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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
27,3 (1986) 

IDEALS OF UNIFORMLY CONTINUOUS MAPPINGS 
O N PSEUDOMETRIC SPACES 
J. PELANT and J. VILlMOVSKY 

Abstract: The concepts of an ideal 0 of uniformly continu
ous mappings between pseudometric spaces and a uniform 3 -space 
are atudied. As examples various ideals of precompact mappings 
are investigated. Connections with point-finiteness and covering 
dimension are stated. 

Key words: Ideals of mappings, uniformities. 

Classification: 54E15 

0. Introduction. The method of ideals of mappings as a tool 

of investigating special classes of spaces is often used in func

tional analysis (cf. e.g. £63). We want to present here a parall

el theory in the ( n o n l i n e a r ) case of uniform spaces and show in 

easy examples that it may bring new and interesting methods . The 

main difference here is that we have no canonical generating fa

mily of pseudometrics for a general uniform space (like the fami

ly of all continuous seminorms in the case of a locally convex 

topological vector space ) . 

The first general part is devoted to definitions and funda

mental properties of an ideal 3 and a related class of 3 -spa

ces, so that the class of all .j -spaces forms an epireflective 

subclass of uniform spaces. The second part applies the theory 

to the ideals of precompact and equi-precompact mappings and 

shows among others how the methods of metric precompactness may 
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be used in very nonmetric and nonprecompact cases. 

We refer to [23 for basic definitions and results pertaining 

to uniform spaces. If (X,d), (Y,6) are pseudometric spaces, Cf 

a family of mappings defined between pseudometric spaces, 

CJ ((X,d) ,(Y, € )) or only C K d , 0 will denote all 3 -mappings 

from (X,d) into (Y,6). In particular, U(d,£) will stand for all 

uniformly,continuous ones. 

*• General part. Let d be a pseudometric on a set X, e^* 0. 

We shall denote by -^.(&) the cover of X consisting of all (open) 

balls with diameter o . Obviously, all such covers form a basis 

for the uniformity of the space (X,d). For a uniform space X, a 

family 3) of uniformly continuous pseudometrics on X will be cal

led a generating family for X, if every uniform cover of X may be 

refined by ^ ( E O for some d e 2) and & y 0. 

1.1. Definition. Suppose for every two pseudometric spaces 

6* , d we have a family of uniformly continuous mappings jf (€» ,d) 

having the following two properties: 

(1) If £> , & ,d, *>2 are pseudometrics, f € U( £>, £ ) , h e 3 (e' ,d) 

g&U(d,i|), then ghf €. 3 ( f> , ̂  ) 

( 2 ) If fh e CJ , f is an isometry, then h e 3 • 

A uniform space ,X will be called an C/-space, if X has a ge

nerating family £5 of pseudometrics such that for every d e 2> 

there is a uniformly continuous pseudometric ^ on X such that 

the identity id: 6—*• d e CJ (hence 6 is finer than d). 

The following characterization of £f-spaces seems to be very 

instructive omitting the unpleasant point with the existence of 

a "good" generating family: 
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1.2. Proposition. Suppose C/ is as in 1.1, X is an C7~space 

if and only if for every (M,p ) metric ANRU (absolute uniform 

neighborhood retract), feU(X,M), £• > 0 we can find d & uniformly 

continuous pseudometric on X, f &£CT(dg,p) such that jo(f,f&) = 

= sup (o(fx,fc x) ̂  e • 
,xe X s s 

Proof: Suppose X is an 3 -space, f:X—>M uniformly continu

ous, s > 0. There is dg e 9) such that f(9J_(€/)) is a uniform 

cover of (X,dJ). M is ANRU, hence using the Isbell's generalizati

on of Hahn's lemma (see [3]) we get f g € u , ( d ' p ) with p(f ,fg )-£ £• 

Take d* uniformly continuous on X such that id:dfc—•* d^ e 3, then 

%,:ds,—*4p e 3 and p(fg,f)--e,. 

