with all larger $i^{\prime \prime} s$, so x cannot be a distinguished point of $Y(f)$. Thus, if x is a distinguished point of $Y(f)$, then there exists $K \subseteq I(f)$ inite such that

$$
\begin{aligned}
& x_{l} \in G \text { for all } l \in I(f) \backslash K, \\
& \left.x_{l}=p_{\bar{l}, i(l)} \text { for all } l \in \mathbb{K} \text { (and suitable } i(\ell) \in \omega\right) .
\end{aligned}
$$

By Lemma A, K is non-empty. Let us suppose that card $K>1$. Then id $x=\sum_{\ell} \sum_{K}{ }^{m} \boldsymbol{L}, i(\ell)$ but every its neighbourhood contains an egsential point y with id $y=m_{Z_{f}} 1(t)$ for $t \in K$. In fact, if
$y_{\ell}=x_{\ell}$ for all $\ell \in(L(f) \backslash K) \cup\{t\}$ and y_{ℓ} is in G and sufficiently close to x_{ℓ} for all $\mathcal{L} \in K \backslash\{t\}$, then really y is an essential point with id $y=m_{\bar{t}, i(t)}$; if card $K>1$, then id $y \neq 1 d x$, which is a contradiction. Consequently card $K=1$ 。
IV.3. Now, we investigate the invariant $q(x)$ from Definition 2.

Observation. If Q is a clopen subspace of P and $x \in Q$, then $q_{P}(x)=q_{Q}(x)$, evidently. Hence for every $f \in A$ and $x \in Y(f)$,

$$
q_{Y(A)}(x)=q_{Y(f)}(x)
$$

Lemma. Let x be in $Y(f)$, m be in ω. Then $m \in q(x)$ iff no coordinate of x is in any F_{k} and at least one coordinate of x is equal to $p_{k_{, i}}$ with $m_{k, 1}=m_{0}$

Proof. If a coordinate of $x \in Y(f)$ belongs to some E_{k}, then x has a neighbourhood containing no essential point so that $q(x)=$ $=\varnothing$. Hence if $q(x) \neq \varnothing$, no coordinate of x is in any z_{k}. If no coordinate of x is equal to $p_{k, i}$ with $m_{k, i}=m$, then x has a neigh bourhood containing no distinguished point y with id $J=m$, this follows from IV. 2 Proposition; hence $\boldsymbol{q} q(x)$. Conversely, let us suppose that at least one cordinate of x is equal to $p_{p_{p}, 1}$ with $m_{k, 1}=m$, asy the $t-$ th one, and no coordinate x_{l} of x is in $\mathrm{E}_{\boldsymbol{l}}$. Since G is dense in each $X_{\bar{l}} \backslash E_{\bar{l}}$, we can find a distinguished point y sufficiently close to y such that
$\mathbf{y}_{\mathbf{t}}=\mathbf{x}_{\mathbf{t}}=\mathrm{p}_{\mathbf{r}_{\boldsymbol{p}}, 1}$,
$y_{\ell} \in G$ for all $\& \in L(f) \backslash\{t\}$,
hence id $y=m$. Tmas, $m q(x)$ 。
IV.4. Let us investigate the invariante from Definition 3.

Drespation If Q is a clopen abspace of P and $x \in Q$, then the definition of $a_{x}(k)$ and $g_{x}(k)$ with reapect to P and with - 763 -
respect to Q coincide.
Lemma. Let x be in $Y(f)$. If some coordinate x_{l} of x is in ${ }^{E}{ }_{\bar{Z}}$, then $c_{x}(k)=\{0\}$ for all $k \in \omega$. Otherwise, $g_{x}(k)$ is the number of all the coordinates x_{ℓ} of x, for which simultaneously

$$
\bar{\ell}=k \text { and } x_{\ell}=\sigma .
$$

Proof. If a coordinate x_{l} of x is in $E_{\bar{l}}$, then x has a neighbourhood U containing no essential point so that $q(z)=$ $=\varnothing$ for every $z \in U$, hence card $q(z)=0$; consequently $c_{x}(k)=$ $=\{0\}$ for all $k \in \omega$.

