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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,2 (1986) 

ORDINAL INVARIANTS AND EPIMORPHISMS IN SOME 
CATEGORIES OF WEAK HAUSDORFF SPACES 

D. DIKRANJAN and E. GIULI *) 

Abstract. In some categories A of weak Hausdorff spaces the 
epimorphisms are characterized as maps with dense image with res
pect to the A-closure. In many cases the A-closure is represented 
as the idempotent hull of another closure""*operator and the (ordi
n a l ) number of iterations is related to the tightness of the un
derlying space and the co-well-poweredness of the category A. 

Key words: Weak Hausdorff spaces, epimorphisms, ordinal in
var i a r7Tis7~TpcTc) s u r e. 

Classification: 54B30, 54010, 18B30 

0. Introduction. Various versions of weak Hausdorffness are 

spread in the literature. An extensive bibliography and many inte

resting results can be found in the survey of Hoffmann (£131). 

The present paper is a continuation of the study of epimorphisms 

and co-well-poweredness of epireflective subcategories of the ca

tegory Top of topological spaces and continuous maps (see f43,15 3, 

163,1111 and [241). For this purpose we focus on two types of we

ak Hausdorffness studied in 1133. 

Let £ be a class of topological spaces and let Haus(P) deno

te the category of topological spaces X such that for every P« £ 

and for every continuous map f : P — * X, f(P) is a Hausdorff subspa-

ce of X (in the notation of [131 this is P 2 ) . For f, = -- *.*>? , whe

re IN^ denotes the one-point Alexandrov's compactification of the 

discrete space of the natural numbers N, Haus(P) coincides with 

x) Supported by the Italian Ministry of Public Education. 
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the category SUS of topological spaces in which every convergent 

sequence has precisely one accumulation point, namely its limit 

point. Tozzi ([243) showed that SUS is co-well-powered describing 

explicitly the epimorphisms in SUS. Let Comp denote the class of 

all compact spaces and let P denote the class of all topological 

spaces of cardinality less or equal to a given cardinality m. 

HuSek and the second author ([113) studied the epimorphisms in 

Haus(P ) and Haus(Comp) showing that the latter category is not 

co-well powered. In [113 and [243 the epimorphisms were described 

by means of a closure operator which "measures" epimorphisms, in

troduced by Salbany ([213) and examined in various subcategories 

of Top by the authors (C43,C53,163,[103). This operator was repre

sented as the idempotent hull of more explicit closures - the se

quential closure in [243 and the compactly determined closure in 

[11} (see [13 for these c losures) . 

The aim of the present paper is to give a unified approach 

to all these cases. In Section 1 the epimorphisms in Haus(P) are 

charac ter ized . As a corollary it is shown that the category 

Haus(HComp), where HComp is the class of all compact Hausdorff 

spaces, is not co-well-powered (Theorem 1.14). It is established 

also that the inclusion Haus—> Haus(HComp), where Haus is the 

class of all Hausdorff spaces, does not preserve epimorphisms. 

The codomains for which any epimorphism in Haus(P) is surjective 

are also characterized (Proposition 1.11). 

In Section 2 an ordinal invariant co(X) is introduced which, 

for £ = {N^i , gives the sequential order and for £ = Comp the k-

order both introduced by Arhangel'skii and Franklin (113). We show 

that the cardinality of co(X) is always less or equal to t(X) , 

where t(X) is the tightness of the space X in the sense of Arhan

gel 'skii (Theorem 2.2). Itwis shown that the category Haus(P) is 
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co-well-powered whenever the ordinal co(X) is bounded for X e 

e Haus(P) 

In Section 3 another type of weak Hausdorffness is consider

ed For a class £ of topological spaces and (X,?r) e Top, we denote 

by ( X , t c ) the coreflection of ( X , f ) into the bicoreflective hull 
Q(V ot L in l££» i e- M c X is closed in tc iff, for every ? e £ 

and for every continuous map f:P—>- X, f~ (M) is closed in P. The 

space (X,ai) is called c-space if t = trc (for £ = Comp these are 

the well known compactly generated spaces (k-spaces ) ; for £ = -HN^ 

the c-spaces are the sequential spaces ) . Denote by £, the catego

ry of all topological spaces (X,t?) such that the diagonal Ay. is 

closed in (Xx X,( x * * O c ) . This weak version of the Hausdorff se

paration axiom was introduced by McCord ( [203 ) for £ = HComp and 

by Lawson and Madison ( [193 ) for £ = Comp. Further information can 

be found in [133 . In Theorem 3 .4 we describe the £,-closed sets 

by means of the c ( P ) - c o r e f l e c t i o n (for the definition of A-clos-

ed set see Section 1 ) . In particular we recover the characteriza

tion from [243 of the epimorphisms in the category JJS of topolo

gical spaces in which every convergent sequence has the unique li

mit point (US = ( - t l l ^ ) , , see [133 ) . We prove that, under a mild 

condition on £, Haus(P)c £, and finish the description of an exam

ple given in t133, 2 . 9 . 9 . 

It is shown in 173 that the inclusion Haus(HComp)c (HComp), 

is proper and that (HComp), cfc SUS. This answers some related qu

estions posed by Hoffmann in tl3l, 4.2. 

