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COMMENTATIONS MATHEMATIQUE UNIVERSITATIS CAROLINAE 

27,2(1986) 

DISCRETE SPECTRUM OF OPERATOR VALUED 
FRIEDRICHS MODELS 

S. N. LAKAJEV 

Abatract: The operator valued Friedrichs model is studied. 
It is proved that there is only a finite number of eigenvalues 
outside the continuous spectrum. 

Key words: Friedrichs model, Fredholm theory, Puiseux series. 

Classification: 45B05, 81C10 

Several problems of mathematical physics lead to the study 

of a spectrum of a self-adjoint operator (operator valued Fried

richs models) acting on the Hilbert space L
2
(S ,36) according to 

the following formula 

(1) (Hf)(x) « u(x)f(x)+ L
y
K(x,y)f(y)dy, fcL

2
(S*,#) 

Here S9
 is a V-dimensional torus, #6 is an n-dimensional comp

lex Hilbert space, and the matrices 

u(x) 

and 

K(x,y) 

u
11
(x)...u

ln
(x)

> 

u
n l

( x )
-

u
n n

( x ) У 

<
n
(x.y)-.-K

lп
(x,y) 

l
S

ll
^,y)...K

hn
(x,y) 

are self-adjoint. Me shall suppose that u^x) » u^(x) and K
l
-(x,y) * 
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* * U ( x , y ) * *j4(x»y)i --1J = l , 2 , . . . , n are real-analytic functions 

on S^ and S^* S"̂  , respectively. 

A spectrum of operator of the form (1) was first investigat

ed by Friedrichs CI] for u(x) = x, and in [2] for an arbitrary 

real-analytic function u(x). 

Here we shall give a more detailed description of tne spect

rum of operator (1), namely, we shall prove that there is only a 

finite number of eigenvalues outside the continuous spectrum. 

Let us denote by 2- c o nt^^ *
ne continuous spectrum of the 

operator H, and by P the set 

Px * U £cW(x,z) * 0}, 

where £ is the complex plane, cf(x,z) is a determinant of u(x)-

-zE. 

It is well known that the self-adjointness of u(x), x e S v 

implies that P x c R , where R is the real line. 

Proposition 1. It is 

(2) Zcont
(H> % H » r * 

Proof. Let z e ^-ivT^, i.e. oT(x,z) = 0 for some x & S v . 

Then the operator u(x)-zE, where E is the identity operator in #£, 

is not invertiblo . Therefore, the operator 

t(HQ-zI)f](x) . (u(x)-zE)f(x), f6L2(S^,^€) 

where I is the identity operator in L 2(S
> >,^), is not invertible 

in the space of bounded operators on L2(S^,#£) i.e. z eTcon^-(H ). 

Since 

(3) J jK(x,y)l2dx dy < o o 

we infer that the operator 

[(H-H0)f](x) - 4 *
K ( x v y ) f ( y ) d y ' ^»-2(s

>,,afe) 
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belongs to the class of Hilbert-Schmidt operators. UaifiQ th« well 

known theorem of H. Weyl (see P3) we conclude, that the continu

ous spectra of both H and HQ coincide. Thus z e 2 c o n t ( H ) . 

Now let z e l t(H). Using again the mentioned theorem of 

<. Weyl we have also z e Z c o n t ( H Q ) , and thus z € V% for sowe xc 

e S* , i.e. z e L^y rx-

Theorem 1. The resolvent R2(H) of H exists. It can be ex-* 

pressed by the formula 

(Rzf(x)= [u(x)-zE3"
1f(x)+ [u(z)-zE3"

1 SJ**$j$ f (V ) d v 

for all z <*Cl> I"1 z=fcO where A(z), and «2>(x,y;z) are defined 

below (in (11),(13)). 