Let us suppose that no coordinate x_{l} of x is in $E_{\bar{l}}$. Let $k \in \omega$ be given; we denote by $K \subseteq I(f)$ the get of all $l \in L(f)$ such that $\bar{l}=k$ and $x_{l}=\sigma$ (hence card $\left.K \leq f(x)\right)$.
a) We prove that card $K \leqslant g_{x}(k)$. Let a neighbourhood U of x and $n \in \omega$ be given. We can find $z \in U$ with $q(z) \leq M_{k} \backslash\{0, \ldots$ $\ldots, n\}$ and card $q(z)=$ card K as follows: we choose distinct numbers $m_{k, i}(\ell)$, $\ell \in \mathbb{R}$, in $M_{k} \backslash\{0, \ldots, m\}$ such that $p_{k, i(\ell)}$ is sufficiently close to σ and put
${ }^{2} \ell=p_{k, i}(\ell)$ for all $\ell \in \mathbb{K}$
$z_{\ell} \in G$ sufficiortiy close to x_{l} for all $l \in L(f) \backslash K$ (since G is dense in $\bar{X}_{\bar{l}} \backslash \mathrm{E}_{\bar{l}}$, this is possible) and such that $z=\left\{z_{\ell} \mid \ell \in L(f)\right\}$ is in $Y(f)$. Then $q(z)=\left\{m_{x, i}(\ell) \mid \ell \in \mathbb{K}\right\}$, by IV. 3 Lemma. Since card $q(z)=$ card K, card $K \in O_{X}(K)$, 0 that card $K \leqslant g_{x}(H)$.
b) To prove the converse inequality let us denote
$U_{l}=\Sigma_{l}$ whenever either $\bar{l} \neq k$ or $x_{l}=\sigma$,
$u_{l}=\left\{2^{-1(\ell)}\right\} \times z_{m, 1(l)}$ whenever $\bar{l}=k$ and $x_{\ell} \in\left\{2^{-1(l)}\right\} \times$ $\times \mathbf{z}_{\mathbf{m}_{1} i(l)}{ }^{-}$

$$
u=Y(f) \cap_{\ell \in L(f)} u_{\ell} .
$$

Clearly, U is a neighbourhood of x and card $q(z) \leqslant$ card K for every $z \in U$ with $q(z) \subseteq M_{k} \backslash\{0, \ldots, m\}$. Consequently, $g_{x}(k) \leq$ $\leq \operatorname{card} \mathrm{K}$.
IV.5. Now, we inveatigate the invariants $V(P), P(P)$ from Definition 4.

Observation. If Q is a clopen subspace of P, then
$V(Q)=Q \cap V(P)$ and $F(Q) \subseteq F(P)$.
Proposition. For every $A \in S$ and $f \in A$,
$V(Y(f))$ consists precisely of the point with all coordinates equal to $\sigma, P(Y(f))=\{f\}$ and $P(Y(A))=A$.

Proof. This follows easily from IV. 4 Lemma.
Corollary. If $A, B \in S$ and $Y(A)$ is homeomorphic to a clopen subspace of $Y(B)$, then

$$
A=P(Y(A)) \subseteq P(Y(B))=B
$$

Thus, we have proved (*) in III.3.

V. Some strengthenings of the Main Theorem.

V.1. The following strengthening can be seen immediately from the proof of the Main theorem: If S is a commutative semigroup (not necessarily countable) such that there exists an embedding

$$
\varphi: S \longrightarrow \mathbb{U}
$$

With $\bigcup_{s} S(s)$ countable, then S has a productive representation in the class CHSCW. This has e.g. the following consequences:
a) The additive group $(\mathrm{R},+$) of all real numbers has a productive representation in CHSCW. (In fact, there exists an embedding $\varphi:\left(Q_{2}+\right) \longrightarrow \mathbb{U}$ of the additive group of all rational numbers with $\varphi(q) \cap \varphi\left(q^{\circ}\right)=\emptyset$ whenever $q \neq q^{\circ}$, by [12]. Then $\Psi:(R,+) \longrightarrow \mathbb{U}$ defined by

$$
\psi(r)=\bigcup_{\substack{q \in Q \\ q \leq n}} \varphi(q)
$$

is an embedding of (R, t) into U and $\bigcup_{n \in R} \Psi(r)$ is countable.)
b) There is an $X \in C$ CHSCW which has $2^{* 0}$ non-homeomorphic square roots. (In fact, put $S=\exp \omega$ and $8+8^{\circ}=1$ for all $s, s^{\circ} \in S$. Put $S_{0}=\{s \in S \mid$ card $s \leqslant 1\}$. Then there is an embedding $\varphi: S_{0} \longrightarrow U$ with $\varphi(s) \cap \varphi\left(s^{\circ}\right)=\varnothing$ whenever $s \neq s^{\circ}$, by [12]. Then $\psi: S \rightarrow \mathbb{U}$, defined by

$$
\begin{aligned}
& \psi(\phi)=\varphi(\phi) \\
& \psi(s)=\cup_{n} \in s(n) \text { for } s \in S, s \neq \phi_{\phi}
\end{aligned}
$$