1. Epimorphisms in flausCP). It was proved in tl33 , 1.9, 

that the category Haus(P) and £, are quotient-reflective in Top 

(i.e they are closed under the formation of products, subspaces 

and ref inemen ts ) . Here w*» recall some necessary definitions and 
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results from Ul. If f,g-.X—*Y are continuous maps Eq(f,g) will 

denote the equalizer in Top of f and g, i.e. Eq(f,g) =^xcX: 

:f(x) = g(x)j. 

!•!• Definitions. Let A be an epireflective subcategory of 

Top. 

(1) A subset F of a space X is said to be A-closed in X iff 

there exist Ac A and continuous maps f,g:X—>A such that F = 

= Eq(f,g). 

(2) The A-closure of a subset M of X, denoted by -Ml. is the 

intersection of all the A-closed subsets of X containing M. 

(3) A subset D of X is said to be A~dense ifftDl = X. 

The A-closure is an extensive, monotone and idempotent opera

tor, in general not additive. For a topological space (X,<cO we de

note by t**. the coarsest topology on X which contains all the A-

closed sets as closed subsets. 

To define A-closure it is not necessary to have subcategories 

A of Top. For categories of algebras Isbell (1151) introduced the 

A-closure in the same way (it is called dominion there). It is 

clear then that a morphism f:X—> Y is an epimorphism in £ iff 

f(X) is A-dense in Y (C10J, 1153). The difficulties come when one 

has to calculate explicitly the A-closure (see the zig-zags in 

L15J, or the various cases of epireflective subcategories of Top 

in 141,151,-61,til) and 1241. For an exhaustive bibliography about 

the problem of the epimorphisms, see 1173. 

For X feTop and M c X we denote by X u j the adjunction space 

determined by the inclusion McX, i.e., X u J is the quotient of 

XUX = Xx40,li obtained by identifying each (m,0), m € M, with 

(m,l). q:XUX—*XU MX denotes the natural quotient map. The maps 

ki:X-»XUMX, p:XUMX—*X are defined by k.(x)=q(x,i) and p(x,i) = x, 
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i = 0,1, respectively. The adjunction space plays an Important r6*-

le in the computation of the A^-closure. We stress on the fact that 

each retract of a space Xc b is A-closed (a retract is the equali

zer of the retraction and the identity map of X ) . It is easily 

seen also that A-closed sets go into A-closed sets under homeomor-

phisms of X. 

1.2, Proposition. Let £ be a quotient-reflective subcatego

ry of Top. Then for every Xe A and McX the following conditions 

are equivalent: 

(i) M = -M1A, 

(ii) XU MXsA, 

(iii) q(X*U*) = k^X) is A-closed in XU MX. 

Proof: The equivalence (i)«=> (ii) is proved in [43. Since 

k,(X) is a retract of XU MX (ii)<«-> (iii). To prove (iii) ~-> (i) 

let s:XUJ — * X U..X be the symmetry; then s is a homeomorphism, 

so s(kx(X)) = kQ(X) is A-closed. Thus q(MUM) = k ^ ^ n k ^ X ) is 

A-closed and MuM is A-closed in XUX. NOM M X - C U = q ^ W n 

r>(X<U\) is A-closed in X < * n since X x U * is A-closed in XUX 

being clopen. 

1.3. Lemma. Let A be a quotient-reflective subcategory of Top 

and let Xe A and M^X. Then the follOMing hold: 

(1) q(:MJ*\0,l') = tq(M*fO,ll )), 

(2) tki(X)) = p
_1(CMJ)u ki(X), 1=0,1; in particular 

[kQ(X))nCk1(X)) = p
_1([MJ), 

(3) LM) = p((k0(X)lnCk1(X)J) = p(k0(X)ACk1(X)3) = 

= p C k o ( X ) ] n k 1 ( X ) ) . 

Proof: (1) Consider the adjunction space X u.-M«(X) and denote 
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by p', q, k and k, the related maps and denote by t .X UMX —*-

—* X UCMi|X the quotient map. Then %Q(im) = f^UMJ) and 

1*0*40,1* = q""1t""1(k0([MJ)), so q([M3^ 40,1} ) = t"1Ck0(CMJ)), 

hence it is A-closed. (2 ) and (3 ) now follow easily from t«q = qf, 

1 . 2 ( i i i ) and the fact that X U M X - i X LJ^X is the A-reflection 

of X UMX. 

The following condition for the class £ was considered in 113]: 

(*0 If PcP, P4-0 then PUQeP for some non-empty space Q. 

Roughly spoken, (*. ) ensures that we can add a finite number 

of points to images of spaces from P, i.e., if P££ and f:P—>-X 

is a continuous map, then for every finite subset F of X there ex

ist P,€ P and a continuous map f-tP*—**X such that f , ( P , ) = 

= f(P)UF. 

***• Lemma- If f. satisfies (;*) and P4-0, P4-A0?, then 

Hausc Haus(P)c Top, . 

Proof: By (#) every finite subspace of X 6 Haus(P) is a con

tinuous image of a space from £; this yields the second inclusion, 

the first is t r i v i a l . 

Since Haus(P) is quotient reflective it is easy to see that 

Haus(P) = Top iff £ = -I spaces with at most one point 1, so in all 

other cases Haus(P)c Top . However, it may happen Haus(P)<fr T°Pi» 

for example if £ is the class of all indiscrete spaces (L133, 

2.9.4). Finally, it is easy to see that Haus(P)c Top, (this is 

equivalent to Haus(P)4> Top ) iff there exists a non-indiscrete 

space Pe £; in fact in this case there would exist a continuous 

surjection of P onto the Sierpinski two-point space. So to prove 

1.4 we do not need in fact (* ); it is sufficient to have non-in

discrete spaces in £. 

