Commentationes Mathematicae Universitatis Caroline

Anna Kamińska; Wiesław Kure
 Weak uniform rotundity in Orlicz spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 4, 651--664
Persistent URL: http://dml.cz/dmlcz/106483

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 27.4 (1986)

WEAK UNIFORM ROTUNDITY IN ORLICZ SPACES A. KAMIŃSKA and W. KURC

Abstract

In the paper there are presented criteria- for weak uniform rotundity in the sense of Smulian [13] and in the sense of Cudia [2] of Orlicz spaces in the case of atomless measure. They enable us to prove that a number of g eometric properties (WUR, WLUR, WUR and WLUR in the sense of Cudia, URWC, URED, LUR, $H R, E, M L U R, R$) coincide for Orlicz spaces whenever reflexivity is assumed. Some results concerning these properties for general Banach spaces are also proved.

Key words: Banach spaces, Orlicz spaces, rotundity, relfexivity.

Classification: 46B20, 46B25

Introduction. In many applications of Orlicz spaces, $L_{\boldsymbol{\varphi}}$, some geometric conditions are usually imposed. They are, for example, rotundity (R), uniform rotundity (UR), Radon-Riesz property with the rotundity (HR), weak uniform rotundity in the sense of Smulian (WUR) and in the sense of Cudia (CWUR). It is of great importance to have expressed them in terms of the Young, function φ. Regarding the uniform rotundity (UR) and the rotundity we refer to [7] and [16] for results and further bibliography. For the local uniform rotundity the basic step was done in [8] in the case of atomless measure (cf. Theorem 0.1 below). Taking into account the well known implications concerning, the above mentioned properties as well as the weak local uniform rotundity (WLUR), midpoint local uniform rotundity (MLUR), uniform rotundity in every direction (URED), we get all these properties, except UR, WUR and CWUR, coincide for Orlicz spaces in the case of atomless measure. Moreover, they also coincide with the weak local uniform rotundity in the sense of Cudia and the SE property because LUR implies CWLUR and the SE property lies between CWLUR and R. Let us explain that the $S E$ property means that the unit sphere consists of only strongly exposed points (see [11]).

In this paper it is further proved that the stronger properties CWUR and WUR coincide for Orlicz spaces under consideration and that both of them imply the reflexivity of this space. As a consequence it follows that for Orlicz spaces, for atomless measure, all above mentioned properties, except UR, coincide when the reflexivity is assumed. We can add the E-spaces to these equivalences as well, since they are nothing but CWUR spaces.

We shall give definitions and notations that will be used in the paper. For an arbitrary Banach space X (real) with a norm il. ll let B_{X} denote the unit ball and let S_{X} denote its surface. A Banach space X is said to be WUR if for every $0 \neq x^{*}, x^{*} \in X^{*}$, and $\varepsilon>0$ there exists $\sigma^{\sigma}\left(x^{*}, \varepsilon\right)>0$ such that if $x, y \in S_{X}$ and $x^{*}(x-y) \geq \varepsilon$ then $\left\|\frac{x+y}{2}\right\| \leq 1-\delta\left(x^{*}, \varepsilon\right)$ (cf. [14], [12]). We say that X is CWUR if for every $x^{*} \in S_{X^{*}}, \varepsilon>0$ there exists $\delta\left(x^{*}, \varepsilon\right)>0$ such that if $\vec{x}, y \in S_{x}$ and $\|x-y\| \geq \varepsilon$ then $\left|x *\left(\frac{x+y}{2}\right)\right| \leq$ $\leq 1-\delta\left(x_{*}^{*}, \varepsilon\right)([2])$. In the above definitions, S_{x} can be equivalently replaced by $B_{X} . X$ is said to have the Radon-Riesz property (H) if for each $x \in X$ and $\left(x_{n}\right) \subset X$ such that $\left\|x_{n}\right\|\|x\|$ and $x_{n} \rightarrow x$ weakly, we have $x_{n} \rightarrow x$ in the norm. If moreover x is rotund then it is called an HR space or a space with the HR-property. Following [4], a Banach space X is called an E-space (we will also say that X has the E-property) if for each $x * \in X$ and each sequence (x_{n}) in $S_{x},\left\|x_{n}-x_{m}\right\| \rightarrow 0$ for $n, m \rightarrow+\infty$, whenever $x *\left(x_{n}\right) \longrightarrow\|x *\|$. For definitions of other geometric properties we refer to [13], [14], [2], [15], [3].

