Commentationes Mathematicae Universitatis Caroline

Libor Veselý

On the multiplicity points of monotone operators on separable Banach spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 3, 551--570

Persistent URL: http://dml.cz/dmlcz/106476

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 27,3 (1986)

ON THE MULTIPLICITY POINTS OF MONOTONE OPERATORS ON SEPARABLE BANACH SPACES Libor VESELY

Abstract

It is proved that the set of multiplicity points of monotone operator T on a separable real Banach space is contained in a countable union of Lipschitz hypersurfaces with "linearly finite convexity on a subset". If T is a subdifferential of a proper convex function, the hypersurfaces are δ-convex. Analogous results are obtained for the sets of n-dimensional and n-codimensional multiplicities. Applications to singular points of convex sets are given. This paper improves and generalizes the results of L.Zajíček.

Key words: Multiplicity points of monotone operators, linearly finite convexity, Lipschitz surfaces in Banach spaces, convex analysis, subdifferentials of proper convex functions, singular points of convex sets, δ-convex functions.

AMS Subject Classification: Primary $\begin{array}{llll}47 \mathrm{H} & 05 \\ 52 \mathrm{~A} & 20\end{array}$

1. Introduction

Let T be a set-valued monotone operator on a separable real Banach space X (i.e. T: X $\rightarrow \operatorname{expX}^{*}$ and $\left\langle x-y, x^{*}-y^{*}\right\rangle \geqslant 0$ whenever $\left.x^{*} \in T x, y^{*} \in T y\right)$ and let
$A_{n}=\{x \in X: \operatorname{dim}(\operatorname{coT} x) \notin n\}$,
$A^{n}=\{x \in X:$ coTx contains a ball of codimension $n\}$,
where coTx denotes a convex hull of the set $T x$.
The smallness of the sets A_{n}, A^{n} was investigated by E.H. Zarantonello [8], N.Aronszajn [1] and L. Zajíček [6], [7]. The theorems were applied to operators F_{M}, V_{M} ("vertex-" and "face--operator") being connected with singular points of a closed convex set M, in [8], [7].

In this paper, the results from [6] and [7] were improved

and generalized.

L. Zajíček has proved (see [7]) that the set A_{n} can be covered by countably many Lipschitz surfaces of codimension n. If $T=\partial f$ for some dontinuous convex function on an open convex set $\mathrm{U} \subset \mathrm{X}$ then it is possible to write " δ-convex surfaces" instead of "Lipschitz surfaces" (see [6]). In case X is a Hilbert space or $\mathrm{n}=1$ and X^{*} is separable, the set A^{n} of a general monotone operator T can be covered by a countable union of Lipschitz surfaces of dimension n (see [7]).
1.1 Problem: It is still an open problem whether the set A_{n} (or A^{n}, if X^{*} is separable, respectively) can be covered by countably many δ-convex surfaces of codimension n (or dimension n, respectiviely) if T is a general monotone operator.

Following main results of the present article suggest that the answer could be positive:
a/ The Lipschitz surfaces from [7] have an additional property - "linearly finite convexity on a subset". This result easily gives an existence of a Lipschitz surface of codimension n (dimension n, respectively) which cannot be a subset of A_{n} (A^{n}, respectively) for any monotone operator T.
b/ If X is separable then the set A^{1} is contained in a countable union of curves with finite convexity. It gives a positive answer to 1.1 in the special case $X=R^{2}$
c/ The result from [6] is generalized to the case $T=\partial f$, where f is a proper convex function. It makes possible to improve the results from [7], [8] concerning singular points of convex sets.
d/ It is shown that the Lipschitz surfaces covering the set A^{n} are in a certain sense δ-convex on a subset if $T=\partial f$.

The author is grateful to RNDr.L.Zajíček,CSc. for his advice and remarks which helped to get the final version of present peper.
2. Definitions and auxiliarypropositions

All linear soaces of oresent paper will be real linear spaces. Let M be a subset of the real line R. We shall denote by $P(M)$ the system of all sets $A G M$, which contain at least three elements.

Let X be a Banach space and $f: M \rightarrow X$. For any $a, b \in M, a \neq b$, we define $Q_{f}(a, b)=\frac{f(b)-f(a)}{b-a}$. We shall write $Q(a, b)$ instead of $Q_{f}(a, b)$ when it is clear which mapping is concerned to.
2.1 Definition (cf. [2]): Let X be a Banach space, $M \subset \mathbb{R}$ and $f: M \rightarrow X$. For $P=\left\{x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}\right\} \in P(M)$ we define

$$
K(f, P)=\sum_{i=1}^{n}\left|Q_{f}\left(x_{i-1}, x_{i}\right)-Q_{f}\left(x_{i}, x_{i+1}\right)\right|
$$

and put

$$
\mathcal{K}(f, M)=\left\{\begin{array}{l}
\sup \{K(f, P): P \in P(M)\} \text { if } P(M) \neq \varnothing \\
0 \text { if } P(M)=\varnothing .
\end{array}\right.
$$

$\mathcal{X}(f, M)$ is called convexity of f on M.
2.2 Lemma: Let X be a Banach space, $M \subset R$ and $f: M \rightarrow X$. Then $K(f, P) \leqslant K(f, P u\{m\})$ holds for any $P \in P(M)$, $m \in M$.

Proof: Let $P=\left\{x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}\right\} \in P(M)$ There are four possible positions of the point m.

$$
\begin{aligned}
& \text { a/ } m<P ; \\
& \text { b/ } m<x_{0} \text { or } x_{n+1}<m ; \\
& \text { c/ } x_{0}<m<x_{1} \text { or } x_{n}<m<x_{n+1} \text {; } \\
& \text { d/ } x_{j}<m<x_{j+1} \text { for some } 1 \leqslant j \leqslant n-1 .
\end{aligned}
$$

We shall perform the proof of the most complicated case $d /$ only, since the proof of $c /$ is similar and $a /, b /$ are obvious.

If we shortly denote $x=x_{j-1}, y=x_{j}, z=x_{j+1}, w=x_{j+2}$, we have following situation:

$$
x<y<m<z<w_{0}
$$

Let $k \leqslant X$ be such thet

$$
\frac{k-f(y)}{m-y}=Q(y, z)=\frac{f(z)-k}{z-m}
$$

Then $\left\|Q(x, y)-Q(y, z)\left|+\|Q(y, z)-Q(z, w)\|=\| Q(x, y)-\frac{k-f(y)}{m-y}\right|+\right.$
$+\left|\frac{f(z)-k}{z-m}-Q(z, w)\right| \leqslant|Q(x, y)-Q(y, m)|+\frac{\| f(m)-k \mid}{m-y}+\frac{|f(m)-k|}{z-m}+$
$+\|Q(m, z)-Q(z, w)\|=\|Q(x, y)-C(y, m)\|+\| Q(y, m)-Q(m, z) \mid+$
$+\|Q(m, z)-Q .(z, w)\|$ and hence $K(f, P) \leqslant K(f, P u\{m\})$.
(We have used following equalities:
$\frac{|f(m)-k|}{m-y}+\frac{\| f(m)-k \mid}{z-m}=\left\|\frac{f(m)-k}{m-y}-\frac{k-f(m)}{z-m}\right\|=\|O(y, m)-c(m, z)\|$
2.3 Proposition: Let X be a Banach space, $M \subset \mathbb{R}, f: M \rightarrow X$. If $\mathcal{X}(\mathrm{f}, \mathrm{M})<\infty$ then f is a Lipschitz mapping on M .