The next two lemmas repeat in this more general set the argu-
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ments from [113, Prop. 3.3 and Lemma 3.4 and [241, Theorem 2.13. 

1.5. Lemma. Let £ be an arbitrary class of topological spa

ces, then for every (X,tO e Haus(P), ^uausCP) ~ x ' 

Proof: Let X c Haus(P) and let F be a closed set in X. To show 

that F is Haus (P ) -c losed it is enough to show that X LUX e Haus(P) 

according to 1.2. Let P€ £ and let f:P—> X U.-X be a continuous 

map. Take two distinct points x and y in f(P). If p(x)4=p(y) in X, 

then consider the composition pof.p — > x. By X e Haus(P) there ex

ist disjoint open neighborhoods of p(x) and p(y), thus their pre-

images will be disjoint open neighborhoods of x and y. In the case 

p(x) = p(y) we can assume without loss of generality that there 

exists z e X N F such that x = q((z,0)) and y = q((z,D). Now, for 

U = X N F , q(Ux-tOl) and q(Ux-tlt) are disjoint open neighborhoods 

of x and y in X UpX. 

It follows from 1.5 that for any class £ the functor Puaus(p\: 

:Top-»Top defined by PHaus(P)
((Xj/t)} = (X »'rHaus(P)) is a P r e- m°-

nocoreflection in the sense of £233. 

1-6- Lemma. Let £ be a class of spaces satisfying (*) and 

let Xc Haus(P). Then for every P £ P. and for every continuous map 

f:P—>X, f (P) is a Hausdorff subspace of X and for every M cf (P) , 

" - t-M3Haus(P)-

Proof: Let x and y be two distinct points of f(P). By (*0 

f(P)u-tx,yi is the continuous image of a space in £, so it is a 

Hausdorff subspace of X. Let U and V be open neighborhoods of x 

and y such that U ^ V n f ( P ) = 0. Then clearly U n V o f ( P ) = 0 and 

x and y are separated in f(P). Let Mcf(P). By the previous lemma 

LMlj, /-pxcM, so it suffices to show that Pf c tM^uaus(p\ • Take an 

element xeM and two continuous maps h,g:X—-*• Y with Y € Haus(P) 
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and McEq(h,Q). Then h(M) * g(M) and xcM yields h(x)€h(M) and 

g(x)«g(M). On the other hand Mcf(P) implies h(M)ch(f(P)) and 

g(M)«g(f(P)), so h(M) = g(M)ch(f(P)) and h(M) c g(f(P)). By the 

first part of the lemma the left-hand side is a Hausdorff subspace 

of Y, so if h(x)4-g(x), then they can be separated in h(M). By vir

tue of x*H and McEq(h,g) this does not occur. So h(x) = g(x), 

therefore xcEq(g,h). This proves x € ^M-{Haus(P) * 

Next we define a closure operator clp associated with P fol

lowing the idea from till . 

1-7* Definition. For X cTp_£ and Mcx define clp(M) = 

= U<Mnf(P):PC P., f.P—> XK 

In the following lemma we give some properties of this closure. 

1 8 - Lemtna• (I) clp is an expansive, monotone and additive 

closure operator satisfying clp(M)cW for every X cTop and McX. 

(2) For X«To£ and McX, x « clp(M) iff there exists PsP 

and a continuous map f:P—•*- X such that for every open neighborhood 

U of x and for every open subset V of U satisfying VnM = UoM, 

Vnf(P)*0 holds. 

(3) If P satisfies (* ) then for every X feHaus(P) and McX, 

clp(M)ctH3Hau8(p). 

Proof: (1) is trivial. To prove (2) observe that xe clp(M) 

iff there exist P«P and f:P—> X such that xs Mn f(P), i.e., for 

every open neighborhood U of x, Un M A f (P))4»0. Suppose that the 

condition in (2) does not hold; then there exists an open subset 

V of U such that VnM • U A M and VAf(P) = 0. Then clearly 

Vn f(P) * 0 and 0 • Vn uF)o VnM nf (P) = UnMnf(P)+0 - a con

tradiction. Now assume that' x4clp(M); then there exist P*-P, 

f:P—»»X and an open neighborhood U of x such that Ur.M^f(P) = 0. 
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For every zcUnM choose an open neighborhood V of z contained 

in U such that V 2 r . f ( P ) = 0; then V = U-tV :zcU\ M} is an open 

subset of U satisfying V^ M = UnM and Vnf(P) = 0. This proves (2). 

(3) Let XcHaus(P) and McX; if Pe P and f.P—-•X is a conti

nuous map, then M'= Mnf(P)cf(P) so by Lemma 1.6 M =C^M |jaus(p)
c 

c L M l H a u s ( P ) . This proves (3).* 

l-9- Theorem. Let P satisfy (* ) and Xc Haus(P). Then, for 

any Mc X, the following conditions are equivalent: 

(i) XU MX& Haus(P); 

(ii) M is Haus(P)-closed; 

(iii) M = clp(M). 

Proof: The equivalence of (i) and (ii) follows from 1.2, 

while the implication (ii) => (iii) follows from 1.8 (3). To prove 

(iii) =^ (i) take a space P*P and a continuous map f:P—• X U J . 