Let (T, Σ, μ) be a positive measure space with atomless measure μ. The Orlicz space L_{φ} is the subspace of all measurable functions $x: T \rightarrow R$ (R - real line) such that $I_{\varphi}(\lambda x)=$ $=\int_{T} \varphi(\lambda|x(t)|) d \mu<+\infty$ for some $\lambda>0$ depending on x. Here $\varphi: R_{+} \longrightarrow[0,+\infty]$ is a Young's function, i.e. $\varphi(0)=0, \varphi$ is convex, left-continuous and not identical to infinity away from zero. The space L_{φ} equipped with the Luxemburg norm $\|x\|_{\varphi}=\inf \{\lambda>0$: $\left.: I_{\varphi}(x / \lambda) \leqslant 1\right\}$ is a Banach space. If $A \in \Sigma$. then $L_{\varphi}(A)$ denotes the set $\left\{x \chi_{A}: x \in L_{\varphi}\right\}$. Let $\psi(v)=\sup _{u \geq 0}(u \cdot v-\varphi(u))$ for $v \geq 0$. This socalled complementary function to φ is again a Young's function and its complementary function is φ. If φ and ψ take only finite values we have the following relations

$$
\begin{equation*}
(u-v) p(v) \in \varphi(u) \leqslant u p(u) \tag{0.1}
\end{equation*}
$$

for all $u, v \in R_{+}$, where $u \geq v$, and

$$
\begin{equation*}
u p(u)=\varphi(u)+\psi(p(u)) \tag{0.2}
\end{equation*}
$$

$v q(v)=\varphi(q(v))+\psi(v)$
for all $u, v \in R_{+}$, where p and q are left derivatives of φ and ψ, respectively (we put $p(0)=q(0)=0$). In the above expressions we can replace the left derivatives p and q by the right derivatives \bar{p} and \bar{q}. Let us note that $q(v)=\inf \left\{s \in R_{+}: p(s) \geq v\right\}$. Recall that a Young's function φ is said to satisfy a Δ_{2}-condition for all arguments (for large arguments) if φ takes only finite values and there is a constant $K>0$ (resp. there are constants K, . $u_{0}>0$) such that $\varphi(2 u) \leqslant K \varphi(u)$ for all $u \in R_{+}$(for all $u \geq u_{0}$). We will say simply in the following that φ satisfies a Δ_{2}-condition if (i) φ fulfils the Δ_{2}-condition for large arguments and $\mu(T)=+\infty$ or (ii) φ fulfils the Δ_{2}-condition for all arguments and $\mu(T)<+\infty$. Let us also note that if ψ_{1} is a conjugate function to a Young's function φ_{1}, then $L_{\varphi} \subset L_{\varphi_{1}}$ implies $L_{\psi_{1}} \subset$ $\subset \mathrm{L}_{\boldsymbol{\psi}}$.

Let us introduce the following definition. We will say that the modular I_{φ} is weakly uniformly rotund (WUR) if for every $x^{*} \in L_{\varphi}^{*} \quad x^{*} \neq 0$, and $\varepsilon>0$ there exists $\delta^{\sim}\left(x^{*}, \varepsilon\right)>0$ such that if $I_{\varphi}(x)=I_{\varphi}(y)=1$ and $x^{*}(x-y) \geq \varepsilon$ then $I_{\varphi}\left(\frac{x+y}{2}\right) \leq 1-\delta(x *, \varepsilon)$.

The following known result will be needed.
0.1. Theorem ([8],[9]). The following conditions are equivalent:
(i) L_{φ} is LUR.
(ii) L_{φ} is URED.
(iii) L_{φ} is R.
(iv) The function φ is strictly convex and satisfies the Δ_{2}-condition.
0.2. Theorem. The Orlicz space L_{φ} is reflexive if and only if both φ and its complementary function ψ satisfy the Δ_{2}-condition.
0.3. Lemma. If $\varphi: R_{+} \longrightarrow R_{+}$is strictly convex on an interval
$[0, a]$, then for each $\varepsilon>0, d_{1}, d_{2} \in(0, a]\left(d_{1}<d_{2}\right)$ there is $p \in(0,1)$ such that

$$
\varphi\left(\left|\frac{u+v}{2}\right|\right) \leqslant(1-p) \frac{\varphi(|u|)+\varphi(|v|)}{2}
$$

whenever $|u-v| \geq \varepsilon(|u| \vee|v|)$ and $|u| v|v| \in\left[d_{1}, d_{2}\right]$.