Proof. We shall find an explicit formula for RZ(H) m the 

inverse of H-zI. Let for some gcL2(S
v,3£), 

(4 ) L.(H-zI)f](x) = ( u ( x ) - zE ) f ( x )+ ^yK(x,y)f(y)dy=g(x), fc L2(S*,3e) 

Since u(x) is self-adjoint in 36 , the determinant <Ax,z) of the 

matrix u(x)-zE is nonvanishing for all z e C , Im z4*0, and 

hence the inverse operator 

/^l;L(x,z)... 1?nl(x,z) 

(u(x)-zE)-1- ^ 

exists. Here *&,(x,z) denotes the signed minor of the element 

u..(x,z) of the matrix u(x)-zE. Introducing the notation 

(5) f(x)= Cu(x)-zE]f(x), f6L2(S
y,36) 

we can write (4 ) as 

$(x) + f$9 K(x,y)i:u(y)-zE]~1f(y)dy = g(x), ?feL2(S*,3e) 

which can be formulated as a system 
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(6) [ V x ) + 4 v Kll ( x , y i Z ) ?l ( y ) d y +--- + 4'Kln(x'y;z)?n(>')dy=9l(x) 

l ?n ( x ) +4 Knl ( x , y ; z ) fl ( y ) d y +--- + ^ Knn ( x.y; z ) fn (y ) dy =Bn ( x ) 

of integral equations. Here 

f(x) = ( f 1 ( x ) , . . . , ? n ( x ) ) , g(x) = ( g 1 ( x ) , . . . , g n ( x ) ) , f.,£. c L2(S1>,C1) 

i = 1,2,....n, 

and 1-2(S
v, C ) is the Hilbert space of all square integrable com 

plex functions defined on the y-dimensional torus S^ , and . 

( 7 ) V x ' y i Z ) = j r b r j f i K
is

(x.y ) * i s
(y.z)-

We shall now rewrite (6) as an integral equation equivalent 

to the system (6). To this end we denote by M the union of dis

joint copies of S"̂  , i.e. 

M -.£& (S*)., (S»). = Sy , 3 = 1,2,....n. 

Define now a measure on M such that its restriction to each 

(S 9 ) . = Sp , j = l,2,...,n coincides with the Lebesgue measure. 

For each z e C , Im z4»0 we define the function (kernel) 

K( .X,(H jz ) on Mx M as 

KC\j(u,;z) = K.,(x,y;z), A.= x<t(Sv)i, ^= yc(Sv)j. 

Finally we define the following functions on M: 

f(X) = fx(x), g(.A) = gt(x), X= xc(Sv)., i = 1,2,...,n. 

Then the system of integral equations (6) is equivalent with 

f(&)+ JMK(A ,(U;z)f(^)d (U -- g( A ) , f ,g& L2(M, C
1 ) , 

where L2(M, C ) is the Hilbert space of all square integrable 

complex valued functions on M. 

Proposition 2. Any z € C ^-Econ^(H)
 is an eigenvalue of 

H if and only if the homogeneous equation 

(8) 1(X) + JMK(A,(Ct;z)ff ̂ )d(a = 0 
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has a nonzero solution feL2(M, C ). 

Proof. Any z € C \^ c o nx(H) is an eigenvalue of H iff. for 

some fcL2(S
v,3€) the following relation holds true: 

(9) (u(x)-zE)f(x)+/MK(x,y)f(y)dy = 0. 

By the same argument as before it is possible to show that (9) 

is equivalent to the system of homogeneous integral equations 

(10) rf1(x)+LK11(x,y;z)f1(y)dy+...+ L K 1 (x,y;z)f (y)dy«0 . 

l-n(~)*L,Knl(x1y;z)f1(y)dy+...f^Knn(x,y;2)tn(x)dy-0. 