Let x and y be two distinct points in f(P). If p(x)4- p(y) then x 

and y can be separated as in the proof of 1.5, i.e., projecting 

on X by p. Assume that p(x) = p(y); then p(x)4 M since x^y in 

XUMX. By (iii) x4clp(M), thus by 1.8 (2) there exist an open 

neighborhood U of p(x) and an open subset V of U with V A M = Un M 

and Vnp(f(P)) = 0. Then W = q(Vx* 0* U U x 4 it ) and W'= q(U>c-£ 01 UV> 

x-Ul) are open sets in X U..X which contain x and y since p(x) = 

= p(y)eU = p(W) = p(W') and p(x) + M; on the other hand WnW'n 

nf(P) = 0 since q"1(W A W'n f (P)) = (UUV)n(VUU) n 

n(p(f(P))Up(f(P))) = (VUV)n(p(f(P))up(f(P))) = 0. 

^•lO. Corollary. Let P be a class satisfying (*). Then for 

spaces in Haus(P) the Haus(P)-closure is the idempotent hull of 

the closure clp. in particular for every (X,r) & Haus(P) the 

Haus_(P)-closure is a Kuratowski operator. Moreover, for every 
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<X,«)«HiUB(P)f ^Haus(P))Haus(P) = %Haus(P) • 

Proof: The first part follows immediately from 1.9 and 1.8 (1), 

since the idempotent hull of an additive operator is additive. Let 

(X,«)c Haus(P) and Mc X, then clp(M) = Ui Hn f(P):Pc P, f :P—t> Xi = 

«sUf •vCMrNCf(P)3HausCp)3 Haus(p)!by virtue of 1.6, so clp(M) with 

respect to * coincides with clp(M) with respect to '
tHaus(P)' 

ThMs (/gHaus(P))Haus(P) = ^Haus(P)' 

For any Pc Haus denote by Dis(P) the category of all spaces X 

such that, for every P«s P and for every continuous map f:P—*• X, 

f(P) is a closed discrete subspace of X; obviously Dis(P)c Haus(P) 

and if Pc Comp Dis(P) consists of all spaces X such that every 

continuous map f:P—* X with Pe P has a finite closed image. For 

£. = £L/> Dis(P) consists of all spaces (X.tr) such that X is finer 

than the co-oc-topology, i.e., every subset of cardinality less or 

equal to oc of X is closed. 

1#11- Pr°Position. Let (X,^)c Haus(P) and let P satisfy (* ). 

Then ^naus(p) is discrete iff (X,r)c Dis(P). Consequently a space 

x in Haus(P) belongs to Dis(P) iff every epimorphism Y—* X in 

Haus(P) is s u r j e c t i v e . 

Proof: By virtue of 1.9 and 1.6 ^ H a u s( P) is discrete iff 

every image f(P) of a space PeP is closed and discrete in X. 

1#12- Examples, (a) By 1.11 if for some class P satisfying 

(*)> Haus(P) = Dis(P), then the epimorphisms in Haus(P) are the 

surjective continuous maps. If Pc Comp and consists of connected 

spaces, then Dis(P) becomes a "disconnectedness" in the sense of 

Arhangel'skii and Wiegandt 123 and Herrlich [123, i.e., Dis(P) 

consists of all spaces X such that every continuous map f:P—* X 

with Pe P is constant. Such an examole can be found in 1133, 2.7 
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(if m is an infinite cardinal number and X M is a T,-space with corn 1 r 

finite topology and cardinality m, take £ = 4X } ) . More about this 

c a t e g o r y can be found in Section 3: it will be denoted by ^ . 
3 m 

(b) Let m be an a r b i t r a r y infinite cardinal number. It is 

known that f o r a space X, t ( X ) ^ m iff for every M c X, M* = 

= c--u a u s(p )M = U - l S . S c M , and card S ^ m ? in fact, being Sc M, 13 = 

= S a M . This is why t ( X ) # m always implies x = t r u a u s ( p ) • On the 
« — —-fl 

other hand d(X)^m also implies % - t> uaus(p ) obviously (the con-
—m 

verse is not t rue: if (X.tO is any non-separable metric space then 

? = t Haus(P ) wnile d(X) > £ Q ) . Let X be the power -C0,H 

whe re *0,1* has the d i s c r e t e topology, then d ( X ) # m so x = 
= ^ H a u s ( P ) while t(X) = 2 m . Finally o b s e r v e that if (X,t) Q 

m 9m 7IT 
€. Haus(P^) and * = X u (0 ,, then t ( X ) £ 2 * . In fact, if t(X)>2 £ 

—m HausvP ;' —m 
then t h e r e exists a non-closed subset M of X such that, f o r every 

oNl _ 

Sc M with card S#2* , ScM, i.e., M is HausCF^)-closed by v i r tue 

of 1.9 and M is not closed, so t^^HausCP V 

Let AaB be two quotient reflective subcategories of Top. If 

fo r every XsA and fo r every McX, LMl. = t-M3„ then A = B by the 

diagonal theorem proved in [113, Theorem 2.2. However, it is pos

sible to have t Ml. = ̂ M ^ R for e v e r y x G IL and M c X as the following 

lemma shows. 

Fo r a class P let P' denote the class of all continuous ima

ges of spaces f r o m P, then Haus(P) = Haus(P'). In g e n e r a l Haus(P)c 
c Haus(P 'r\ Haus). 