1. Weak uniform rotundity in the sense of Cudia (CWUR). The following two theorems are known (cf. [2] pp. 296 and 310) in a somewhat implicit form. We complete them with direct proofs.
1.1. Theorem. A Banach space is CWUR if and only if it is an E-space.

Proof. Let a Banach space X be CWUR and let us assume for a moment that x is not an E-space. Then $x^{*}\left(x_{n}\right) \rightarrow 1$ and $\| x_{n_{i}}-$ $-x_{n_{j}} \| \geq$ a for some $\cdot x^{*} \in S_{X^{*}}$, a sequence $\left(x_{n}\right) \subset S_{X}$, a>0 and a subsequence (n_{i}). From the definition of CWUR we get a contradiction. Conversely, let now X be an E-space which is not CWUR. Then there exist $x^{*} \in S_{X}, \varepsilon>0$ and sequences $\left(x_{n}\right),\left(y_{n}\right)$ in S_{X} such that $x^{*}\left(\frac{x_{n}+y_{n}}{2}\right) \longrightarrow 1$ and $\left\|x_{n}-y_{n}\right\| \geq \varepsilon$. Since $x^{*}\left(\frac{x_{n}+y_{n}}{2}\right) \leqslant \max$. $\left\{x^{*}\left(x_{n}\right)\right.$, $\left.x^{*}\left(y_{n}^{\cdot}\right)\right\} \leqslant 1$, then b.y passing to a subsequence we get $x^{*}\left(x_{n_{i}}\right) \rightarrow 1$ and $x^{*}\left(y_{n_{i}}\right) \rightarrow 1$. Hence both these sequences tend to some x and y, respectively, in S_{X} since X is complete. On the other hand $\left|x^{*}\left(\frac{x_{n}+y_{n}}{2}\right)\right| \leqslant\left\|\frac{x_{n}+y_{n}}{2}\right\| \leqslant 1$. Therefore $\frac{x+y}{2} \in S_{x}$. We prove that $x=y$ by defining a sequence $\left(z_{n}\right)$ as follows. For n odd we put $z_{n}=\left(1-\frac{1}{2 n}\right) x+\frac{1}{2 n} y$ and for n even we put $z_{n}=\left(1-\frac{1}{2 n}\right) y+\frac{1}{2 n} x$. We have $\left\|z_{n}\right\| \not \mathbb{X}_{1}$ and $x^{*}\left(z_{n}\right)=1$. Since X is an E-space we conclude that $\left\|z_{n}-z_{m}\right\| \longrightarrow 0$ when $n, m \rightarrow+\infty$. On the other hand, $\left\|z_{n}-z_{n+1}\right\|=$ $=\left(1-\frac{1}{n}\right)\|x-y\|-a$ contradiction if one assumes that $x \neq y$. Thus $x=y$. Next, we have $\left\|x_{n_{i}}-y_{n_{i}}\right\| \leq\left\|x_{n_{i}}-x\right\|+\left\|x-y_{n_{i}}\right\|$ and $\left\|x_{n}-y_{n}\right\| \geq \varepsilon$. This contradiction ends the proof.
1.2. Theorem. If a Banach space is weakly uniformly rotund in the sense of Cudia (CWUR) then X is reflexive.

Proof. We shall prove that each functional $X^{*} \in X^{*}$ achieves
its norm on S_{X}. Recall that by James theorem this is equivalent to the reflexivity of X. For any $x^{*} E S_{X *}$ let $\left(x_{n}\right) \subset S_{X}$ be such that $1=\underset{n \rightarrow+\infty}{\lim } x^{*}\left(x_{n}\right)$. First, suppose $\left(x_{n}\right)$ is not a Cauchy sequence. Then $\left\|x_{n_{i}}-x_{m_{i}}\right\| \geq$ a for some subsequences $\left(n_{i}\right),\left(m_{i}\right)$ and some $a>0$. Since x is CWUR there exists $\delta>0$ such that $\left|x *\left(\frac{x_{n_{i}}+x_{m_{i}}}{2}\right)\right| \leq 1-\delta$ for all i: The left-hand side tends to 1 , so we get a contradiction. Thus (x_{n}) must be a Cauchy sequence, so $x_{n} \rightarrow x$ for some $x \in S_{X}$. It follows that $1=x^{*}(x)$, as desired.

- 1.3. Theorem. If X is CWUR (equivalently, X is an E-space), then it is a HR-space. If X is reflexive, the converse is also true.