Proof: Suppose fis nct Li sschitz. It is evicent that there exist two points $a, b \in M$ such that $a<b$ and f is not Lipschity on at least one of the sets $M_{+}=M \cap(b,+\infty), M_{-}=M \cap(-\infty, a)$. \%e can assume f to be not Lipschitz on M_{+}without any loss of eenerality. There exist $u, v \in M_{+}$such that $u<v$ and $|f(u, v) \|>\mathcal{K}(f, M)+|G(a, b)|$. Then $\mathcal{K}(f, M)<|Q(u, v)|-|Q(a, b)|$ $\leqslant\|(a, b)-\odot(u, v)\| \leqslant\|Q(a, b)-Q(b, u)\|+\|Q(b, u)-Q(u, v)\|=$ $=K(f,\{a, b, u, v\}) \leqslant \mathcal{X}(f, M)$ and this is a contradiction. ///

三. 4 Proposition: Let X be a Banach space, $M \in \mathbb{R}, f: M \rightarrow X$ and $\mathcal{K}(f, N)<\infty$. If $x \in \mathbb{N}$ is a limit point of M from the right (from the left, respectively), there exist

$$
f_{+}^{\prime}(x, M)=\lim _{\substack{y \rightarrow x+\\ y \in M}} Q_{f}(x, y) \quad\left(f_{-}^{\prime}(x, M)=\lim _{\substack{y \rightarrow x-\\ y \in M}} Q_{f}(x, y), \text { resp. }\right) .
$$

Proof: Suppose $f_{+}^{\prime}(x, M)$ doesn't exist. Then there must exist $\varepsilon>C$ such that for any $\delta>0$ there exist $y, z, w \in M$ satisfying $x<y<z<w<x+\delta$ and $\|Q(x, y)-Q(x, z)\|>\varepsilon$.
But $|Q(x, y)-Q(x, z)| \leqslant|Q(x, y)-Q(y, z) \|+|Q(y, z)-Q(w, z)|+$ $+|Q(x, z)-Q(w, z)|=K(f,\{x, y, z, w\})+K(f,\{x, z, w\}) \leqslant$

- $\leqslant 2 \mathcal{K}(f, M \cap[x, x+\delta))=2 \mathcal{K}(f, M \cap(x, x+\delta))$. (The last equality is an easy consecuence of 2.3.)
Hence $\mathcal{K}(f, N \cap(x, x+\delta))>2^{-1} \varepsilon$ for any $\delta>0$. Let $N>\frac{2}{\varepsilon} X(f, M)$ be positive integer. Since we have for any $\delta>0$ an existence of P from $P(i n(x, x+\delta))$ such that $K(f, P)>2^{-1} \mathcal{E}$, it is possible to find $P_{1}, ?_{2}, \ldots, P_{N} \in P(M)$ with following properties:

$$
\max P_{k+1}<\min P_{k} \text { for } k=1,2, \ldots, N-1
$$

$V\left(f, P_{j}\right)^{k+1}>2^{-1} \varepsilon \quad$ for $\quad j=1,2, \ldots, N$.
Then $\mathcal{K}(f, N)<N \frac{\varepsilon}{2} \leqslant \sum_{k=1}^{M} K\left(f, P_{k}\right) \leqslant K\left(f, \bigcup_{k=1}^{M} P_{k}\right) \leqslant \mathcal{K}(f, N)$ and tiis is a contradiction. The proof of existence of $f_{-}^{\prime}(x, M)$ is analogous. //i
2.5 Theorem: Let X be a Banach space, $N \subset R, f: M \rightarrow X$. Then there exists a manving $F: R \rightarrow X$ such that

$$
\begin{array}{ll}
\forall x \in M & F(x)=f(x) \\
\mathcal{K}(F, R)=K(f, M) . \tag{2}
\end{array}
$$

Proof: If $\mathcal{K}(f, M)=+\infty, F$ can be an arbitrary extension of $f:$ If M has two or less elements then F can be defined as affine mapping satisfying (1). Suppose M has at least three elements and $\mathcal{K}(f, M)<\infty$. The needed extension will be constructed in several steps.
a/ Extension on \vec{M} (closure of M).
X is complete and f is Lipschitz on M (by 2.3). Hence f has a unique continuous extension g on \bar{M}. Choose $\varepsilon>0$ and arbitrary $P=\left\{x_{0}<x_{1}<\ldots<x_{n+1}\right\} \in P(\bar{M})$. The continuity of the mapping $q(u, v)=Q_{g}(u, v)$ on the set $\{[u, v] \in \bar{M} \times \bar{M}: u \neq v\}$ gives existence of $P_{1}=\left\{\mathrm{y}_{0}<\mathrm{y}_{1}<\ldots<\mathrm{y}_{\mathrm{n}+1}\right\} \in P(\mathrm{M})$ such that

$$
\left\|Q_{g}\left(x_{j}, x_{j+1}\right)-Q_{g}\left(y_{j}, y_{j+1}\right)\right\|<\frac{\varepsilon}{2 n} ; j=0,1, \ldots, n
$$

Then

$$
K(g, P)<K\left(g, P_{1}\right)+2 n \cdot \frac{\varepsilon}{2 n}=K\left(f, P_{1}\right)+\varepsilon \approx \mathcal{K}(f, M)+\varepsilon .
$$

Hence $\mathcal{K}(g, \bar{M})=\sup \{K(g, P): P \in P(\bar{M})\} \leqslant \mathcal{K}(f, M)+\varepsilon$.
Since \mathcal{E} was arbitrary and the inequality $\mathcal{K}(f, M) \leq \mathcal{K}(g, \bar{M})$ is evident, we have $\mathcal{K}(g, \bar{M})=\mathcal{K}(f, M)$.
b/ Extension on $M_{1}=\{x \in \mathbb{R}: \sigma \leqslant x \leqslant s\}$, where $\sigma=$ infM , $s=s u p M$. The complement of \mathbb{M} can be written as a finite or countable union of disjoint open intervals:

$$
R \backslash \bar{M}=J_{-} \cup \bigcup_{k \in A} J_{k} \cup J_{+},
$$

where $A \subset\{1,2,3, \ldots\}, J_{-}=(-\infty, 6), J_{+}=(s,+\infty), J_{k}=\left(a_{k}, b_{k}\right)$, $a_{k}<b_{k}, k \in A . J_{-}, J_{+}$can be empty and, obviously, $a_{k}, b_{k} \in \bar{M}$ for any $k \in A$.
It is easy to see that $M_{1}=\bar{M} \cup \bigcup J_{k}$. Let us define

$$
h(x)= \begin{cases}g(x) & \text { if } x \in \bar{M} \\ g\left(a_{k}\right)+Q_{g}\left(a_{k}, b_{k}\right)\left(x-a_{k}\right) & \text { if } x \in\left(a_{k}, b_{k}\right)\end{cases}
$$

Obviously $Q_{h}\left(a_{k}, x\right)=Q_{h}\left(x, b_{k}\right)=Q_{h}\left(a_{k}, b_{k}\right)=Q_{g}\left(a_{k}, b_{k}\right)$ for any $x \in\left(a_{k}, b_{k}\right)$ and $h=f$ on M.
For arbitrary $P \in P\left(M_{1}\right)$ we define

$$
P_{1}=P u \bigcup_{\substack{k \in A \\ P \cap J_{k} \neq \emptyset}}\left\{a_{k}, b_{k}\right\}, \quad P_{2}=P_{1} \backslash \bigcup_{k \in A} J_{k}
$$