1-13- lemma. Let £ be a class satisfying ( * ) and closed un

d e r continuous images and let X e Haus(P r\ Haus). Then f o r every M c 
C X > [ M j H a u s ( P ) = t M 3Haus(Pr>Haus)-

P r o o f : It follows f r o m the definitions. 
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*•*** Theorem. Let P be a class of topological spaces satis

fying (#) and closed with respect to continuous images. Then 

Haus(P)—» Haus(Pn Haus) preserves epimorphisms. In particular 

Haus(Comp)—> Haus(HComp) preserves epimorphisms and Haus(HComp) 

is not co-well-powered. 

Proof: By virtue of 1.13 it remains to prove only the last 

statement. The category Haus(Comp) is not co-well-powered (see till 

Theorem 4.3); this is why the fact that Haus(Comp)—> Haus(HComp) 

preserves epimorphisms implies that Haus(HComp) is not co-well-po

wered according to Corollary 3.3 from C51. 

The next example is given in 1133, 3.5 to show that Haus(Comp); 

£ Haus(HComp). Let Q^ be the one-point Alexandroff s compactifi-

cation of the rationals provided with the usual topology. Then 

every quasi-compact set in Q^ is closed, so QtV e Haus(HComp). 

On the other hand every continuous map f.Q^—*• X, with 

X c Haus(Comp) is constant, i.e. the reflection of Q w in Haus(Comp) 

is a single point. In fact in Q^ a 4s oo cannot be separated sin

ce a has not compact neighborhoods in Q. This is why f(a) and f(oo) 

cannot be separated in X. Since f(Qa ) is Hausdorff this means 

f(a) = f(ao). 

2. The (I-order. Let £ be a quotient-reflective subcategory 

of Top such that, for any (X,^)c A, -£. £ 'z . Then (X,rA)* A, 

(X,(*»)*)* A and so on for all iterations. Denote by A^ the subca

tegory of h consisting of spaces (X,tr) such that r = T . . It was 

proved in t51, 4.12, that ^ is a coreflective subcategory of A. 

In particular, (Haus(P)) is a coreflective subcategory of Haus(P) 

and the coreflection is given by (X,r,.aus(pO—» (X,iO according 

to 1.10. By 1.9, for (X,t)& Haus(P), ^ H a u s(p) has as closed sets 

all subsets M of X which satisfv M = cl„(M) ,~i.e. all sets M which 
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:e closed with respect to the family of subspaces lf(P)$ where 

e £ and f:P—* X is a continuous map. Clearly i?H ,pv is coar_ 

,er than x° (see the introduction). If every continuous image in 

(X,*) of the spaces from £ is closed (the subcategory of such spa

ces is denoted by P, in £13], then clearly these topologies coin

cide. It was proved in C133, 1.5, that if P c Comp and satisfies 

(* ), then Haus(P)c P.. This remains true also for categories £ 

satisfying (* ) and consisting of quasi-H-closed spaces, i.e. spa

ces X for which every open cover of X admits a finite subfamily 

whose closures cover X. 

Next we define an ordinal invariant and a cardinal function 

for the category (Haus(P)) first and then to all Haus(P) by means 

of the (Haus(P)) -coreflection. 

2--- Definition. Let Xe Haus(P))Q and Mc X; then M" = 

= -•M-'Haus(P)' By 1 > 1 0 M c a n o e o0^311161- °y iterations of clp. 

Set M° = M and if M has been defined for any ordinal /3 less 

than an ordinal number oc set M1* = clp(M
/3) if oc = ft + 1 for some 

'h < ao , otherwise M^ -a^^^ • Denote by co(M) the least ordinal 

oc with M**1 = M^ . Clearly M c o ( M ) = *M and co(M) is the least or

dinal with this property. Denote by C0(M) the cardinality of co(M) 

and sê t fXO(M) = sup -l card( oc) -.M**1* M** (obviously PCO(M) £ 

£C0(M)). Finally set co(X) = sup -f co(M) :Mc X?, PCO(X) = sup{PC0(M): 

:McX{ and C0(X) = sup i C0(M) :M c X}. The ordinal co(X) will be cal-

lec' c-order, the cardinal PCO(X) will be called the point-wise 

c-cardinal of X and C0(X) the c-cardinal of X. 

For (X,r) e Haus(P) set co(X,^) = co(X,* Haus(p))> so co(X,t) 

is defined for (X,r) c> Haus(P), too. 

The c-order generalizes the sequential order and the k-order 

introduced by Arhangel'skii and Franklirr^TTl. If X is a c-space , 
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then the c-order coincides with the P-order defined by Kannan 1163 

(as a matter of fact the only case when this does not occur is the 

category Haus(Pm)Q; however in spite of ^Haus(P ) * * ° in Qeneral 

for a space (X,t)cHaus(P ), the P-order of Kannan coincides with 

the c-order in this case, too; it is in fact 6. 1 ([16J, Ex. 5 . 4 . 1 ) . 

For an example of a space (X,T)C Haus(Pm) with ^Hgy./p \ + %c 

—- • —in 

«m 

take X = *0,l|z . Then X = * Haus(P )' o n t h e o t h e r n a n d *<*) * 

= 2m, so there exists a non-closed subset M of X with t(M)> m, 

then M is closed in *c. 

{r°r £. = ComP. PCO(X) and C0(X) were introduced in t3J. Clear

ly PC0(X)£C0(X).£PC0(X)+ and C0(X)^ card(co(X)). It was proved 

in t3! that for P = Comp, PC0(X)^t(X). The next theorem shows it 

for any class P satisfying (* ) (a similar result can be found in 

t253. 