Proof. That CWUR implies $H R$ is an easy oonsequence of the definitions. Let now X be an $H R$-space and assume for the contrary that there exist $x^{*} \in S_{X^{*}}, . \varepsilon>0$ and sequences $\left(x_{n}\right),\left(y_{n}\right)$ in S_{x} such that $\left\|x_{n}-y_{n}\right\| \geq \varepsilon$ and $1-\frac{1}{n} \leqslant\left|x^{*}\left(\frac{x_{n}+y_{n}}{2}\right)\right| \leq 1$. Since x is reflexive, B_{X} is weakly sequentially compact. So, there is a subsequence $\left(n_{k}\right)$ and $x, y \in B_{X}$ such that $x_{n_{k}} \rightarrow x$ and $y_{n_{k}} \rightarrow y$ weak1y. Therefore $1=\left|x^{*}\left(\frac{x+y}{2}\right)\right| \leq\left\|\frac{x+y}{2}\right\| \leq \frac{\|x\|+\|y\|}{2} \leq 1$, and hence $x=y$ since X is rotund. On the other hand, the Radon-Riesz property H implies that $\left\|x_{n_{k}}-y_{n_{k}}\right\| \rightarrow 0$ while $\left\|x_{n}-y_{n}\right\| \geq \varepsilon$. Ihis contradiction finishes the proof.
1.4. Theorem. The Orlicz space L_{φ} is weakly uniformly rotund in the sense of Cudia if and only if it is rotund and reflexive.

Proof. If L_{φ} is CWUR then itis rotund. It is a simple consequence of the definitions. From Theorem 1.2 it follows that L_{φ} is reflexive. On the other hand if L_{φ} is rotund then it is LUR, by Theorem 0.1. So it has the property $H R$ ([13]). If L_{φ} is also reflexive, then it is CWUR, by Theorem 1.3.
2. Weak uniform rotundity (WUR). For the proof of the main theorem in this section, a number of auxiliary facts is needed.
2.1.Lemma. If an arbitrary Banach space X contains an isomorphic copy of l_{1} then X is not WUR.

Proof. Let $X_{0} \subset X$ be isomorphic to l_{1}. The space X_{0} with the induced norm cannot be uniformly rotund because it is not refilerive. So there exist sequences $\left(x_{n}\right),\left(y_{n}\right)$ in X_{0} and $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|x_{n}\right\|=\left\|y_{n}\right\|=1, \quad\left\|x_{n}-y_{n}\right\| \geq \varepsilon,\left\|\frac{x_{n}+y_{n}}{2}\right\| \rightarrow 1 \tag{2.1}
\end{equation*}
$$

In the space 1_{1}, weak and strong convergences are equivalent. So x_{0} has this property. Since $\left\|x_{n}-y_{n}\right\| \geq \varepsilon$, there exists $x^{*} \in X_{0}^{*}$ such that $x^{*}\left(x_{n}-y_{n}\right) \rightarrow 0$. We extend x^{*} to the whole of x and find an increasing sequence $\left(n_{k}\right)$ if natural numbers and a constant $\varepsilon_{1}>0$ such that $x^{*}\left(x_{n_{k}}-y n_{k}\right) \geq \varepsilon_{1}$, taking the functional x^{*} with the opposite sign if necessary. Hence and by 2.1 it is seen that X is not weakly uniformly rotund.
2.2. Lemma. The space $L_{1}(T)$ contains an isometric copy of l_{1}. We omit the simple proof. Let us note only that we can produce a sequence of pairwise disjoint sets of finite and positive measure since the measure is atomless.

The proof of the following lemma is similar to the proof of Lemma 1 in [7] and is therefore also omitted.
2.3. Lemma. The space L_{φ} is WUR if and only if the modular I_{φ} is WUR and φ satisfies the Δ_{2}-condition.
2.4. Lemma. If the complementary function to φ satisfies the Δ_{2}-condition, then $\frac{\varphi(u)}{u} \rightarrow+\infty$ if $u \rightarrow+\infty$.