Further, from the definition of L-2(M, C ) and the kernel K(A,/**;z) 

it follows that for any z e (C \ZI t(H), the system (10) has a 

nonzero solution iff the homogeneous integral equation (8) has a 

nonzero solution from L2£M, C )• 

To finish the proof of Theorem 1 we use the self-adjointness 

of H to infer from Proposition 2 that for each z e C , Im z4=0 

the homogeneous equation 

t(%) + / K(A,f4,;z)f((U )d<a = 0, 

has no nonzero solution . Besides, since 

/ |K(X,(u;z)|
2dXd(u= 2: / |K. ,(x,y;z)|2dx dy <oo 

it follows that the operator 

[K(z)f3(A) =/*K(A >(ut ;z)f({u)d(u. , feL^M, C
1) 

is of Hilbert-Schmidt type. Therefore, it follows from Fredholm 

theorem (see [4]) that the equation (7) has a unique solution 

feL2(M, £ ), for any g&L2(M, ^ ). This solution can be expres

sed as 

fCX) - g(30 - — i — /M3(Al(u.;z)g(fOdf*/ , 
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where A(z), and 9 ( A , ^ , z ) denote the Fredholm determinant, 

and minor, respectively. Considering the restriction of f on 

(S^L, i « l,2,...,n, we obtain the solution of the system (6) 

in the following form: 

.* A S&4(x,,U;z) 

t4(«) - 0 l ( x ) *sm M , r . ( fO ' f * -
« , a.*(x,y;z) 

• Bi(x) %£. v r ™ — 9 i i = 1,z "' 
Here Q), .(x,y;z) and A(z) are given by the following formulas: 

9)м(x,y;z) = K..(x,y;z) + űij ijv >*И sT" 
0S

( І J )
(x,y;z), 

d
( І j

^ŕx.vzì = . JĚL Ч X J /
Гx vzì = ----s ^У.zJ J

1
,3

2
,...,0

S
=1 

и, 
K

i;J
(x,y;z)K

i:)
 (x.tjjz) . . .Kj ̂  (x,t

s
;z) 

K V ( t - , y ; z ) K Vi ( t - , t - ; z ) "" K V. ( t - , t - ; 2 ) 

к
V

( t
-

, У ! Z ) ҝ
V i

( t
-

, t
-

; z )
- "

l (
V .

( t
-

, t
-

; 2 ) 

* dt, dt
2
.. .dt

n
 i 

1 
(11) 

(12) d.(z) 

Д(z) « 1 + .£, fг d
s
(z), 

A>» 1 
лг 

V--V 1 

J,*V * " J c * 

K v 1

( t - i t - ! Z ) - K v . ( t i , t - ; 2 ) 

<
Vl
(?

в
.Ч;-)...к

Vв
(t,,t

в
;z) 

d t r . . d t n . 

Therefore it follows from the formula (11) and (5) that the resol

vent of H acts on L2(S
y,3£) according to the formula 

[Rzfj(x)= tu(x)-zE]-
1f(x)- [u(x2(ffi" ^S( x.y» z> f(y> dy 

where 

(13) 3 ( X , y ; z ) = r i l ( - y ; z ) ; ; - > : x , y ! Z ) ' 
\an/x,^>z)...S) n(x,y;z), 
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m e Doundedness of R follows from the explicit formula (13). 

Thus, the theorem 1 is proved. 

Theorem 2. The operator (1) has only a finite number of ei

genvalues not belonging to the continuous spectrum. 

We shall restrict ourselves to the case v = 1 and u..(x)=0 

for i4-j to avoid certain technical difficulties of the general 

case. In addition, without loss of generality we can assume 

that u.(x) & ujj(x) a n d Kj j (x»y)» J\Jx>32
 = 1.2,... ,n are 2-jf 

periodical functions defined on [0,2JT3 and [ 0,2.*rj* »* £0,2*r 1 , res

pectively. Ne notice that in this special case the continuous 

spectrum of H consists of 

, & U B ], -^cont(H) 

where A. = inf u.(x), B*(x) = sup u.(x), 
J x J J at J 

and the function dQ(z) , q = 1,2,... from (12) can be written as 

V z ) • i„^.,in-i\i2...in
w - .J1.*,v-

a*r
 Г

2JЃ 

K M1 

q 

(t
1
,t

1
)...к -i-ЛV 

к V i ( V i } - •"WW 
dt

r
..dt 

(u. (tJ-zY.ЛlL (t
n
)-z) 

3
1

 Ł З
q
 q 

The following lemma plays a crucial role in the proof of The

orem 2. 