is an embedding with $\bigcup_{\in S} \psi(\beta)$ countable. If $\{X(s) \mid s \in S\}$ is a productive representation of $(S,+)$ in CHSCN, then the spece $X=$ $=I(\varnothing)$ has $2^{\text {Sh }}$ non-homeomorphic square roots.)
V.2. Let us describe another strengthening of the Main Theorem: Let a space P in CHSCV and a subsemigroup S of W with countable support be given. Then there exists a productive representation $\{Z(\Lambda) \mid A \in S\}$ of S in CHSCW such that P is a retract of each representing space $Z(A)$. In fact, put

$$
T=P \times E
$$

where $E \in C H S C W$ is a space such that the points x with id $x>0$ are dense in it. Define $\mathscr{X}=\left\{X_{\mathbf{k}} \mid \mathbf{k} \in \omega\right\}$ as in III. 3 and, for every $f \in$ supp S and $A \in S$, define $Y(f)$ and $Y(A)$ by means of \mathcal{X} as in III.2. Finally, for every $A \in S$, put

$$
Z(A)=\frac{1}{\infty} \frac{1}{\epsilon} \mathrm{~T}^{n} \times Y(\Lambda)
$$

Clearly, P is a retract of $Z(A)$. Since each $Y(A)$ is homeomorphic to a coproduct of H_{0} copies of itself, we see that
$Z(A) \times Z(B)$ is homeomorphic to $Z(X+B)$.
And we can recognize the set $A \in S$ from the etructure of $Z(A)$ as in IV. In fact, no $q^{n} \times Y(A)$ with $n>0$ contains essential
points (because of the factor E) so that only $T^{0} \times Y(A)$ (which is homeomorphic to $Y(A)$ because T^{0} is a one-point space) influences the invariants c_{x}, g_{x}, 80 that

$$
V(Z(A))=Y(Y(A)) \text { and } P(Z(A))=F(Y(A)) \text {. }
$$

Consequently, if $Z(A)$ is homeomorphic to a clopen subspace of $Z(B)$, then $A \subseteq B$.

Corollary. Every space P in CESCW is a retract of a space in CHSCW having $2^{\text {SK }}$ non-homeomorphic square roots or of a space $X \in C H S C=$ homeomorphic to X^{3} hut not to X^{2}.
V.3. The next strengthening of the Main Theorem is as follows: Given a semigroup $S \subseteq \mathbb{U}$ with countable support and a space P in CHSCW, there are 2^{50} non-homeomorphic productive representations of S in CHSCW such that each representing apace has P as its retract. (We say that $\{Z(A) \mid A \in S\}$ and $\left\{Z^{\circ}(A) \mid A \in S\right\}$ are non-homeomorphic representations if none of the spaces $Z(A), A \in S$, is homeomorphic to any of the spaces $Z^{\circ}(B), B \in S_{0}$) In fact, the construotion of the productive representation presented in III depends on a given pairwise diejoint system $M=\left\{M_{x} \mid k \in \omega\right\}$ of infinite aubsets of ω. If we choose $M^{\prime}=\left\{M_{k}^{\prime} \mid k \in \omega\right\}$ such that

$$
\left(\bigcup_{k \in \omega} M_{k}\right) \cap\left(\bigcup_{k \in \omega} M_{k}^{\prime}\right) \text { is innite }
$$

then none of the apaces $Z(A), \Lambda \in S$, of the productive representation constructed by means of M is homeomorphic to any of the spaces $Z^{\circ}(B), B \in S$, of the representation constructed by means of M° (this can be seen ueing the method of IV.).
V.4. Let us mention the following generalization of the Main Theorem: In [1], J. Adámek and V. Koubek investigate a sumproductive representation of an ordered commatative semigroup $(S,+, k)$ in a category \mathcal{K} with inite products and inite coproducts (manas). It is a colleotion $\{X(s) \mid s \in S\}$ of objects of $\mathfrak{X C}$
such that
(i) $X\left(s_{1}\right) \times X\left(s_{2}\right)$ is isomorphic to $X\left(s_{1}+s_{2}\right)$ for all $s_{1}, s_{2} \in S$;
(ii) $X\left(s_{1}\right)$ is a summend of $X\left(s_{2}\right)$ iff $s_{1} \leqslant s_{2}$.