Proof. Since the function $\frac{\varphi(u)}{u}$ is nondecreasing for $u>0$, we can replace in the thesis "limp" by "sup". Let $\sup _{\mu} \frac{\varphi(u)}{u} \leqslant$ $\leqslant a<+\infty$. Then $\psi(v)=\sup _{\mu \geqslant 0}(u v-\varphi(u))=+\infty$ - contradiction with the Δ_{2}-condition assumed for ψ
2.5. Lemma. If $\mu(T)<+\infty$ and $\frac{\varphi(u)}{u} \rightarrow+\infty$ when $u \rightarrow+\infty$, for $\varphi: R_{+} \longrightarrow R_{+}$, then for each $\varepsilon>0$ there exist constants $a, b>0$ such that if $\int_{T}|x(t)-y(t)| d \mu \geq \varepsilon$ and $I_{\varphi}(x)=I_{\varphi}(y)=1$, then $\int_{A}|x(t)-y(t)| d \mu \geq \frac{\varepsilon}{4}$, where $A=\{t \in T: a \leq|x(t)| v|y(t)| \leq b\}$.

Proof. We have $\varphi(u) \geq n \cdot u$ for all $u \geq u_{n}, n \in N$, and some sequince $\left(u_{n}\right)$. Let m be a natural number such that $\varepsilon-\frac{6}{m} \geq \frac{\varepsilon}{2}$. Let us put $A_{1}=\left\{t \in T:|x(t)| \leq u_{m}\right\}, A_{2}=\left\{t \in T:|y(t)| \leq u_{m}\right\}, A_{3}=\{t \in T$:
$\left.: \frac{\varepsilon}{8 \mu(T)} \leq|X(t)| v|y(t)|\right\}$. Then $\int_{T \backslash A_{1}}|x(t)| d \mu \leq$
$\leq \frac{1}{m} \int_{T \backslash A_{1}} \varphi(|x(t)|) d \mu \leqslant \frac{1}{m}$ and $\int_{-656_{-}}|y(t)| d \mu \leqslant \frac{1}{m}$. Moreover, we
have

$$
\begin{aligned}
\left.\int_{T \backslash A_{1}} \mid y \in t\right) \mid d \mu= & \int_{\left(T \backslash A_{\mu}\right) \cap\left(T \backslash A_{2}\right)}\left|y\left(t^{\prime}\right)\right| d \mu+\int_{A_{2} \backslash A_{1}}|y(t)| d \mu \leq \\
& \int_{T \backslash A_{2}}|y(t)| d \mu+\int_{T \backslash A_{1}}|x(t)| d \mu \leq \frac{2}{m},
\end{aligned}
$$

by the definition of the sets A_{1} and A_{2}. Similarly,
$\int_{T \backslash A_{2}}|x(t)| d \mu \leqslant \frac{2}{m}$. Hence

$$
\begin{aligned}
& T V \int_{1} n A_{2} \\
& \|(t)-y(t) \mid d \mu \leqslant \int_{T, A_{1}}|x(t)| d \mu+\int_{T \backslash A_{1}}|y(t)| d \mu+ \\
&+\int_{T \backslash A_{2}}|x(t)| d \mu+\int_{T \backslash A_{2}}|y(t)| d \mu \leq \frac{6}{\frac{1}{n}} .
\end{aligned}
$$

Since we have $\int_{T}|x(t)-y(t)| d \mu \geq \varepsilon$ by assumption, so

$$
\int_{1} \cap A_{2}|x(t)-y(t)| d \mu \geq \varepsilon-\frac{6}{m} \geq \frac{\varepsilon}{2} .
$$

If $t \notin A_{3}$ then $|x(t)| \leqslant \frac{\varepsilon}{8 \mu(T)}$ and $|y(t)| \leqslant \frac{\varepsilon}{8 \mu(T)}$. Then we get

$$
\left(\int_{1} \cap A_{2}\right) \backslash A_{3}|x(t)-y(t)| d \mu \leq \frac{\varepsilon}{8 \mu(T)} \mu\left(T \backslash A_{3}\right)+\frac{\varepsilon}{8 \mu(T)} \mu\left(T \backslash A_{3}\right) \leq \frac{\varepsilon}{4} .
$$

By putting $A=A_{1} \cap A_{2} \cap A_{3}$ and $a=\frac{\varepsilon}{8 \mu(T)}, b=u_{m}$, we get the desired inequality $\int_{A}|x(t)-y(t)| d \mu \geq \frac{\varepsilon}{2}-\frac{\varepsilon}{4}=\frac{\varepsilon}{4}$.
2.6. Lemma. Let φ satisfy a Δ_{2}-condition and let $B \in \Sigma$, $\varepsilon>0$ and $p \in(0,1)$ be such that
$I_{\varphi}\left((x-y) x_{B}\right) \geq \varepsilon$ and $I_{\varphi}\left(\frac{x+y}{2}\right) \leq 1-\frac{p}{2}\left(I_{\varphi}\left(x x_{B}\right)+I_{\varphi}\left(y x_{B}\right)\right)$
where x, y are arbitrary measurable functions with $I_{\varphi}(x)=I_{\varphi}(y)=1$.
Then there exists a constant $q \in(0,1)$ (more precisely $q=\frac{p}{2 k}$) such that $I_{\varphi}\left(\frac{x+y}{2}\right) \leq 1-q$.