2-2- Theorem. Let P be a class satisfying (*) and X c Haus(P). 

Then. PC0(X)*t(X); in particular if C0(X) = PCO(X), then C0(X) = 

= t(X) otherwise C0(X) = t(X)+. 

Proof: Suppose that PC0(X)>t(X); then there exists AcX such 

that PC0(A)> t(X). Let oo be the least ordinal with cardinality 

t(X) + ; then A*+1* A* , otherwise A*"1"1 = A* = ̂ U^.A'1 which would 

imply PC(X)<t(X)+. Hence there exists an element xcA c r + 1NA° 6, so 

for some P« £ and a continuous map f :P —*> X, x « (IT?) A A^ J S A * . 

Then there exists Ccf(P)nA* such that x e C* and card C£t(X). 

Since A06 * \J^kr , every element of C is contained in some A^ , 

fi •< ec . Since t(X) is a regular cardinal, C is contained in some 

A*1 . Thus X « C C F ( F ) A A ^ C A/3+1c A06- a contradiction. 

The next theorem shows that the c-order is related to the co-

well-poweredness of the category Haus(P). 
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2-5- Theorem. Let P be a class satisfying ( *) and such that 

for every X 6Haus(P), co(X) * oc for a fixed ordinal oc . Then 

Haus(P) is co-well-powered. 

Proof: Let X & Haus(P) and McX. It is enough to show that 

the cardinality of tM^Haus(P) is D O u n d ed by a cardinality which 

does not depend on the space X. By 1.9 -M3Haus(p) is the idempo-

tent hull of clp and the number of iterations is less or equal to 

oc . So it suffices to see that card clp(M) is limited by a car

dinality which does not depend on X. For every Pep and every con-
"" «card M 

tinuous map f:P-—• X, f (P) is Hausdorff, so card(Mnf (P)) * 2l 

On the other hand the different subsets of M of the type M nf(P) 
rarri M 0Card M 

are at most 2 c a r a , so card c l p (M) .62* 

We do not know if the converse of 2.3 is t rue . For the cate

gory Urj£ of Urysohn spaces the Ury-closure is the idempotent hull 

of the known 0 -closure and the number of iterations is unbounded 

in Ury. This was used by Schroder L 223 to prove that the category 

Ury is not co-we l l-powered. 

The next corollary covers 3.6 (d) from til] and 2 .18 from C243 

2**- Corollary. Let £ be a class satisfying (at) and such 

that d(P) is bounded for PsP. Then Haus(P) is co-well-powered. 

In particular, if all spaces of P have bounded cardinality, then 

Haus(P) is cowell-powered. 

Proof: In view of 2.3 it suffices to show that the c-order 

is bounded in Haus(P). Assume that for every P&P d(P)£m. Denote 

2
m + 

by oc, the least ordinal of cardinality (2 ) ; then co(X) 4 oc for 

every X ft Haus(P). In fact, it suffices to see that for every McX 

M0""1 ,» M** . If xfiM**1, then for some PcP and f:P-^X 

X e M * r . f T F ) . Now d(t(P)) 4d(PJjk_m, so card f (P) 422 . Now by 
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card(oo)>card f(P) there exists A <c oc such that f(P)r»M<*c M " f 

so x t H ^ A f(P)c M13*1, hence xcM 0 6. 

Observe that if Pcfc Haus the restriction on the density of 

the spaces of £ gives no restriction on their cardinality, so P 

may have arbitrarily large spaces (see 1.12(a) above for such spa

ces) . 

2.5. Examples, (a) Let m be a fixed cardinality; denote by 

dP„ the class of spaces X with d ( X ) ^ m . Then Haus(dP^)c Haus(PM) 
——m r — m —— —fll 

and both categories are cowell-powered by virtue of 2 ,4 . The in

tersection of all Haus(P^) when m varies is Haus. 

(b) Let for every cardinal m. D^ denote a discrete space of 
J ' m 

cardinality m. Then HausUflD }) = Haus(Comp ndP ) since every com

pact Hausdorff space X with d(X).#m is a continuous image of ft D 

Denote by 3* this category; it is co-well-powered by 2.4. The 

intersection of all B is Haus(HComp) which is not co-well-po-

«m 

wered. Finally denote by 5)' the category Haus(-C0, 3 I ); clear

ly & „ c 2b' and the intersection of all flj' is the category 
1 m m m 

Haus(D) where D is the class of all dyadic compact Hausdorff spa

ces. We do not know if this category is co-well-powered (observe 

that P = 4fJDml satisfies (# ) since /3Dm si (I Dm U /3 0m; the same 

holds for *0,li2 ). 

(c) Let £ be the class of all compact metrizable spaces; 
~ *o 

then every P € £ is a continuous image of 40,it so Haus(P) = 

= Haus(40,l! ). It contains 25# for every m. 

If a class £ does not satisfy (*) we can form the class P* 

of spaces of the form P U F where Pc P and F is a finite discre

te space. Obviously £* satisfies (*). 