Lemma 1. Let A'c X
c o n l

 (H) and u^(A')= -{x ji >
x
j

2
» • •' »

x
/jm }* 

j = l,2,...,n. Then there is an e-neighborhood Vg(A') = 

= {z « C :0<|z-A'|< t\ of z = A' such that the restriction 

A(z)/ci of the A(z), where c\ = { z eC 1
:-^ z>0? is the half-

plane, has an analytic continuation onto V'(A'). This analytic 

continuation A*(z'/ is a multivalued function with the branching 
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point z = A' and can be in V^(A') expanded into the series 

A*(z) = .21 F... (K)(z-A ) P, Z i V A A ). 

Here 

^ = p £ £. -is— ) 

and R. - 1 = R (x. ) - 1 denote the multiplicity of the root x = 
js js J 

=x. of the function ul(x), j = l,2,...,m., P is the lowest common 
Js 3 J 

multiple of the numbers 

4R11,...»Rlmi,...,Rnl,....,Rnm^. 

The proof of this lemma is based on Lemma 2 which we shall 

prove first. 

Lemma 2. Let A ' C S L _ +(H). Then for any q = 1,2,... there 
cont ' ^ ' * 

is a neighborhood V^(A') of z = A', and a function d*(z) defined 

on it, such that 
dq(z)\-(A')*ci - Vz)\-(A")nci • 

where C* = {z c C :1m z>0}. The function d*(z) is a multivalued 

function with the branching point z = A'. 

/TV 
Proof of Lemma 2. For any A e-E„rt.(H) = , LJ CA..B. 1 
*™~*—~*" corn, j* * 1 J J 

we denote by u/(A )c£0,2,ir3, j = l,2,...,n* its pre-image with 

respect to the mapping u.. It is obviously finite , i.e. we can 

write u:*fA') » * xji' xj m3. Let us denote by u.(J ) and K. , (f1»?2
) 

J \ L % 
the analytic continuations of u...(x), and K* . (x-sx,), into Q c C , 

J JlJO - * 

2 1 

and Q M Q c C , respectively, where Q c C is some complex neigh

borhood of the segment £0,23.3, 

Because Ux(|), j = 1,2,...,n is regular in x = x. , -p = 

*• l,-*.,,..,*..* there are some t, > 0 and <? > 0 (in the following we 

shall assume that these numbers are sufficiently small) such that 
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for each z&Ve'(A') the equation 

u.(£ ) - z = 0 

has exactly R.~ , V = l , 2 , . . . , m . solutions in the disc 

|x. . - Cj. | < cf . These solutions are branches of some R.^ -valued 

analytical functions, whose branching point z = A' has an order 

R. . and can be in V^(A') expanded into the series 

1/R 2/R 

(14) y*(z) = xjJ? + c^Cz-A')
 J + C^2(z-A')

 J*+ ... , 

where ,/ 

c - -4 <> J ' ^1 ,2 V 
u. J ( x . , ) ^ 

(15) c\± 

1 ''3 "V 
This statement follows from the theorem about inverse functi

on of an analytic function (see [5]). 

We put 

(z-A')s "j* = Iz-A'l1 *P exp* i *IS&L^ «. 2jLi- . s} 

s = 0,1,...,R. - 1 and call this value the s-th value of the root 

- % 
(z-A ) J . Correspondingly we call the 

1/R 1/R 2 

Y^8(z) * xjp + c^(z-A') i J» - C^2l(z-A')
 J*3 + ... 

the s-th value of the multivalued function y ? ( z ) . 