Conversely, take any uniformly continuous pseudometric d on 

X, f:(X,d)—> ^ ( X ) the canonical isometric mapping. The latter 

space is ANRU, therefore for every n natural we may find d' uni

formly continuous pseudometric on X and f e ^(d'/o) such that 

jD(fn,f)-_ ~) ( p stands for the metric defined by the no rm) . Set 
2 d_ = (Df«. Then d_ is a uniformly continuous pseudometric on X. n J n n ' . ^ 

Moreover, if n? -, we have for d (x,y) £t-:d(x,y) = £o(fx,fy) £ 

£ ^)(fx,fnx) + p(f nx,f ny) + p(f ny,fy)-
; & » hence d is uniform

ly continuous on X endowed with the uniformity generated by the 

family {d ,n e u}. 

So the family _ZJ = -f d ;ncN, d a uniformly continuous pseu

dometric on X} forms a generating family for X. For every d 6 3) 

take __ = max(d_,d') and denote i, the identity H —>-d_ and i0 n n 7 n 1 J n n 2 

the identity "_n—>-dn. Then fRi2 € 3 , f_ is an isometry, f_ix = 

= f i2, hence, i, e J (cl_,d_), which proves that X is an Cf -space. 

1,5« Definition. The class Cf in 1.1 will be called an ide

al (of uniformly continuous mappings on pseudometric spaces) if 

all projections onto a oneppint space are in Cf. 
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3 Mill be called a projective ideal if it is an ideal and 

(P) If d,,d2 are pseudometrics on the same set, & an arbitrary 

pseudometric, then f tfr .)* ( C ,max(d» ,d2)) provided that f e CT ( 6T ,d,) 

and f € J (ef ,d 2). 

If Cf is an ideal, we shall denote by [ 03 the class of all 

3 -spaces. We turn to the permanence properties of the class [JJ : 

1.4. Proposition. (1) the class I CO is hereditary for eve

ry ideal 3 . 

(2) The class [ 33 is productive provided C/ is a projecti

ve ideal. 

Proof: Let Y be a subspace of an 3-space X, j the corres

ponding embedding, 3) a generating family of pseudometrics from 

the definition of an 3 -space. Set 3>' =4dj2;d e SD I , this is a 

generating family for Y and for every dj € 3)' we may find a 

uniformly continuous pseudometric 6 on X such that the identi

ty i: €> —>- d e 3 , hence, ij e tf ( 6*j ,d). ij is equal to the com-

2 ? 2 

position of the identity id: & j — > dj and j:dj —:» d, the lat

ter mapping is an isometry, hence id: £ j — > d j e Cl . 

(2) Take the family -i X_l , of 3-spaces and let 2J_ be the 

corresponding generating family for X guaranteed by the defini

tion of an J-space. For every finite set Ac 3 and -fd ;a e Ai a 

choice of members d* e SO we define a pseudometric on the product 

of all Xa's: dA(Axa\,€yan - ^ da(xa)ya). 

All pseudometrics of this type form evidently a generating 
family for the space TT x . Let us denote this family f£ . Take 

(XCJ a 

dA e 2) , if d is one of the components of d., take ef a uni

formly continuous pseudometric on X such that the identity from 

€V onto d_ is in 3 . Define &A(*xJ ,^yJ) = maxv ^ . ( L y J . 
a a H d a ^ g / L X a a a 
Now dA = max d._, and similarly f>K. Using (2) from 1.1 and A OL c A * ax A 
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projectivity of 3 we easily obtain that the identity id: 6f.—> 

-^d A - v. 

From the foregoing proposition we may see that for every 

projective ideal 3 the class £ 33 forms a hereditarily epireflec-

tive subclass of uniform spaces. The natural question arises what 

epireflections may be represented in this form. 