Then P_{2} contains at least two points and $P_{2} \subset \bar{M}$. If P_{2} contains just two points then $P \subset J_{k}$ for convenient $k \in A$ and then
$K(h, P)=0 \leqslant K(f, M)$. Let P_{2} contain more than two elements. Then $P_{2} \in P(\bar{M})$ and by 2.2 and (3):
$K(h, P) \leqslant K\left(h, P_{1}\right)=K\left(h, P_{2}\right)=K\left(g, P_{2}\right) \leqslant \mathcal{K}\left(g, \overline{M_{1}}\right)=\mathcal{K}(f, M)$.
Since $P \in P\left(M_{1}\right)$ was arbitrary then $\mathcal{K}\left(h, M_{1}\right)=\mathcal{K}\left(f, M_{1}\right)$.
c/ Extension on \boldsymbol{R}.
Define

$$
F(x)= \begin{cases}h(x) & \text { if } x \in M_{1} \\ h(s)+h_{1}^{\prime}\left(s, M_{1}\right)(x-s) & \text { if } x \in J_{+} \\ h(s)+h_{+}^{\prime}\left(s, M_{1}\right)(x-\sigma) & \text { if } x \in J_{-}\end{cases}
$$

Let us suppose $J_{+} \not \not \varnothing, J_{-} \not \varnothing \varnothing$. The other cases are more simple. Let $P \in P(R)$ and $\varepsilon>0$. Choose $P_{1} \in P(R)$ such that $P \subset P_{1}$, $J_{-} \cap P_{1} \nLeftarrow \varnothing, J_{+} \cap P_{1} \not \varnothing \emptyset, M_{1} \cap P_{1} \neq \varnothing$. Define

$$
\left.\begin{array}{r}
P_{2}=P_{1} \cup\{\sigma, s\}=\left\{x_{0}<x_{1}<\ldots<x_{i}<\sigma<x_{i+1}<\ldots<x_{m}<s<x_{m+1}<\right. \\
\end{array}<\ldots<x_{n}\right\}
$$

and $P_{3}=\left\{x_{i}<\sigma<x_{i+1}<\ldots<x_{m}<s<x_{m+1}\right\}$.
There exist $y \in\left(\epsilon, x_{i+1}\right), z \in\left(x_{m}, s\right)$ such that

$$
\begin{aligned}
& \left\|Q_{F}\left(\circledast, x_{i+1}\right)-Q_{F}\left(y, x_{i+1}\right)\right\|<\frac{1}{6} \varepsilon, \\
& \left\|Q_{F}\left(x_{i}, \sigma\right)-Q_{F}(\sigma, y)\right\|=\left\|F_{+}^{\prime}(\sigma)-Q_{F}(\sigma, y)\right\|<\frac{1}{6} \varepsilon, \\
& \left\|Q_{F}\left(x_{m}, s\right)-Q_{F}\left(x_{m}, z\right)\right\|<\frac{1}{6} \varepsilon, \\
& \left\|Q_{F}\left(z, x_{m+1}\right)-Q_{F}(z, s)\right\|=\left\|F_{-}^{\prime}(s)-Q_{F}(z, s)\right\|<\frac{1}{6} \varepsilon .
\end{aligned}
$$

Then 2.2 , (3) and simple triangle inequalities imply $K(F, P) \leqslant K\left(F, P_{1}\right) \leqslant K\left(F, P_{2}\right)=K\left(F, P_{3}\right)<$
$<K\left(F,\left\{\sigma, y, x_{i+1}, \ldots, x_{m}, z, s\right\}\right)+\varepsilon=K\left(h,\left\{\sigma, y, x_{i+1}, \ldots, x_{m}, z, s\right\}\right)+\varepsilon$
$\leqslant \mathcal{K}\left(h, M_{1}\right)+\varepsilon=X(f, M)+\varepsilon$.
P and E were arbitrary, hence $\mathcal{K}(F, R)=\mathcal{K}(f, M)$.
2.6 Definition: Let X, Y be Banach spaces, $M \subset X, Y: M \rightarrow Y$ and $x, h \in X$. Let $M_{x, h}=\{t \in R: x+t h \in M\}$ and let us define mapping $\varphi_{x, h}: M_{x, h} \rightarrow I$ by the formula

$$
y_{x, h}(t)=y(x+t h)
$$

We shall say that y has linearly finite convexity on M, if $\sup \left\{K\left(Y_{x, h}, M_{x, h}\right): x, h \in X,\|h\|=1\right\}$ is finite.

Thus φ has linearly finite convexity on M iff its restriction on any straight line p has finite convexity on $M \cap p$ and all these convexities have a common upper bound.

Let us note that a mapping φ, possessing a linearly finite convexity on a neighbourhood of a point $x \in X$, has all one-sided directional derivatives at x (by 2.4).
2.7 Definition: Let X, Y be Banach spaces, $M \subset X$ and $\varphi: M \rightarrow Y$. The mapping φ is said to be δ-convex on M iff there exists a convex Lipschitz function g on X with property: for each $y^{*} \measuredangle Y^{*},\left\|y^{*}\right\|=1$, there exists a convex Lipschitz function $h_{y^{*}}$ on X such that ${ }^{*} \circ \varphi=h_{y^{*}}-g$ on M.
2.8 Observation: A real function f on a subset M of a Banach space X is δ-convex on M iff f can be extended to a function on X representable as a difference of two convex Lipschitz functions.
2.9 Remark: Let $M \subset R, f: M \rightarrow R$. Then f is δ-convex on Miff $\mathcal{K}(f, M)$ is finite. This yields from well-known results (cf. [2]) and 2.5 .
2.10 Observation: Let M be a subset of a Banach space X and $\varphi: M \rightarrow R^{n}, \varphi=\left[\varphi_{1}, \ldots, \varphi_{n}\right]$. Then /i/ φ is δ-convex on M iff φ_{k} is δ-convex on M for $k=1, \ldots, n$. /ii/ If φ is δ-convex on M, there exists a δ-convex extension of y defined on the whole space X. Both propositions are easy consequences of the definition 2.7, /ii/ yields from /i/.

Let us note that if X, Y are metric spaces, $M \subset X$ and $f: M \rightarrow Y$ is a Lipschitz mapping, then there exists a Lipschitz extension $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$ of f in the following cases:
/i/ $Y=\mathbb{R}^{n}$
/ii/ X, Y are Hilbert spaces
/iii/ $X=\boldsymbol{R}$ and Y is a Banach space.
(For references see [7]).
It is not known to the author whether there exist extensions of mapoings with linearly finite convexity keeping this property, if $\operatorname{dim} X>1$ (even in case $X=\mathbb{R}^{2}, Y=\boldsymbol{R}$), and δ-convex extensions of δ-convex mappings if $\operatorname{dim} Y=\infty$.
2.11 Definition: Let E be a subset of a Banach space X and $\mathrm{n}<\operatorname{dim} \mathrm{X}$ be a positive integer. We shall say that E is a Lipschitz fragment of dimension n (of codimension n, respectively) and denote $E \in \mathscr{X}_{n}\left(E \in \mathscr{E}^{n}\right.$, respectively) if the following condition is satisfied: There exist a subspace Z of X of codimension n (of dimension n, resp.), a topological complement W of the space Z in X, a set $M \subset W$ and a Lipschitz mapping $\varphi: M \rightarrow Z$ such that $E=\{w+\varphi(w): w \in M\}$.

If Z, M, W can be chosen in such way that in addition Y is δ-convex on M or φ has linearly finite convexity on \dot{M} then we shall say that E is a δ-convex fragment or E is an LFC-fragment of given dimension or codimension. The notation will be following: $E \in D C_{n}, E \in D C^{n}, E \in L F C_{n}, E \in L F C^{n}$.