Proof. By the Δ_{2}-condition there exist constants $c, k>0$
such that $\varphi(2 c) \mu(T)<\frac{\varepsilon}{2}$ (we put $0 \cdot \infty=0$ if. $c=0$ and $\left.\mu(T)=+\infty\right)$ and $\varphi(2 u) \leqslant k \varphi(u)+\varphi(2 c)$ for each $u \in R_{+}$. Then

$$
\begin{aligned}
\varepsilon & \leq I_{\varphi}\left((x-y) x_{B}\right) \leq \frac{k}{2}\left(I_{\varphi}\left(x x_{B}\right)+I_{\varphi}\left(y x_{B}\right)\right)+\varphi(2 c) \mu(T) \leq \\
& \leq \frac{k}{2}\left(I_{\varphi}\left(x x_{B}\right)+I_{\varphi}\left(y x_{B}\right)\right)+\frac{\varepsilon}{2} .
\end{aligned}
$$

Hence and by the assumption of our lemma we get $I_{\varphi}\left(\frac{x+y}{2}\right) \leq 1=\frac{p}{2 k}$.
2.7. Lemma. If ψ takes only finite values and does not
fulfil a Δ_{2}-condition, then there exist sequences $\left(u_{n}\right) \subset(0,+\infty)$, $\left(b_{n}\right) \subset(0,1)$ such that $b_{n} \downarrow 0$ and

$$
\begin{equation*}
\psi\left(\left(1+b_{n}\right) u_{n}\right)>2^{n} \psi\left(u_{n}\right) \tag{2.2}
\end{equation*}
$$

for each $n \in N$ and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\varphi\left(l a_{n}\right)}{\varphi\left(a_{n}\right)}=1 \tag{2.3}
\end{equation*}
$$

for each $l \in(0,1)$, where $a_{n}=q\left(\left(1+b_{n}\right) u_{n}\right)$. If ψ does not satisfy a Δ_{2}-condition for large arguments, then $u_{n} \uparrow+\infty$.

Proof. For arbitrary sequences $\left(b_{m}\right),\left(c_{m}^{\prime}\right) \subset(0,+\infty)$ such that $\mathrm{b}_{\mathrm{m}} \downarrow 0, \mathrm{c}_{\mathrm{m}} \downarrow 0$ and $\mathrm{c}_{\mathrm{m}}<\mathrm{b}_{\mathrm{m}}$ there exists a sequence $\left(\mathrm{u}_{\mathrm{m}}\right) \subset(0,+\infty)$ such that

$$
\psi\left(\left(1+b_{m}\right) u_{m}\right)>2^{m} \psi\left(\left(1+c_{m}\right) u_{m}\right) \text { because } \psi \text { does not }
$$

fulfil the Δ_{2}-condition. It is evident that we may choose (u_{m}) in such a.way that $u_{m} \uparrow+\infty$ whenever ψ does not satisfy a Δ_{2}-condition for large arguments. By applying inequalities (0.1) we ob$\operatorname{tain} q\left(\left(1+b_{m}\right) u_{m}\right)\left(1+b_{m}\right) u_{m}>2^{m} q\left(u_{m}\right) c_{m} u_{m}$. Now, putting $c_{m}=\frac{1}{m}$, $b_{m}=\frac{2}{m}$ we have

$$
\begin{equation*}
q\left(\left(1+b_{m}\right) u_{m}\right)>d_{m} q\left(u_{m}\right) \tag{2.4}
\end{equation*}
$$

where $d_{m}=\frac{2^{m}}{m+2} \rightarrow+\infty$ as $m \longrightarrow+\infty$. Let us note that even if $q\left(u_{m}\right)=0$, we always have $q\left(\left(1+b_{m}\right) u_{m}\right)>0$. Suppose, there exist $1, r \in(0,1)$ such that $l q\left(\left(1+b_{m}\right) u_{m}\right) \leqslant q\left(r u_{m}\right)$. However, in virtue of (2.4) we have

$$
1 d_{m} \leqslant \frac{1 q\left(\left(1+b_{m}\right) u_{m}\right)}{q\left(u_{m}\right)} \leqslant \frac{q\left(r u_{m}\right)}{q\left(u_{m}\right)} \leqslant 1
$$