Proposition 3. For any cf > 0 there exists e« > 0 such that 

for each zcV'(A'), Im z :> 0 the number of values V?rj(z), y1?1(z), 

. . . , Y j p . -i
 of Y^vz) wnich belong to •{£ e C^Im $:> 0, | <£ - x ^ | < 

< 6\ , equals to P. . Here, P. is the integer part of 

^in +Csgnu.
( RJ" )(x >).l

RJ^-

- 1 / R i * Proof. Since Im z > 0 we observe that P... values of (z-A ) J > 
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where Pjv is the integer part of ^(R-^ + D> belong to the upper 

half-plane. From this fact and from (15) it follows that P.^ 

l/« 1/R 1/R 
tf,(z-A'> & c* (z-A') J* C*(z-A') J» cjTvz A ;

0 » cji^z A 'i , ....c^iz A ;p , 

belong to the upper half-plane. The smallness of & > 0 then imp

lies that P values 

' YjO(z)» Y j i ( z ) - - - YjP. -i of Y*j(z) 

belong to •{£ © C 1 . ^ ^ 0, |$ - x. | -< cf } • 

Proposition 4. The function [ulCy1!).]"1 c a n b e in V'(A') 
——k~---«-- .-- .-_-_-. J ' j «» 

expressed in the form 

^ ^ _1 = V* * » u ' ^ Sk(z-A')%j 
UJ J 'V^iHlj1 

*1 ,./2, and the function K. . ( Y -. » V*. ) in t n e f o r m 
J1J2 Jl J2 

^ -p 

K^ , ( Y-.1, Y , 2 ) ^ . ^̂  (x. x. ) + 
J1J2 Jl J2 J1J2 J r i J2 2 

S I/R S2/R 

+ * £ < Ss(z-*'> 11(Z"A') J22 • A,fAi«1
 sis2 

Proof. Since J= x.^ , V = l,2,...,m. is a zero point of the 

order R^- 1 of the function u'A % ), we can expand this function 
- J' J 

into the following series: 

(R. ) R-.v+l) 
u J* (x > R 1 un 3 ( x ^ ) Rn* 

Substituting (14) into (16) we obtain 

(R j V ) (Rj»+1) 

(17, U.(Y*,. u.i tR j ! ! f i i<s - x „ ) . u.i u i V [YJ
J(Z)-A-J R*"l-> 
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R -1 
u, ( R j V ) ( x w ) ( ^ ) & 1/R R , 1/R 

B J — . * 3_),—[(--»•) "w^'ri^vz-A-) "*•..._ 
For a sufficiently small 6 > 0 and zfcV'(A') we have an inequality 

1/R 
|dJ2(z-A') *V..|-<1. 

This inequality, together with (17), implies the statement of Pro

position 4 for the function [u_j(y* )3~ . The second assertion of 

Proposition 4 is proved in an analogous way. 

Coming back to the proof of Lemma 2 let 6 >• 0 and cf >- 0 be 

such that the segments 

(x j rc^,x j l + ̂ ),...,(xjm -cT,x.m -fcT), j = 1,2 n 

do not intersect and 

u^cv.'u')) cJ5^% e c M . - x J „ I ̂  d-i. 

Investigate the function 

• _._wKM(S >£ > 

which is regular in V'(A')r\ C . We can write the function d.(z) c + J 
in terms of its residua as follows: 

(18) VZ ) = 2^^ ho ^-i^^^-i^^ • 

y . 1 » . 0 U_ (Y__> 3- U _ < * > _ Z • 

>__o fr. rr\ 
0 Xl Xj2 xjm. ™ 

Here, f̂ » is the contour, coinciding with 1.0,22*1 outside of all 

intervals 

(xjr_r ,xjl+0r) <-_..j-<r.-_f.j
+-r> 

and containing all the half-circles 
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4 ? c Cl:\%- Xp\ =cT , lm$> o | . 

Since § £ fy we conclude that 

u j < § >6 Vg(A') = - { z e C ^ l z - A ' K e j . 

r K i i ( $ > P 
Therefore, the function L 7^)_z dfis regular in Ve(A ). Using 

the representation (18) of d.(z), j = l,2,...,n, the existence 

of an analytical continuation of d.(z) into the region Vg'(A') 

through the interval (A- &,A) and also through (A',A'+e) fol

lows. Both these analytical continuations coincide. We denote by 

d?(z) the analytical continuation of d.(z). From the proposition 

4 it follows that d*f(z) is a multivalued function with the bran

ching point z = A', expressed in the Puiseux series in the powers 

of z - A'. 