Fragments with $M=W$ are called surfaces. Surfaces of dimension 1 (of codimension 1, resp.) are called curves (hypersurfaces, resp.).
2.12 Notation: Let \boldsymbol{Y} be a given system of subsets of a Banach space X. By $\sigma^{\mathscr{Y}}$ we denote the system of all sets representable as a union of countably many elements from \mathcal{Y}. (For example: EGGDC ${ }^{\boldsymbol{n}}$ means that E can be written as a countable union of $\boldsymbol{\delta}$ --convex fragments of codimension n).
2.13 Observations: \mathfrak{a} Every $\llbracket \in \mathscr{L}_{n}$ has σ-finite n-dimensional Hausdorff measure. In particular, if $X=\mathbb{R}^{m}, m>n$, then E is of Lebesgue measure zero.
b/ Every surface from \mathscr{L}_{n} has infinite but \in-finite n-dimensional Hausdorff measure and its Hausdorff dimension is n. c/ As consequences of $2.5,2.10$ and extensiontheorems for Lipschitz mappings we obtain the following propositions:

Fvery $\Psi \in \mathscr{E}^{\mathrm{n}}$ is a subset of a Lipschitz surface of codimension n.

Every $E \in \mathscr{L}, \quad$ is a subset of a Lipschitz curve.
Every $E \in D C^{n}$ is a subset of a δ-convex surface of codimen sion n.

Every $E \in L F C_{1}$ is a subset of an LFC-curve.
If X is a Hilbert space then every $E \in \mathscr{X}_{n}$ is a subset of a Lipschitz surface of dimension n.

```
3. Multipliccity points
Ofmonotoneoperators
```

By $\exp A$ we shall denote the system of all subsets of a set A and by coA the convex hull of A.

The dimension (codimension, resp.) of a convex set is meant as the dimension (codimension, resp.) of its affine hull.

Let X be a Banach space with dual space X^{*} and $T: X \rightarrow \exp X^{*}$ be a monotone operator. We shall use the following notation:
$A_{n}=\{x \in X: \operatorname{dim}(\operatorname{coT} x) \geqslant n\}$
$A^{n}=\{x \in X:$ coTx contains a ball of codimension $n\}$
$\operatorname{gph} T=\left\{\left[x, x^{*}\right] \in X \times X^{*}: x^{*} \in T x\right\}$.
3.1 Definition: Let T, \widetilde{T} be monotone operators on X. We shall write $T \subset \tilde{T}$ if gph $T \subset g p h \tilde{T}$. T is called a maximal monotone operator if $T \subset \tilde{T}$ implies $T=\tilde{T}$.
3.2 Observation: a/ For every monotone operator T there exists a maximal monotone operator $\mathrm{T}_{\max }$ such that $\mathrm{T} \subset \mathrm{T}_{\max }$, by Zorn's lemma.
\underline{b} It is easy to see that $T x$ is always convex if T is a maximal monotone operator.

By a proper convex function (cf. [3]) it is meant a mapping $f: X \rightarrow \mathbb{R} u\{+\infty\}$ satisfying following two conditions:

$$
\begin{array}{ll}
\forall x, y \in X \quad & \forall \lambda \in(0,1) \quad f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y) \\
& \text { dom } f=\{x \in X: f(x)<+\infty\} \neq \varnothing \tag{5}
\end{array}
$$

3.3 Definition: Let f be a proper convex function on a Banach space X and $x \in X$. If $x \in d o m f$, we define
$\partial f(x)=\left\{x^{*} \in X^{*}: \forall z \in X \quad f(z) \geqslant f(x)+\left\langle z-x, x^{*}\right\rangle\right\}$.
We put $\partial f(x)=\varnothing$ in case $f(x)=+\infty$. The mapping $\partial f: x \longmapsto \partial f(x)$ is called subdifferential of f.
It will fit to define $\partial f \equiv \emptyset$ for $f=+\infty$.
3.4 Remark: Subdifferentials of proper convex functions are monotone but not conversely. There exist monotone operators which are not subdifferentials ([3]). The characterization of subdifferentials of proper convex functions using the notion of a cycli-
cally monotone operator is due to R.T.Rockafellar (see [4]).

The main result of this paper is contained in the following two theorems.
3.5 Theorem: Let T be a monotone operator on a separable Banach space X and $n<\operatorname{dim} X$ be a positive integer. Then $A_{n} \in \Subset L P C^{n}$. If in addition $T \subset \partial_{f}$ for some proper convex function f on X then $A_{n} \in G D C^{n}$.
3.6 Theorem: Let T be a monotone operator on a Banach space X with separable dual space X^{*} and $n<\operatorname{dim} X$ be a positive integer. Then $A^{n} \in \sigma L F C_{n}$. If in addition $T \subset \partial f$ for some proper convex function f on X then $A^{n} \in \sigma D C_{n}$.

These theorems say that the sets A_{i} and A^{n} can be written as a countable union of images of special Lipschitz mappings (defined on a subset of a Banach space of codimension n or dimension n, respectively).

Both proofs are practically equal and we shall do it simultaneously.

At first we state the following simple lemmas without a proof (see [7], Lemma 1, Lemma 2). An open ball with centre c and radius $r>0$ is denoted by $\Omega(c, r)$.
3.7 Lemma: Let X be a separable Banach space. Then there exist a countable system T of n-codimensional subspaces of X^{*} and a countable system \mathcal{L} of n-codimensional affine subsets of $X *$ such that: /i/ Any n-dimensional subspace $P \subset X^{*}$ has a topological complement $V \in \mathbb{T}$.
/ii/ If P, V are as in /i/, $c^{*} \in X^{*}, \varepsilon>0$ then there exists $t \in\left(c^{*}+P\right) \cap \Omega\left(c^{*}, \varepsilon\right)$ such that $L=t+V \in \mathscr{L}$.
3.8 Lemma: Let Y be a separable Banach space. Then there exist a countable system ψ of n-dimensional subspaces of Y and a countable system \mathcal{K} of $n-d i m e n s i o n a l$ affine subsets of Y such that: /i/ Any subspace PCY of codimension n has a topological complement $V \in V$.
/ii/ If P, V are as in /i/, c* $Y, \varepsilon>0$ then there exists $t \in\left(c^{*}+P\right) \cap \Omega(c *, \varepsilon)$ such that $L=t+V \in \mathcal{L}$.
3.9 Proof of 3.5 and 3.6: Let X, T be as in 3.5 (in 3.6, resp.) and $A=A_{n}\left(A=A^{n}\right.$, resp.). Without any loss of generality we can suppose $T x$ to be convex for any x (see 3.2). a/ Decomposition of A.
Let x be an arbitrary element of A. Then there exist a point $c_{x} \in T x$, a positive rational number r_{x} and a subspace $P_{x} \subset X^{*}$ of dimension n (of codimension n, resp.) such that

$$
\left(c_{x}+p_{x}\right) \cap \Omega\left(c_{x}, r_{x}\right) \subset T x .
$$

Let m_{x} be a rational number such that $\left\|c_{x}\right\|<m_{x}$. Lemma 3.7 (3.8, resp.) guarantees an existence of a topological complement $v_{x} \in T$ of P_{x} and a point $t_{x} \in\left(c_{x}+P_{x}\right) \cap \Omega\left(c_{x}, \frac{1}{2} \cdot r_{x}\right)$ such that $L_{x}=\boldsymbol{t}_{\mathrm{x}}+\mathrm{V}_{\mathrm{x}} \in \mathscr{L}$.
Let us find a rational number q_{x} such that $\left\|\pi_{x}\right\|<q_{x}$, where. $\pi_{x}: X^{*} \rightarrow P_{x}$ is a projection in the direction of v_{x}.