if $q\left(u_{m}\right)>0$ or $q\left(\left(1+b_{m}\right) u_{m}\right)=0$ if $q\left(u_{m}\right)=0$. So we get a contradiction, because $d_{m} \rightarrow+\infty$ and $q\left(\left(1+b_{m}\right) u_{m}\right)>0$. Then, for sequences $\left(r_{n}\right),\left(l_{n}\right) \subset(0,1)$ such that $r_{n} \uparrow 1,1_{n} \downarrow 0$ there is a subsequence $\left(m_{n}\right)$ of natural numbers such that

$$
l_{n} q\left(\left(1+b_{m_{n}}\right) u_{m_{n}}\right)>q\left(r_{n} u_{m_{n}}\right) .
$$

By putting $a_{n}=q\left(\left(1+b_{m_{n}}\right) u_{m_{n}}\right)$ and applying the inequalities $p(q(u)) \leqslant u, \bar{p}(q(u)) \geq u$ we have

$$
\begin{equation*}
\frac{\bar{p}\left(l_{n} a_{n}\right)}{p\left(a_{n}\right)} \geq \frac{\bar{p}\left(q\left(r_{n} u_{m_{r}}\right)\right.}{\left(1+b_{m_{n}}\right) u_{m_{n}}}, \geq \frac{r_{n}}{1+b_{m_{n}}} \rightarrow 1 \tag{2.5}
\end{equation*}
$$

as $n \rightarrow+\infty$: Let $l \in(0,1)$ be arbitrary. We have

$$
\frac{\varphi\left(1 a_{n}\right)}{\varphi\left(a_{n}\right)} \geq \frac{\left(1-1_{n}\right) a_{n} \bar{p}\left(1_{n} a_{n}\right)}{a_{n} p\left(a_{n}\right)} \rightarrow 1
$$

by (2.5) and inequalities (0.1). Putting $\left(u_{n}\right)=\left(u_{m_{n}}\right)$, we proved the lemma.
2.8. Theorem. The Orlicz space L_{ρ} is weakly uniformly rotund if and only if it is rotund and reflexive.

Proof. Let L_{φ} be rotund and reflexive. From [16] (cf.also Theorem 0.1) it follows that φ is strictly convex and satisfies the Δ_{2}-condition. From. Theorem 0.2 we have moreover that the conjugate function $\boldsymbol{\psi}$ satisfies the Δ_{2}-condition. Hence the dual space L_{φ}^{*} is isometrically isomorphic to L_{ψ} with the Orlicz norm and therefore it is isomorphic to L_{ψ}. More precisely, for each. $x^{*} \in L_{\varphi}^{*}$ there exists $z \in L_{\psi}$ such that $x^{*}(x)=\int_{T} x(t) z(t) d \mu$ for all $x \in L_{g}$ and the dual norm is equivalent to $\|\cdot\|_{\psi^{*}}([10],[12])$. Now, let $x, y \in L_{\varphi \rho}$ be such that $I_{\varphi}(x)=I_{\varphi}(y)=1$ and $x *(x-y) \geq \varepsilon$ for some $\varepsilon \in(0,1)$ and $x^{*} \in L_{\varphi}^{*}$. So, we have $\int_{T}(x(t)-y(t)) z(t) d \mu \geq \varepsilon$ for some $z \in L_{\psi}$. We know that the set \mathcal{B} of all bounded functions with supports being of finite measure is dense in L_{ψ}, because ψ satisfies the Δ_{2}-condition' ([10],[12]). Hence, and in virtue of $\|x-y\|_{y} \leqslant 2$ one can choose $z_{0} \in \mathcal{B}$ such that
$\left|\int_{T}(x(t)-y(t)) z_{0}(t) d \mu\right| \geq \frac{\varepsilon}{2}$ if $x^{*}(x-y) \geq \varepsilon$. Let $z_{0}(t)=z_{0}(t) \chi_{T_{0}}$. and $\left|z_{0}(t)\right| \leqslant M$ where T_{0} is some set of finite measure and $M>1$. Therefore we have $\int_{T_{0}}|x(t)-y(t)| d \mu \geq \frac{\varepsilon}{2 M}$. Applying Lemma 2.5 with T_{0} and $\frac{\varepsilon}{M}$ in place of T and ε, there exist constants a, b such that