Consider now the function 

JjJ2
 Jo Jo 

2* ŕ2Я 

0 

KJ 1J 1

(-l.- ľl> ,W-l.-2> "-_ <*f2 
xт^гттaг-т-p-тr-

Using the "theorem about residua" to the function d. . (z) seve-
J
1

J
2 

гal times, we obtain: 

(19) d. . (z) = 
J
1

J
2 

_ rйí 1 f 0 . Ъ-
Ч
 u
1 <Sl

;
"
2
 l Ҷ - 0 

p/ -A 
Vl^^l-г^-W 

V i ( y W J z ) K J 2 i 2 ( y W Y Å 

u..(v_ 2S2 

K 3 1 3 1
( « i - í i > , c 3 1 _ 2

( - l ' . 2 ) 

KJ23] ( b ' í l ) K J 2 J 2 ( Í 2 ' S 2 

2 _-N "___ ''''i?:' __V 
>_, = 1 ^ i , * 4 -6a* © A a » 0 

dЬ 
V̂ "* J--2 
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Ki i W s .Ti1. )Ki i ÍT^a -Yi s ) J1J2 Jlsl Jlsl J1J2 Jlsl TJ2S2' 

Ki i (ti s >Vi s )Ki i (Yi s .V*
2. J2J1 J2 2 Jl 1 J2J2 J2 2 J2 

2 ) 

2 

V ow-.ri )u: ( v V z 

Jl r jl sl J2 rj2s2 

V, 
2-ÍІ Ł,, E f « 

Чr 

d
?2 

L 
K 3 1 J 1

( « i ' - i ) K . l 1 J 2

( ? i ' V | ^ 

2̂ » 

K
J2

J
l

( Y
J2

s
2

, 5 l ) K
J2

J
2

( y
J2

s
2'

Y j 

K
J

1
J

1

(
?1^1

) K
J

1
J

2

(
?

1
'?2

) 

K

J 2J 1

(^2.?l ) KJ 2 J 2

(?2.ř2 ) 

2* - *;?< ̂ O 

dfl 

LL 

(u (Ç^-zíi (ү * ) J
l *

 J
2

 J
2

S
2 

(u. ($.)-z)(u. (?,)-z) ' 

Using analogical considerations as in the case of d.(z), j = 1, 

2,...,n it follows from the representation (1-9) that the function 

d. . (z) which is regular on the upper half-plane, has an analyti-
1 2 

cal continuation into V£'(A'), through the segments (A'-£,A') 

and (A',A'+&). Both these analytical continuations coincide . 

From Proposition 4 it follows that this continuation is a multi

valued function with the branching point z = A '. 

formula 

Now we investigate the function d. . ...j(z), defined by the 
J1J2 q 
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i 1
 ( z ) =

/ "l 
K W ^ i ) - - K j i j

q

( J i , ? « ) 

\h%^-\^w 
чř i ••••»?„ 

< u

J l<?l>-
l>--> u3 q

(Sq )--) 
(which is regular on the upper half-plane). Finally, using the 

mentioned "theorem about residua" repeatedly many times we can 

write down the following expression: 

(20) d. , (z) = (2дr 
J
l*'-

J
q 

m . _ , m m
 P j

 *-1 нiд , ш . , , 

'!• '2' 
Jq
 £• 1 

'q-- '
S
Г 

^V
1 

s
q
 = 0 

K
i i ^Wa 'Y. s

 )K
i i (Y^s - V s

 )
---

K
i i

 (
Y, c -Yi s )) J

1
J
1
 T J

1
S
1

 J
l

s
l
 J

1
J
2

 J
1

S
1

 J
2

S
2
 J

l
J
q
 J

l
s
l
 J

q
s
q

; ; 

K J
1

J
1

( Y J
2

S
2 *

Y J
1

S
1
 )