For any r, m, q positive rational, $v \in V, L \in \mathscr{Z}$ let us denote

$$
B(r, m, V, q, L)=\left\{x \in A: r_{x}=r, m_{x}=m, V_{x}=V, q_{x}=q, L_{x}=L\right\}
$$

It is clear that $A=U_{B}(r, m, V, q, L)$ and the union is countable.
Let r, m, V, q, L be fixed. We shall show that the set $B=$ $=B(r, m, V, q, L)$ is a Lipschitz fragment of codimension n (of dimension n, resp.).
b/ "Parametrization" of B.
Define $Z={ }^{1} V$. Let W be an arbitrary topological complement of Z in X and $Y=W^{\perp}$. Then Y is a topological complement of V in $X *$. The following proposition is true:
(6)
$z^{*} \in Z^{*}$ iff there exists $y^{*} \in Y$ such that $z^{*}=y^{*}$ on Z.
There exists a point $y_{0} \in Y$ such that $L=y_{0}+V$. Let us denote $M=\{w \in W: \exists z \in Z \quad w+z \in B\}$,
i.e. M is a projection of B on the subspace W in the direction of Z.
c/ B is a Lipschitz fragment.
Let $B \notin \varnothing$. Let $w_{1}, w_{2} \in M, z_{1}, z_{2} \in Z$ such that $x_{i}=w_{i}+z_{i} \in B$ for $i=1$,2. Let us denote $t_{i}=t_{x_{i}}, \boldsymbol{x}_{i}=\boldsymbol{\pi}_{\mathbf{x}_{i}}$
Let $y^{*} \in Y$ be an arbitrary functional from a unit sphere in Y. Define

$$
\begin{aligned}
& t_{1}^{+}=t_{1}+\frac{r}{2 q} \pi_{1}\left(y^{*}\right) \\
& t_{1}^{-}=t_{1}-\frac{r}{2 q} \pi_{1}\left(y^{*}\right) .
\end{aligned}
$$

The fact $t_{1}^{+}, t_{1}^{-} \in T x_{1}$ follows from inequalities

$$
\left\|t_{1}^{+}-c_{x_{1}}\right\| \leqslant\left\|t_{1}-c_{x_{1}}\right\|+\left\|\frac{r}{2 q} x_{1}\left(y^{*}\right)\right\|<r,\left\|t_{1}^{-}-c_{x_{1}}\right\|<r .
$$

The monotonicity of T implies

$$
\begin{gathered}
0 \leqslant\left\langle x_{1}-x_{2}, t_{1}-t_{2} \pm \frac{r}{2 q} \pi_{1}\left(y^{*}\right)\right\rangle= \\
=\left\langle w_{1}-w_{2}, t_{1}-t_{2} \pm \frac{r}{2 q} \pi_{1}\left(y^{*}\right)\right\rangle \pm\left\langle z_{1}-z_{2}, \frac{r}{2 q} y^{*}\right\rangle .
\end{gathered}
$$

(We have used the fact that the functionals $t_{1}-t_{2}, y^{*}-\pi_{1}\left(y^{*}\right)$
are elements of V.) Now we obtain

$$
\begin{aligned}
& \mp\left\langle z_{1}-z_{2}, y^{*}\right\rangle \leqslant \frac{2 q}{r}\left\langle w_{1}-w_{2}, t_{1}-t_{2} \pm \frac{r}{2 q} \pi_{1}\left(y^{*}\right)\right\rangle \leqslant \\
& \left.\leqslant \frac{2 q}{r} \right\rvert\, w_{1}-w_{2} \|\left(\left\|t_{1}-c_{x_{1}}\right\|+\left\|c_{x_{1}}\right\|+\left\|t_{2}-c_{x_{2}}\right\|+\left\|c_{x_{2}}\right\|+\frac{r}{2 q}\left\|\pi \pi_{1}\right\|\right) \\
& \left.\leqslant \frac{2 q}{r}\left\|w_{1}-w_{2}\right\|\left(\frac{r}{2}+m+\frac{r}{2}+m+\frac{r}{2}\right)=\frac{q(3 r+4 m)}{r} \right\rvert\, w_{1}-w_{2} \| .
\end{aligned}
$$

Then by (6)
$\left|z_{1}-z_{2}\right|=\sup \left\{\left|\left\langle z_{1}-z_{2}, J^{*}\right\rangle: y^{*} \in Y, \| y^{*}\right|=1\right\} \in \frac{q(3 r+4 m)}{r}\left|w_{1}-w_{2}\right|$.
If we take $\varphi(w) \in Z$ (for $w \in M$) such that $w+\varphi(w) \in B$, we obtain a correctly defined mapping which is Lipschitz on M and satisfies
$B=\{w+\varphi(w): w \in M\}$.
d/ φ has linearly finite convexity on M.
Let $w_{0} \in W, h \in W,\|h\|=1$. Denote $D=M_{w_{0}}, h, F=Y_{w_{0}, h}$ (see 2.6).
If D contains less than three elements then $K(F, D)=0$ by the definition. Let D have at least three elements and

$$
\left\{d_{0}<d_{1}<\ldots<d_{s}<d_{s+1}\right\} \in P(D)
$$

For $0 \leqslant j \leqslant s+1$ let us introduce following simplifications:

$$
\begin{aligned}
& x_{j}=w_{0}+d_{j} h+F\left(d_{j}\right) \\
& t_{j}=t_{x_{j}} \\
& x_{j}=x_{x_{j}}
\end{aligned}
$$

x_{j}^{\prime} 's are obviasly points from B. The monotonicity of T implies $0 \leqslant i<j<s+1 \Rightarrow\left\langle h, t_{j}-t_{i}\right\rangle \geqslant 0$.
Let us choose an arbitrary number $i \in\{1,2, \ldots, s\}$ and a functional $y^{* E} \in Y$ such that $\mid y^{*} \|=1$.
Denote $t_{i}^{+}=t_{i}+\frac{\Gamma}{2 q} x_{i}\left(y^{*}\right), t_{i}^{-}=t_{i}-\frac{r}{2 q} \pi_{i}\left(y^{*}\right)$. We have $t_{i}^{+}, t_{i}^{-} \in T x_{i}$ similarly as in the part $c /$. Using the monotonicity of T we obtain

$$
0<\left\langle x_{i}-x_{i-1}, t_{i}^{-}-t_{i-1}\right\rangle=\left(d_{i}-d_{i-1}\right)\left\langle h, t_{i}-t_{i-1}\right\rangle-
$$

- $\frac{r}{2 q}\left(d_{i}-d_{i-1}\right)\left\langle h, \pi_{i}\left(y^{*}\right)\right\rangle-\frac{r}{2 q}\left\langle F\left(d_{i}\right)-F\left(d_{i-1}\right), y^{*}\right\rangle \quad$ and hence $\left\langle Q_{F}\left(d_{i-1}, d_{i}\right), y^{*}\right\rangle \leqslant \frac{2 d}{r}\left\langle h, t_{i}-t_{i-1}\right\rangle-\left\langle h, \pi_{i}\left(y^{*}\right)\right\rangle$.
Analogous calculations with

$$
\begin{aligned}
& 0 \leqslant\left\langle x_{i}-x_{i-1}, t_{i}^{+}-t_{i-1}\right\rangle \\
& 0 \leqslant\left\langle x_{i+1}-x_{i}, t_{i+1}-t_{i}^{-}\right\rangle \\
& 0 \leqslant\left\langle x_{i+1}-x_{i}, t_{i+1}-t_{i}^{+}\right\rangle
\end{aligned}
$$

will afford the following inequalities:

$$
\begin{array}{r}
-\left\langle Q_{F}\left(d_{i-1}, d_{i}\right), y^{*}\right\rangle \leqslant \frac{2 q}{r}\left\langle h, t_{i}-t_{i-1}\right\rangle+\left\langle h, \pi_{i}\left(y^{*}\right)\right\rangle \\
-\left\langle Q_{F}\left(d_{i}, d_{i+1}\right), y^{*}\right\rangle \leqslant \frac{2 q}{r}\left\langle h, t_{i+1}-t_{i}\right\rangle+\left\langle h, \pi_{i}\left(y^{*}\right)\right\rangle \\
\left\langle Q_{F}\left(d_{i}, d_{i+1}\right), y^{*}\right\rangle \leq \frac{2 q}{r}\left\langle h, t_{i+1}-t_{i}\right\rangle-\left\langle h, \pi_{i}\left(y^{*}\right)\right\rangle .
\end{array}
$$