(d) Hausgo,!* °)£ Haus(*I}* )n S 

terval). To show it we use the one-point extension nX of a topo-

(d) HausüO,!* Q)gHaus(*I}* )n SUS (here I is the unit in-
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logical space X defined in [13.1: for X € SUS take for a base of 

neighborhoods of the point oo in nX the complements of finite uni

ons of convergent sequences in X. If X is sequential then nX e SUS 

(1131, 3.8). Now set X = \ 0,1? °; then nX cSUS and nX # HausUO, l\ °) 

but nX c Haus(il^* ) since every continuous map f :I—*» nX is cons

tant (if F = f"1(oo ), then F is a closed subset of I. If F = 0 

then f is constant since I is connected and X is totally discon

nected. Assume that F-j-0, we shall prove that F = I. If F4=I and 

(a,b)ia an open interval with -ia,bicF and (a,b)nF = 0, then 

f((a,b)) is connected in X, so it is a single point, say z. Then 

f" \iz\) is closed in I and contains (a,b), hence intersects F -

a contradiction.) 

(e> SUS 4:HausUn* ) : by 3.8 from 113] nI e-SUS; on the other 

hand nI is a continuous image of I Uioo\ so nI 4 Haus(U)* ). Fi

nally note that HeusCtH* ) c C y since X ̂  is a continuous ima-
2 2 

ge of I. On the other hand X e HausHl \*) since every continuous 

map f:I—> X is constant. In fact, assume that f(I) is not a sing

le point; then I = U 4 f (x):x*Xl is a disjoint countable union 

of closed sets. This contradicts the Theorem of Sierpinski (18.1, 

6.1.2). 

(f) Let X be a connected Hausdorff space with d(X) = m>l. 

h e n Haus( -»ftPm\)cHausUXi* ) c Haus(*Il* ), since there exists a 

; ntinuous map of X on I. 

3. Eplmorphisms ln_P^. Let £ be a class of topological spa-

For (X/t) 

and f :P—* X?. 

ces. For (X/t) *To£ and M c X define cl£(M) = U Cf (f"1(M)) :P& P 

p 
•* • * • t-emma • The cl— has the following properties: 

(1) it is monotone, expansive and additive; moreover, 
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cl£(M)c clp(M) for every McX; 

(2) for every continuous map f:X—>Y f (cl-(M)) c cl---(f (M)) ; 

(3) for every (X,ir)6To£ and McX, cl-(M) = M iff M is * c -

closed; 

(4) if (X,"tf) is a c-space then the ordinary closure of (X./e) 
P 

is the idempotent hull of cl— and the number of iterations is given 

by the E-order (for E - P) defined by Kannan (U61); 

(5) if Y£P 3 and f,g:X—>Y, then Eq(f,g) is cl£ -closed in 
p 

X; in particular every £,-closed set is cl— -closed . 

Note that the converse in (5) is not t rue . Take for example 
p 

£. = "CN^l ; then £, = US and cl— -closed sets are the sequentially 

closed sets. There exists a space X € US and McX which is sequen

tially closed and not US-closed (see [24.1, Ex. 2.12). 

5 2* Definition. For X e Top and McX denote 

<M>p * p(cl£(kQ(X))nk1(X)) = p(kQ(X) n c A k ^ X ) ) ) = p(cl£(ko(X))n 

ncl£(k1(X))). 

It is easy to establish that the equalities hold and that for 

every XcTo£ and McX cl---(M) c <M>p by virtue of 3.1 (2). 

-*•-*• Lemma. < M>p is an expansive, monotone operator and for 

every X 4 P 3 and McX <M>p,c[Mlp . 

Proof: In fact by 3.1 (5) cl£(k. (X))cCk,(X)JP , i = 0,1, 
l l r3 

hence cl£(kQ(X)) A cl£(k]L(X)) c (CkQ(X)3p A [k1(X))p ) and by 

1.3 (3), p(tk0(X)3p ^rk1(X)3p ) = CM3p . 

'•*• Theorem1. Let P be any class of spaces closed with res

pect to closed subspaces, Xc P, and McX. Then the following con

ditions are equivalent: 
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( i ) M = <M>p; 

( i i ) M = CMlp ; 
--3 

( i i i ) kQ(X) = cl£(ko(X)) in X UMX; 

( i v ) kQ(X) = c l - - (ko (X ) ) and k^X ) = c A k ^ X ) ) . 

Proof.: ( i i ) =-̂  ( i ) by 3.3 and Ciii)<==> (iv) since kQ(X) and 

k-.(X) are exchanged by the homeomorphism $ of X L-MX. On the other 

hand (iv)<t=-> ( i ) by the d e f i n i t i o n . To finish the proof we have 

to prove ( i v ) ===> (ii).By'virtue of 1.2 it is enough to prove that 

X U MXeP,, i . e . , that for every P G. £ and every continuous maps 

f,g:P—->- X U MX, Eq ( f ,g ) is closed in P. For i = 0,1 denote pj = 

= f " 1 ( k i ( X ) ) c P. By the hypothesis k^X ) is cl--* -closed in XUMX, 

hence P~ is closed in P. Define P*(i = 0 , 1 ) in the same way, then 

P* is closed in P. Finally define f^Pj—> ^ ( X ) and g^P* —> k£(X) 

as the restrictions of f and g, respectively. For i = 0,1, Pi,-, pj 

is a closed subspace of P, so it belongs to £, hence for po f., 

p * Si-Pf ̂ Pg —**x, E q ( f i , g . ) is closed in P^P*, so it is closed 

in P. In the same way one sees that Eq(f. ,g. )r> P*n P* is closed 

in P. Therefore Eq ( f ,g ) -,U P* n P^n Eq(f. . g , ) is closed in P. 

-**5. Corollary. The P,-closure in each XeP, is the idempo-

tent hull of < >p. 