For $\mathscr{K}=$ CHSCW, being a summand is precisely being homeomorphic to a clopen subspace.
(Any commutative semigroup ($S,+$) can be ordered by the discrete order (i.e. any two distinct elements are incomparable.) Then a sum-productive representation $\{X(s), s \in S\}$ in CHSCW fulfils (i) and
if $s_{1} \neq s_{2}$ then neither $X\left(s_{1}\right)$ is homeomorphic to a clopen subspace of $X\left(s_{2}\right)$ nor $X\left(s_{2}\right)$ is homeomorphic to a clopen subspace of $X\left(s_{1}\right)$)

The semigroup $U \in \exp \omega^{\omega}$ is an ordered semigroup, it is ordered by inclusion. If $S \subseteq \mathbb{U}$ has countable support, we have constructed its productive representation $\{Y(A) \mid A \in S\}$ such that (*) of III. 3 is fulfilled. This means that $\{Y(A) \mid A \in S\}$ is a sumproductive representation of S, where S inherits its order from (W) And, by [1], every countable ordered commutative semigroup $(S,+, \leq)$ can be embedded in \mathbb{U} such that $s_{1} \leqslant s_{2}$ iff $\varphi\left(s_{1}\right) \subseteq$ $\subseteq \varphi\left(s_{2}\right)$ (where φ is the embedding). Consequently,
every countable ordered commutative semigroup has a sum-prom ductive representation in CHSCW.

Moreover, also some uncountable ordered commutative semigroups have a sum-productive representation in CHSCW - the existence of an embedding onto an ordered subsemigroup of \mathbb{U} with a countable support is a sufficient condition. One can see e.g. that the embedding $\psi:(R,+) \rightarrow U$ from $V_{0} 1$ a) preserves the or der so that $\{Y(\psi(r)) \mid r \in R\}$ is a sum-productive representation of the additive group of all real numbers with their natural order in CHSCW. The atrengthenings described in $V .2$ and $V .3$ can be
done slso for sum-productive representations oi ordered commatam tiva nemigroups.

References
[1] J. ADÁMEK and V. KOUBEK: Representations of ordered commuter tive semigroups, Loil. Math. Soc. Jénor Bolyai 20, Algebraic theory of semigroups, Szeged 93%, NorthHolland, 15-31.
[2] A.L. CORNER: On a conjecture of Pierce concerniug direct decomposition of Abelian groups, Proc. of Coll. on Abelian groups, Mihany, 1963, 43-48.
[3] W. HANF: On some fundemental problems concerning isomorphisms of Boolean algebras, Math. Scand. 5(1957), 205-217.
[4] B. JONSSOI: On isomorphism types of groups and other algebraic systems, Math. Scand. 5(1957), 224-229.
[5] B. JONSSON: On direct decomponitic i of torsion free Abelian groups, Math. Scand. 5(1957), 230-235.
[6] I. KBTOREN: The structure of countable Boolean algebras, Annals of Math. 108(1978), 41-89.
[7] M.M. MARJAYOVIČ and A.R. VUČEMIIOVIČ: Two non-homeomorphic countable spaces having homeomorphic squares, Comment. Math. Univ. Caroline 26(1985), 579-588.
[8] 4. ORSATMI and H. RODIIO: Homeomorphisms between finite powers of topological spaces, manuscript, 1985.
[9] R.S. PIBRCE: Teneor products of Boolean algebras, Proceedings, Puebla 1982, Lect. H. in Math. 1004,232-239.
[10] 1. TARSKI: Cardinal algebras. With en appendix by B. Jóngson and 1 . Tarski, Cardinal products of isomorphism types, Hew York 1949.
[11] A. TARSKI: Remarics on direct procucts of sommutative senigroups, Math. Scand. 5(1957), 218-233.
[12] V. TRKKOVA: Isomorphians of products and representation of commtative semigroupa, Coll. Math. Soc. Janos

Bolyai 20, Algebraic theory of semigroups, Szeged 1976, North-Holland, 657-683.
[13] V. TRNKOVí: Homeomorphisms of powers of metric spaces, Comment. Math. Univ. Carolinae 21 (1980), 41-53.
[14] V. TRIKOVí: Homeomorphisms of products of countable spaces, (in Rusaian), DAN SSSR 263(1982), 47.-52. Translam tion: Soviet. Math. Dokl. 25(1982), 304-307.
[15] ∇. TRNKOVÁ: Representation of commutative semigroups by prom ducts of topological spaces, Proc. Pifth Prague Topol. Symp. 1981, Heldermen Verleg Berlin 1982, 631-641.
[16] V. TRNKOVÁ: Homeomorphisms of products of mbsets of the Cantor discontinuum, to appear.
[17] S. ULAM: Problem, Fund. Math. 20(1933), 285.

Matematioký ústav, Univerzita Karlova, Sokolovaká 83, 18600 Praha 8, Czechoslovakia
(Oblatum 11.2. 1985)