Then for any $y^{*} \in Y,\left|y^{*}\right|=1$
$\left|\left\langle Q_{F}\left(d_{i-1}, d_{i}\right)-Q_{F}\left(d_{i}, d_{i+1}\right), y^{*}\right\rangle\right| \leqslant \frac{2 a}{r}\left\langle h, t_{i+1}-t_{i-1}\right\rangle$
and hence by (6)

$$
\left|Q_{F}\left(d_{i-1}, d_{i}\right)-Q_{F}\left(d_{i}, d_{i+1}\right)\right| \leqslant \frac{2 g}{r}\left\langle h, t_{i+1}-t_{i-1}\right\rangle .
$$

Then

$\leqslant \frac{2 q}{r}\left(\left\|t_{s+1}\right\|+\left\|t_{s}\right\|+\left\|t_{1}\right\|+\left\|t_{0}\right\|\right)<\frac{4 g(r+2 m)}{r}$
because $\quad\left\|t_{j}\right\| \leqslant\left\|t_{j}-c_{x_{j}}\right\|+\left\|c_{x_{j}}\right\|<\frac{r}{2}+m$.
So we managed to estimate $\mathcal{K}(F, D)$ from above independently on the choice of w_{0} and h, and that is why φ has linearly finite convexity on M.
d/ φ is δ-convex on M if $T C \partial f$.
Let $T \subset \partial_{f}$ for some proper convex function on X. Without any loss of generality we can suppose $T=\partial f$. Now $T x$ is always convex Let $y^{\prime \prime} \in Y,\left|y^{\prime \prime}\right|=1$. For any $x \in B$ we shall denote w_{x} the projectimon of x on W in the direction of Z. Then $w_{x} \in M$ and $x=w_{x}+\varphi\left(w_{x}\right)$. A functional $t_{x}^{-}=t_{x}-\frac{r}{2 q} \pi_{x}\left(y^{*}\right)$ is an element of $T x$ because $\left\|\frac{r}{2 q} x_{x}\left({ }^{*}\right)\right\|<\frac{r}{2}$.
Let us denote

$$
\begin{aligned}
& g_{1}\left(w_{x}\right)=f(x)-\left\langle\varphi\left(w_{x}\right), t_{x}\right\rangle \\
& m_{1}\left(w_{x}\right)=f(x)-\left\langle\varphi\left(w_{x}\right), t_{x}^{-}\right\rangle .
\end{aligned}
$$

g_{1}, h_{1} are finite real functions on M.

Let $x_{0} \in B$ be fixed. We shall define two continuous affine functions on $W: \quad a_{x_{0}}(w)=f\left(x_{0}\right)+\left\langle w-x_{0}, t_{x_{0}}\right\rangle$

$$
b_{x_{0}}(w)=f\left(x_{0}\right)+\left\langle w-x_{0}, t_{x_{0}^{-}}^{-}\right\rangle
$$

For any $x \in B$ the functional $t_{x}-t_{x_{0}}, t_{x^{-}}^{-}-\bar{x}_{0}^{-}$are in V and $t_{x_{0}}, t_{x_{0}}^{-}$ are in $\partial f\left(x_{0}\right)$, hence

$$
\begin{aligned}
& a_{x_{0}}\left(w_{x}\right)=f\left(x_{0}\right)+\left\langle x-x_{0}, t_{x_{0}}\right\rangle-\left\langle\varphi\left(w_{x}\right), t_{x_{0}}\right\rangle \leqslant \\
& \leqslant f(x)-\left\langle\varphi\left(w_{x}\right), t_{x_{0}}\right\rangle=f(x)-\left\langle\varphi\left(w_{x}\right), t_{x}\right\rangle=g_{1}\left(w_{x}\right), \\
& a_{x_{0}}\left(w_{x_{0}}\right)=f\left(x_{0}\right)-\left\langle\varphi\left(w_{x_{0}}\right), t_{x_{0}}\right\rangle=g_{1}\left(w_{x_{0}}\right) . \\
& \text { Similarly } \quad b_{x_{0}}\left(w_{x}\right) \leqslant h_{1}\left(w_{x}\right), b_{x_{0}}\left(w_{x_{0}}\right)=h_{1}\left(w_{x_{0}}\right) .
\end{aligned}
$$

The functions $a_{x_{0}}, b_{x_{0}}$ are Lipchitz with the constant $m+r$ (since $\left.\left\|t_{x_{0}}^{-}\right\|<m+r, ~\left\|t_{x_{0}}\right\|<m+\frac{r}{2}<m+r\right)$.
The former properties enable to say that the functions

$$
\begin{aligned}
& g(w)=\sup \left\{a_{x_{0}}(w): x_{0} \in B\right\} \\
& h(w)=\sup \left\{b_{x_{0}}(w): x_{0} \in B\right\}
\end{aligned}
$$

are Lipchitz convex functions on W satisfying $g=g_{\mathcal{1}}, h=h_{1}$ on M and the function g does not depend on the chaise of y^{*}. For any $x \in B$

$$
h_{1}\left(w_{x}\right)-g_{1}\left(w_{x}\right)=\frac{r}{2 q}\left\langle\varphi\left(w_{x}\right), \pi_{x}\left(y^{k}\right)\right\rangle=\frac{r}{2 q}\left\langle\varphi\left(w_{x}\right), y^{*}\right\rangle
$$

Put $G(w)=\frac{2 g}{r} g(w), H_{y}(w)=\frac{2 q}{r} h(w)$.
We have proved that for any $y^{*} \in Y: y * \cdot=H^{W} G$ on M where $H_{y^{*}}, G$ are convex Lipschitz functions on W and G is independent on $\boldsymbol{y}^{\prime \prime}$. Hence $\boldsymbol{\varphi}$ is $\boldsymbol{\delta}^{\text {-convex }}$ on M regarding (6).

The theorems $3.5,3.6$ are proved. ///

The following proposition is a direct consequence of 3.5 , 3.6 and 2.13 .
3.10 Corollary: Let T be a monotone operator on a separable Banach space X and $n<d i m X$ be a positive integer. Then the set A_{n} can be covered by countably many Lipschitz surfaces of code-
mension n. If $T \subset \partial f$ for some proper convex function f then the set A_{n} can be covered by countably many DC-surfaces of codimension n.
If X^{*} is separable then the set A^{1} for a general monotone operator T can be covered by countably many LFC-curves.
If X is a separable Hilbert space then A^{n} can be covered by countably many Lipschitz surfaces of codimension n.
3.11 Observation: Let us observe that in case $X=R^{2}, 3.10$ ensures a countable covering of the set A_{1} of a general monotone operator T on R^{2} by LFC-curves which are simultaneously DC-hypersurfaces in this case. (Compare the problem 1.1.)