^ -6 * Example • For P = 4 N ̂ V, for every X e Top and Mc X, 

< M>p = |xeX: there exists x —•» x in X such that for every open 

neighborhood U of x and for every open set Vc U with Vn M = Un M, 

x 4V only for finitely many n 1. 

In fact, by 3.2 xe<M>p iff there exists a sequence hx } in 

X such that k,(x )—> k
0(

x) in x u M X• Since the basic neighbor

hoods of k
0 ( x ) in X u MX are q(U >̂ i0 iu V * \ 11) where U is an open 

neighborhood of x in X and V is an ooen subset of U with Vn M = 
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= UnM, there is nothing to prove. 

Observe that <M>pcclp(M), in this particular case, it follows 

from 1.8 (2). On the other hand it is easy to see that x «. <M>p iff 

there exists a sequence x —> x in X such that for any subsequen-

c e ^ xn \ > x * *xn *^ M (this form of the closure was given in 1241, 
nk nk 

2.19; see also 2.21). Assume, in fact, that there exists a subse

quence 4x } such that x^^x }nM; then there exists an open 

neighborhood U of x such that U n M M x \ - 0. In the same way as 
nk 

in 1.8 (2) we find an open subset V of U with V A M = Ur\M such that 

x 4 V for every k. Conversely, assume that there exists an open 

neighborhood U of x such that, for some open subset V of U with 

VnM - UnM, x 4 V for infinitely many k. Then clearly Vr.-$x } = 
%. - _ - nk 

= 0 and U o M M x n ] = V n M n h n I = 0, so x £ 4 x n l o M . 
nk nk nk 

The following theorem, for P c Comp, can be obtained also from 

1.4 and 1.5 of 1133. 

3.7. Theorem. Ii P is a class of topological spaces satisfy

ing (*) then Haus(P)cP5. 

Proof: Let X & Haus(P), then by the diagonal theorem (Theorem 

2.1 of 111}) the diagonal Aw in XxX is Haus(P)-closed. Since, 

for every (Y.t) e Haus(P), "̂  Haus(P) ~ ̂ ° i-t f o l l o w s t n a t Ax is 

also tc-closed. By the definition of P, this means that XeP.,. 

'•&• Corollary. SUS <-—• US preserves epimorphisms. While 

SUS is co-well-powered, we do not know if US is. 

^•9- Examples. (a) Haus(A 11*)tj US. In fact, take any conver

gent sequence x v— * x such that the space 4x}ufx :n = 1,2,...} is 

T, and blow up the pnint x. The space X obtained in this way is T, 
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and X4US. On the other hand XeHaus(4IJ* ) because of the theorem 

of Sierpinski. 

(b) Let m be a cardinal and P = 4Xm| be as in 1.12 (a). We 

discuss first the topology r c for an arbitrary (Y,T) C Top.. Con

sider first the case m = # . A sequence *x f in a T.-space is 

said to be a O-sequence if it is homeomorphic to X provided with 

P *° the relative topology (see tl83). Now cl-(M) is exactly the 0-se-

quential closure of M, i.e., the limits of O-sequences in M. The 

c-spaces are exactly the O-sequential spaces, i.e., the spaces in 

which every O-sequentially closed set is closed. Let us observe 

p 

that cl— is an extensive, monotone and additive operator, in gene

ral non idempotent, as the following example shows. Set Y« = ioo iu 

u lxn; n» l,2,...Mxn|n:m,n = 1,2,. . .\ where each Zn = **n}ut*mn: 

:m = 1,2,...\ is open in Y2 and has the cofinite topology, a basic 
Oe> 

neighborhood of \<x>\ has the form v̂ . z„\ Fn, where for n£k F„, a m, *Jh n n n 

is a finite subset of Z \lx |. Now for M = * x
m n

: m» n = 112»- - • J» 

co 4 cl-(M) = Jj^ Zn and o> c cl£(4xn:n = 1,2,.. .|) c cl-(cl-(M)). 

The space Y2 is in fact a slight modification of the space S« con

sidered in [1J to show that the sequential order is not idempotent. 

Let us mention that for m > yi an analogous description of the 

reflection T C can be given by means of 0-nets (here by 0-net we 

mean a net whose relative topology in the whole space is the co-

finite topology. This definition differs from C93). It is obvious 

in all cases that, for any (X,*)* To£, X e <€m (cf. 1.12 (a)) iff 

* c is the discrete topo logy . This is why for P « 4Xmt, X4£ 3 

implies that X*X 4 ^ ( A x is not closed in the coref lection). 

It is easy to see that for Yc Top^ Y & tm iff Y* Y « *em. Hence 

we get X 4 ^ m . On the nthfir hand if X « fm then X*X « if so A x 
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is closed in the c-coreflection of X^X. We have proved in this 

way 

3.10. Theorem. For every cardinal m and P = <C X |, P, = <t . 
.-——-——-— * — rn ' --3 m 

This answers a question of Hoffmann and completes 2.2.9 of 

U33. 

Question. Is the P,-closure a Kuratowski operator? 

To answer this question it suffices, in account of 3.5, to 

prove that < >« is an additive o p e r a t o r . 

HuSek remarked to us that in all statements where (;*) is 

needed, it suffices to take Haus(P) = K X cTop: for each f:P—*• X, 
P*P, f(P) is Hausdorff* instead of Haus(P), which includes also 

""""•-""""" *- i 

other classes. 
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