Let ( 5 t , r ) be a hereditary epireflection in uniform spaces, 

i.e. 31 is the class of spaces and r the corresponding epireflec

t o r . If fit, d are pseudometric, we define 3 ( 6 ,d) as the fami

ly of all f eU(6')d) such that there is a space X e 3t and map

pings fx£ U(X,cr), f2cU(er ,X) with 0f = f1f2, where 6 . d -* d is 

the natural projection onto the Hausdorffization d* of d . The fol

lowing proposition is very easy to v e r i f y . 

1 . 5 . P r o p o s i t i o n . 3 is a projective ideal and T3 1 c & • 

The converse inclusion is easily true for those epireflecti

ons which can be written as a hereditary epireflective hull of 

some family of metrizable spaces, but in general it fails to be 

true as the following examples.shows. 

1>6- Example. There is a hereditary epireflection ( J t , r ) 

such that H ] ̂  ^ , hence 31 cannot be represented by a pro

jective ideal. 

Proof: First observe that if f € 3 ( e ' j d ) , then its Haus

dorff ization f is in 3 (# , d ) , hence f factorizes through r# . 

From here it follows that if two epireflections r, s have the sa

me values on all metrizable spaces, then £3 3 = t3 3. 
i- » r s 

Recall that a uniform space is called distal if it has a 

basis for uniformity consisting of finite-dimensional covers on

ly. The class of all distal spaces is epireflective, let us de

note by 0 the corresponding reflector. (For details on distal 
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spaces we refer to [13.) Put & to be the class of all uniform 

spaces X such that U(M,X)c U(DM,X) for all metr izable spaces M. 

The class $, is hereditary epireflective (cf. 173), take for r 

the corresponding ep i ref lec to r. 

rM = DM for all metr izable M, hence f2 3 consists of dis

tal spaces only. Take any proxiraally discrete (i.e. all finite 

pa r t i t ions are uniform) non distal space. (Such spaces do exist, 

e.g. the proximally discrete co ref lec t ion of any non distal spa

ce, see also -23, V.5.) Obviously 1 € (R/ and not in t J 3 . 

2. Precompact and equ ip recompact mappings 

2.1. Definition. A uniformly continuous mapping f^X,^)—> 

—> (Y,d) between pseudometric spaces is called precompact, if 

there is e T 0 such that frB.(x,&)3 is precompact in (Y.d) for 

all x€X. (B(x,&) stands for the ball with center x and radius 

&.) 

It can be easily ver i f ied that precompact mappings form a 

p ro j ec t ive ideal. 

The following proposit ion follows immediately from Chapter 1. 

2.2. Proposit ion. The following propert ies of a unfform spa

ce X are equivalent: 

(1) X is an 3 -space, where 3 is the ideal of all precom

pact mappings. 

(2) There exists a g e n e r a t i n g family 2> of pseudomet r i c s 

f o r X such that f o r every d e 2) t he re is a un i fo rm cove r It of 

X such that f o r every U £ 16 , U is d -p recompact. 

(3) For every set A, feU(X, ia(A)), £ ^ 0 there are de 

uniformly continuous pseudometrics on X and f :(X d) *-% (A) 

precompact such that I. fg - f .1 & & . 
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(4) For every metric ANRU (M,j>), feU(X,M), ^ > 0 we can 

find a uniformly continuous pseudometric de on X and a precompact 

mapping f£ :(X,d)~-> M with f>(f ,fe) -6 V . 

Looking at the property (2) one can say that the property 

described in 2.2 is a direct generalization of uniform local pre-

compactness. It seems to be interesting that the class of all 

such spaces is much larger, as the following theorem shows. 

2-3- Theorem. A uniform space enjoys the property of 2.2 if 

and only if it has a basis of point-finite covers. 

Proof: Every point-finite uniform space has a basis of uni

formly locally finite covers. Let us denote ^ such a basis of 

X. The following lemma is a crucial point of the proof: 

Lemma ([43, Lemma 8 ) . For every point-finite uniform cover 

% of a uniform space X there is a star-refinement (P of ti such 

that if a set A intersects a finite number of 1i only, then A 

intersects a finite number of <P only . 