There are sometimes considered monotone operators on X * with values in X, e.g. an operator T_{-1} "inverse" to a monotone operator T on X :

$$
\begin{aligned}
& T_{-1}: X^{*} \rightarrow \exp X \\
& T_{-1}\left(x^{*}\right)=\left\{x \in X: X^{*} \in T x\right\}
\end{aligned}
$$

In this cases the following version of 3.6 is useful. (The proof is similar; instead of $\left\|x^{*}\right\|=\sup \left\{\left\langle x^{*}, x^{* *}\right\rangle:\left\|x^{*}\right\|=1\right\}$ use $\|x\|=$ $=\sup \left\{\left\langle x, x^{*}\right\rangle:\|x\|=1\right\}$ and change the roles of x and $\left.x^{*}.\right)$
3.12 Theorem: Let X be a separable Banach space, $T: X^{*} \rightarrow \exp X$ be a monotone operator and $n<\operatorname{dim} X$ be a positive integer. Then $A^{n} \in \sigma L F C_{n}$. If $T \subset \partial f$ for some proper convex function f on X^{*} then $A^{n} \in \subseteq D C_{n}$.

$$
\text { 4. Operators } V_{M}, F_{M}
$$

Let M be a nonvoid convex subset of a Banach space X. We shall state the definition of a vertex-operator $V_{M}: X \rightarrow \exp X *$ and a face-operator $F_{M}: X^{*} \rightarrow \exp X$ which are in close connection with singular points of M (cf. [8]).
4.1 Definition: Let

$$
\begin{aligned}
& \delta_{M}(x)=\left\{\begin{array}{cc}
0 & \text { if } x \in M \\
+\infty & \text { if } x \notin M ;
\end{array}\right. \\
& s_{M}\left(x^{*}\right)=\sup \left\{\left\langle m, x^{*}\right\rangle: m \in M\right\}, x^{*} \in X^{*}
\end{aligned}
$$

$\boldsymbol{\delta}_{M}$ is called indicator-function of M and is a proper convex furnation on X. The function s_{M} satisfies $s_{M}\left(t x^{*}\right)=t \cdot s_{M}\left(x^{*}\right), s_{M}\left(x^{*}+y^{*}\right) \leqslant$ $\leqslant s_{M}\left(x^{*}\right)+s_{M}\left(y^{*}\right)$ for any $t>0, x^{*}, y^{*} \in X^{*}$. Hence if dom s_{M} is not empty then s_{M} is a proper convex function on X^{*}.
4.2 Definition:

$$
\begin{aligned}
& v_{M}(x)= \begin{cases}\left\{y^{*} \in X^{*}:\left\langle x, y^{*}\right\rangle=s_{M}\left(y^{*}\right)\right\} & \text { if } x \in M, \\
\varnothing & \text { if } x \notin M ;\end{cases} \\
& F_{M}\left(x^{*}\right)=\left\{y \in M:\left\langle y, x^{*}\right\rangle=s_{M}\left(x^{*}\right)\right\}, \\
& x^{*} \in X^{*} .
\end{aligned}
$$

4.3 Note: a/ If $X=\boldsymbol{R}^{m}$ then $V_{M}(x)$ is the set of all normals of M at x and is called vertex of M at x. The set $F_{M}\left(x^{*}\right)$ forms a face of M perpendicular to x^{*}.
b/ It is obvious that the operators $\mathrm{V}_{\mathrm{M}}, \mathrm{F}_{\mathrm{M}}$ are monotone and their images $\mathrm{V}_{\mathrm{M}}(\mathrm{x}), \mathrm{F}_{\mathrm{M}}\left(\mathrm{X}^{*}\right)$ of each point are convex. Following simple lemma says a little more.
4.4 Lemma: $V_{M}=\partial \delta_{M}, F_{M} \subset \partial s_{M}$.

Proof: $\underline{a} /$ If $x \notin M$ then $V_{M}(x)=\varnothing=\partial \delta_{M}(x)$. Let $x \in M$. Then the following equivalences hold:
$x^{*} \in V_{M}(x) \Leftrightarrow V_{m} \in M \quad 0 \geqslant\left\langle m-x, x^{*}\right\rangle \Leftrightarrow \forall z \in X \quad \delta_{M}(z) \geqslant \delta_{M}(x)+$ $+\left\langle z-x, x^{*}\right\rangle \Leftrightarrow x^{*} \in \partial \delta_{M}(x)$.
b/ If $F_{M}\left(x^{*}\right)=\varnothing$ then $F_{M}\left(x^{*}\right)<\partial s_{M}\left(x^{*}\right)$ is evident. Let $x \in F_{M}\left(x^{*}\right)$. Then any $z^{*} \in X^{*}$ satisfies $s_{M}\left(z^{*}\right) \geqslant\langle x, z\rangle=s_{M}\left(x^{*}\right)+\left\langle x, z^{*}-x^{*}\right\rangle$ and hence $x \in \partial_{s_{M}}\left(x^{*}\right)$.
///
4.5 Theorem: If X is separable then $A_{n}\left(V_{M}\right) \in \Theta D C^{n}(X)$, $A^{n}\left(F_{M}\right) \in G D C_{n}\left(X^{*}\right)$.
If X^{*} is separable then $A^{n}\left(V_{M}\right) \in \sigma D C_{n}(X), A_{n}\left(F_{M}\right) \in \sigma D C^{n}\left(X^{*}\right)$. Proof:
The propositions of the theorem yield from 3.5, 3.6, 4.4.///
Using known extension theorems it is possible to obtain following new result.
4.6 Theorem: Let M be a nonempty convex subset of a separable Banach space X. Then:
/i/ The set of points $x \in M$ for which $V_{M}(x)$ is at least n-dimensional can be covered by countably many DC-surfaces of codimen-

```
sion n.
    /ii/ If in addition X* is separable then the set of all nor-
mals x* to M at faces FM
covered by countably many DC-surfaces of codimension n, and the
set of all points }x\inM\mathrm{ with a vertex }\mp@subsup{V}{M}{}(x)\mathrm{ containing a ball of
codimension 1 can be covered by countably many LFC-curves.
```

$$
\begin{aligned}
& \text { 5. Existenceof "bad" } \\
& \text { Lipschitz surfaces }
\end{aligned}
$$

We shall show that there exist Lipschitz surfaces of codimension n (dimension n, respectively) which cannct be a subset of $A_{n}\left(A^{n}\right.$, resp.) for any monotone operator T satisfying assumptions of the theorems 3.5, 3.6.

We shall use the local geometric term of a contingent of a set at a point (cf. [5]).
5.1 Definition: Let X be a Banach space, $x \in X, M \subset X$. Then we define $\operatorname{cont}(M, x)$ as the set of all nonzero vectors $v \in X$ which satisfy the following condition:
There exist sequences $\left\{\mathrm{x}_{\mathrm{n}}\right\} \subset \mathrm{X},\left\{\boldsymbol{\lambda}_{\mathrm{n}}\right\} \subset \mathbb{R}$ such that

$$
\begin{aligned}
\text { /i/ } & x_{n} \in M, \\
\text { /ii/ } & \lambda_{n}>0, \\
\text { /iii/ } & \lambda_{n} \rightarrow 0, \\
\text { /iv/ } & \frac{x_{n}-x}{\lambda_{n}}-v \| \rightarrow 0 .
\end{aligned}
$$

5.2 Construction: Let X be a Banach space, W, Z closed subspaces of X such that $X=W \oplus Z$ (i.e. X is a topological sum of W, Z). Let $h \in W, z_{o} \in Z$ be nonzero vectors and U be a topological complement of lin\{h\} in the space W. We shall define a Lipschitz mapping $F: W \rightarrow Z$ by the formula

```
F(th+u)=f(t)zor m
```

where f is a real Lipschitz function on R which has right derivative $f_{+}^{\prime}(t)$ at no rational point t. (Existence of f is guaranteed by a standard category argument.)