^
2

J
2

( Y j
2

s
2 '

Y j
2

s
2

)
' ' '

K j
2

J
q

( Y j
2

s
2

, T J
q

s
q

) 

K j j,(YÍqs . r í s , ^ J<vjq- -víš )---Kj j (r?s . y ] \ > 

Jq Jl Jq q Jl 1 Jq J2 Jq q J2 q JqJq Jq q Jq q 

1 Uíl < Y j! sl ) U j2 ( Y j2V--% ( Y jq^ ) 

+(2.n)Ч-ч' .£ 
m, P. . -1 P. -1 

V1 ">\, „'=1 -i-o q-q 1 °q-q'=0 

/ ••/ 
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- к Ц ( í v V 

v:KWr¥.<^)... 

KV*iJi (Sq '+1,r3-^ )"'KvWSq '+1,vViT>KV*iV*i 
( W * i - W " % t l j q

( * w f p } 

KVi(S" , f ís i }• • "K V«^*V A V ^ M * + l ) • • • 

Ui1
(^;.1

)"-VTJJlq
)(«Vtl

(W-l)-l)"-(%(Sq)-') 

K v i ^ ^ ' ) : ; - K v q
( ^ ^ } 

Í - X df 1 . . .dj 

< V S J ) - - ) - < - J <ғq)--J
q

J
l ^ *

 J
q

J
q 

Using the same arguments as above we infer from (20) that the 

function has an analytical continuation into the ^-neighborhood 

V'(A') of z = A' through the intervals (A'-e,A') and (A',A'+e). 

We denote by d? . (z) the analytical continuation of 
J
l' " '

3
q 

. (z)/_ 1 into the region V'(A'). From the proposition 4 it 
J
Г •J c; 

follows that the function is, generally speaking, a multivalued 
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function with the branching point z * A'. 

Let us denote by d* (z), q = 1,2,... the function 

(21 
J
q 

which is again a multivalued one on V
g
'(A'), with a branching point 

z = A'. From the Puiseux theorem and the expression (20) it fol

lows that the function d*(z), z€V*e'(A') expands into the following 

series: 

d*(z) = X Fs A,(K)(Z~A')
 P, z*Ve'(A') 

H S = -t( ' 

Thus the proof of Lemma 2 is completed. 

Proof of Lemma 1 . Denote by 

(22) A*(z) = X ~lr d*(z), zeV^(A'). 
q=l q* q 

Then from (21) for d*(z), q = 1,2,... and from the Hadamard ine

quality for determinants (see [4]) it follows that the series (22) 

converges absolutely in V'(A') and defines a multivalued analyti

cal function with a unique branching point z = A'. Therefore, from 

the Puiseux theorem (see [6]) and the expansion (22) used for 

d*(z), q = 1,2,... we obtain the statement of Lemma 1. 

Proof of Theorem 2. Following Proposition 2 and the Fred-

holm theorem a point z €C\-S c o n t(H) is an eigenvalue of H iff 

A(z) * 0. 

Because of the self-adjointness of H, it is sufficient to 

show that the function l\(z) has only a finite number of real ze

ros not belonging to the continuous spectrum. We shall only show 

that &(z) may have a finite number of real zeros greater than A, 

A = sup A . The remaining intervals of the complement of the 

continuous spectrum may be investigated in an analogous way. It 
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follows from Lemma 1 that the function A (z ) can be expressed in 

the e-neighhorhood V9'(A ' ) \ (-00, A3 of 

z = A' by the following series: 

ACz) = !:A Fs A (K)(z-A5S P, zeV6'(A')\ (-<*>,A3 • 
s = -q » 

Therefore, A cannot be a limit point for the set 

•{zcR : A(z) = 0 ,z .>A] . On the other hand, the function A(z) is 

regular in C 1\2: c o n t(H) and A ( z ) - > 1 for |z|~>oo , Im z = 0, 

and thus it has only a finite number of zeros belonging to 

(A + e>,oo) for any £ > 0. 
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