Starting with a cover Qi in £> and applying the lemma infi

nitely many times, we obtain a normal sequence -£16 \ of uniform 

covers with the property that for some uniform cover V of X, 

each V € 1A intersects only finitely many members of every OX, , 

Using Urysohn metrization lemnv we obtain a uniformly conti

nuous pseudometric d on X such that 11 ^^(—-r) ̂  ^n^i- All such 
n d «n n+i 

pseudometrics form a generating family for X having the property 

(2 ) of 2.2. 

Conversely suppose we have the generating family 3) for uni

formly continuous pseudometric as in 2.2. Take d e SD , we have 

a uniform cover (f of X such that all P e (P are d-precompact. 

We shall prove that the cover ^ ( D consisting of all d-open 
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balls with radius 1 has a point-finite uniform (in X) refinement. 

Take the cover <-^d(^), it has a refinement & (not necessarily 

uniform) such that $- *-1 iT and each 3V is uniformly discre-
tn. € o> n n ' 

te (in d). Take U a uniform cover of X such that %-* ^(-3.),, 

% % (P. 

For every F e$ take A(F) = St(F,10. Take xcX, we may find 

Px c (P such that St(x,U)cPx, hence if xcA(F), t h e n F n P x . - M . 

0* is uniformly discrete w.r.t. d, P is precompact in d, hence 

P may intersect only finitely many members from *$ . Therefore 

4A(F),F e £ 1 is point-finite, hence V is 6*-point-finite, so it 

may be refined by a point-finite uniform cover. Obviously V re

fines 9^(1). 

As a corollary we present at least one special result which 

shows how far is the nonlinear case from the linear one: 

2-*- Corollary. The identical operator of a separable Hil-

bert space is a uniform limit of a sequence of (nonlinear) pre

compact mappings. 

Proof: The proof follows immediately from 2.2 and 2.3 be

cause a separable Hilbert space is a point-finite ANRU. 

2-^- Definition. Let d be a pseudometric on a set X, U a 

family of subsets of X, i > 0. We shall denote 

M (tl,d) = sup sup{m£N;3x, x m€U such that 
e licit 1 m 

d(x£, x.) at €, for all i*j$ • 

A uniformly continuous mapping f:(X,6 )-—v(Y,d) between 

pseudometric spaces will be called equiprecompact, if there is 

<? > 0 such that Mg(f C ^ (oT )1 ,d) * 00 for all <b y 0. 

One can verify again that equi-precompact mappings form a 

projective ideal. Let us call the corresponding spaces (uniformly) 
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Schwartz. The name comes from a parallel concept in the theory of 

locally convex topological vector spaces. The class of all Schwartz 

spaces is closed under products and subspaces and we may formulate 

a similar characterization theorem to 2.2. 

It is shown in 183 that every finite-dimensional (hence eve

ry distal) space is Schwartz, also all ( l i n e a r l y ) Schwartz local

ly convex spaces with its natural uniformity are Schwartz. This 

together with the permanence properties illustrates that the 

class of Schwartz spaces is quite large. For all Schwartz spaces 

we may have the following complexity classification (see 183): 

<£(X) = U -i 9 :(0,1) -—*(0,oo); for every d e 3> there is a 
® i 

uniform cover U of X with lim —r—-r l^CU-d) finitel 

e _*. o 9^ & J x/ 

The union is taken over all generating families for X. 

This class of functions is well defined for all Schwartz spaces 

and C€(X)4S0 for many even infinite dimensional spaces. 

Let us add several results showing that ^(X) may serve as 

a dimension-like classification of X. 

1) X is O-dimensional if and only if *-£(X) contains a con

stant function. 

2) If the large uniform covering dimension is at most n, 

then t£~n belongs to <£(X) (see C83) 

3) If X is a nuclear locally convex space with its natural 

uniformity* then 2 belongs to ^ ( X ) (see [53). 

Problem: *s every (topologically) fine uniform space 

Schwartz? 
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