Denote $E=\{w+F(w): w \in W\}$. Let $q \in \mathbb{R}, u_{0} \in U, x=q h+u_{o}+f(q) z_{o} \in E$. It is easy to prove that cont(E, x) contains the set
$C=\left\{\alpha h+u+B_{z_{0}}+y: \alpha>0, u \in U, \alpha D_{+} f(q) \leqslant \beta \leqslant \alpha D^{+} f(q), y \in Y\right\}$, where $D_{+} P, D^{+} f$ denote the lower and upper Dini derivatives of f and Y is a topological complement of $\operatorname{lin}\left\{z_{0}\right\}$ in Z. Hence $\operatorname{int}(\operatorname{cont}(E, x)) \notin \varnothing$ if $x=q h+u_{0}+f(q) z_{0}$ with q rational. (7)
5.3 Lemma: Let X be a Banach space, W, Z be closed subspaces of X such that $X=W \oplus Z$. Let $W_{0} \in W$ and $G: W \rightarrow Z$ be a Lipschitz mapping having all one-sided directional derivatives at w_{0}. Denote

$$
\begin{aligned}
& M=\{w+G(w): w \in W\}, \\
& x=w_{0}+G\left(w_{o}\right), \\
& x_{W}: x \rightarrow W \text { a projection in the direction of } Z .
\end{aligned}
$$

Then, if $v_{1}, v_{2} \in \operatorname{cont}(M, x), x_{w}\left(v_{1}\right)=x_{w}\left(v_{2}\right)$ then $v_{1}=v_{2}$.
Proof: Let $v_{1}, v_{2} \in \operatorname{cont}(M, x), x_{W}\left(v_{1}\right)=x_{W}\left(v_{2}\right)=\nu$. The vector ν is nonzero because G is Lipschitz. Let $z_{1}, z_{2} \in Z$ be such that $v_{i}=\nu+z_{i} \quad(i=1,2)$. Let U_{y} be a topological complement of lin\{ $\left.\nu\right\}$ in $W, \pi_{v}: W \rightarrow \operatorname{lin}\{\nu\}$ a projection in the direction of U_{ν}, $x: W \rightarrow U_{\nu}$ a projetion in the direction of ν. By 5.1 we have

$$
\begin{aligned}
& x_{n, i}=w_{n, i}+G\left(w_{n, i}\right), \quad \lambda_{n, i}>0, \quad \lambda_{n, i} \longrightarrow 0, \\
& A_{n, i}=\left(\frac{x_{n, i}-x}{\lambda_{n, i}}-v_{i}\right) \xrightarrow[n]{ } 0
\end{aligned} \quad(i=1,2) .
$$

Let $a_{n, i} \in \mathbb{R}$ be such that $a_{n, i} \nu=\pi_{\nu}\left(w_{n, i}{ }^{-w_{0}}\right)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n, i}}{\lambda_{n, i}}=1 \tag{8}
\end{equation*}
$$

because

$$
\left\|\left(\frac{a_{n, i}}{\lambda_{n, i}}-1\right) \nu\right\|=\| \pi_{\nu}\left(\pi_{W}\left(A_{n, i}\right) \| \rightarrow 0 .\right.
$$

Without any loss of generality we can suppose $a_{n, i}>0(i=1,2$, $n=1,2, \ldots$). Then

$$
\begin{aligned}
& \left\|\frac{G\left(w_{0}+a_{n, i} \nu\right)-G\left(w_{0}\right)}{\lambda_{n, i}}-z_{i}\right\|=\| \frac{w_{n, i}+G\left(w_{n, i}\right)-w_{0}-G\left(w_{0}\right)}{\lambda_{n, i}}-v_{i}+ \\
& +\frac{\lambda_{n, i} \nu-a_{n, i} \nu}{\lambda_{n, i}}+\frac{a_{n, i} \nu-\left(w_{n, i}-w_{0}\right)}{\lambda_{n, i}}+\frac{G\left(w_{0}+a_{n, i} \nu\right)-G\left(N_{n, i}\right)}{\lambda_{n, i}} \| \leqslant
\end{aligned}
$$

$\leqslant\left|A_{n, i}\right|+\left|1-\frac{a_{n, i}}{\lambda_{n, i}}\right| \cdot|\nu|+(1+L)\left|\pi\left(\pi_{w}\left(A_{n, i}\right)\right)\right| \xrightarrow[n]{\longrightarrow} 0$,
where L is the constant from the Lipschitz property of G_{0}
Then (8) and the existence of a directional derivative $\delta_{+} G\left(w_{0}, y\right)$ imply $z_{1}=\delta_{+} G\left(w_{0}, \nu\right)=z_{2}$.
5.4 Theorem: Let X be a separable Banach space (X has separable duapl $\mathbf{X}^{\prime \prime}$, resp.), $\mathrm{n}<\operatorname{dim} \mathrm{X}$ be a positive integer. Then the set E from 5.2 with dim $Z=n$ (codim $Z=n$, resp.) is a Lipschitz surface of codimension n (of dimension n, resp.) which cannot satisfy $E \subset A_{n}\left(E \subset A^{n}\right.$, resp.) for any monotone operator T on X.
Proof: Let us assume the existence of T such that $E \subset A_{n}\left(F \subset A^{n}\right.$, resp.). Then (in the notation of 3.9) $E \in U B(r, m, V, q, 工)$. There exist $r_{0}, m_{0}, V_{0}, q_{0}, I_{0}$, a positive number δ and a point $x_{0} \in E$ such that the set $B_{0}=B\left(r_{0}, m_{0}, V_{0}, q_{0}, I_{0}\right)$ is dense in $E \cap \Omega\left(x_{0}, \delta\right)$, by the Baire Category Theorem.
Let $Z_{0}={ }^{\perp} V_{0}$, W_{0} be a topological complement of Z_{0} in X and π_{0} : $X \rightarrow W_{0}$ be a projection in the direction of Z_{0}. The set. $M_{0}=$ $=\pi_{0}\left(B_{0}\right)$ is dense in $S=\pi_{0}\left(E \cap \Omega\left(x_{0}, \delta\right)\right)$, which is an open set containing the point $\pi_{0}\left(x_{0}\right)$. By the part $d /$ of 3.9 , there exists a Lipschitz mapping $\varphi_{0}: M_{0} \rightarrow Z_{0}$ with a linearly finite convexity on M_{0} such that $B_{0}=\left\{w+\varphi_{0}(w): w \in M_{0}\right\}$.
φ_{0} has unique continous extension $\bar{\varphi}_{0}$ on \bar{M}_{0}. This extension is Lipschitz, has linearly finite convexity on \bar{M}_{0} and has by 2.4 all one-sided directional derivatives at each point $\pi_{0}(x) \in S$. $\operatorname{int}(\operatorname{cont}(E, x))=\varnothing$ for every $x \in E \cap \Omega\left(x_{0}, \delta\right)$ by 5.3.
But the construction of E implies that there exists a point $\tilde{x}=q h+u+f(q) z_{0} \in E \cap \Omega\left(x_{0}, \delta\right)$ with q rational. Then cont($\left.E, x\right)$ has nonempty interior by (7) and this is the needed contradiction.

References
[1] N.ARONSZAJN: Differentiability of Lipschitzian mappings between Banach spaces, Studia Nath. 57 (1976), 147-190.
[2] A.W.ROBERTS and D.E.VARBERG: Convex functions, 1973, New York, London, 1st edition.
[3] R.T.ROCKAFELLAR: Convex analysis, 1973, Moscow, 1st edition, Russian translation.
[4] R.T.ROCKAFELLAR: Characterization of the subdifferentials of convex functions, Pacific J. Nath. 17(1966), 497510.
[5] S.SAKS: Theory of the integral, 1937, Warszawa, 2nd edition.
[6] L.ZAJÍC̆EK: On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348.
[7] L.ZAJÍČEK: On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolinae 19 (1278), 179189.
[8] E.H.ZARANTONELLO: Dense single-valuedness of monotone operators, Israel J. Math. 15(1973), 158-156.

Matematicko-fyzikální fakulta
Universita Karlova
Sokolovská 83, 18600 Praha 8
Československo
(Oblatum 20.3. 1986)