$$
\begin{equation*}
\int_{A}|x(t)-y(t)| d \mu \geq \frac{\varepsilon}{8 M} \tag{2.6}
\end{equation*}
$$

where' $A=\left\{t \in T_{0}: a \leq|x(t)| \vee|y(t)| \leq b\right\}$.
For $\alpha=\left\|\boldsymbol{x}_{T_{0}}\right\|_{\gamma} 8 M / \varepsilon$ we find constants $K, c \geq 0$ such that (2.7)

$$
\varphi(\alpha u) \leq K \varphi(u)+\varphi(\alpha c)
$$

and $\varphi(\propto c) \mu(T)<\frac{1}{2}$, because φ fulfils the Δ_{2}-condition (recall that $0 \cdot+\infty=0$ if $c=0$ and $\mu(T)=+\infty)$.

Now let $B=f t \in A:|x(t)-y(t)| \geq(|x(t)| v|y(t)|) \cdot \frac{\varepsilon}{4 M K}$. Since $a \leqslant|x(t)| \vee|y(t)| \leqslant b$ for $t \in A$ and φ is strictly convex on R, so

$$
\varphi\left(\left|\frac{x(t)+y(t)}{2}\right|\right) \leqslant(1-p) \quad \varphi(|x(t)|)+\varphi(|y(t)|)
$$

for each $t \in B$, for some $p=p(\varepsilon, a, b)=p(\varepsilon, z) \in(0,1)$ by Lemma 0.3. Hence and by the assumption $I_{\varphi}(x)=I_{\varphi}(y)=1$ we have

$$
\begin{equation*}
I_{\varphi}\left(\frac{x+y}{2}\right) \leqslant 1-\frac{p}{2}\left(I_{\varphi}\left(x x_{B}\right)+I_{\varphi \varphi}\left(y x_{B}\right)\right) . \tag{2.8}
\end{equation*}
$$

If $t \in A \backslash B$ then $\varphi\left(|x(t)-y(t)| \lambda \leq(\varphi(|x(t)|)+\varphi(|y(t)|)) \cdot \frac{\varepsilon}{4 M K K}\right.$. So

$$
\begin{equation*}
I_{\varphi}\left((x-y) x_{A \backslash B}\right) \leq \frac{\varepsilon}{2 M K} . \tag{2.9}
\end{equation*}
$$

Now, apply the Holder's inequality to (2.6). We obtain
$\left\|(x-y) x_{A}\right\|_{\varphi} \cdot\left\|x_{T_{0}}\right\|_{\Psi} \geq \int_{A}|x(t)-y(t)| d \mu \geq \frac{\varepsilon}{8 M}$. Hence, immediately,
$I_{\varphi}\left(\propto(x-y) x_{A}\right)=I_{\varphi}\left((x-y) x_{A} \cdot\left\|x_{T_{0}}\right\|_{\psi} \cdot \frac{8 M}{\varepsilon}\right) \geq 1$. But, by (2.7),
$1 \leqslant I_{\varphi}\left(\alpha(x-y) x_{A}\right) \leqslant K I_{\varphi}\left((x-y) x_{A}\right)+\frac{1}{2}$ which implies

$$
\begin{equation*}
I_{\varphi}\left((x-y) x_{A}\right) \geq \frac{1}{2 K} \tag{2.10}
\end{equation*}
$$

By combining inequalities (2.9) and (2.10) we obtain $I_{\varphi}\left((x-y) x_{B}\right) \geq \frac{1}{2 K}-\frac{\varepsilon}{2 M K}=\frac{1}{2 K}\left(1-\frac{\varepsilon}{M}\right)>0$. Hence and in virtue of (2.8) and Lemma 2.6 we get

$$
I_{\varphi}\left(\frac{x+y}{2}\right) \leq 1-q
$$

where the constant $q=\frac{p}{4 K^{2}}\left(1-\frac{\varepsilon}{M}\right) \in(0,1)$ depends only on x^{*}, ε and φ. Thus L_{φ} is WUR by Lemma 2.3.

In order to prove the necessity of the reflexivity and rotundity in the theorem, let us first note that in virtue of Theorems 0.1 and 0.2 it is enough to show that $\dot{\psi}$ satisfies the Δ_{2}-condiction. Assume that ψ takes only finite values and does not furlfill the Δ_{2}-condition (the case when ψ takes infinity will be considered further). There exist sequences $\left(u_{n}\right),\left(b_{n}\right)$ with the same properties as in Lemma 2.7. Let A_{n} be pairwise disjoint sets such that $\left.\mu\left(A_{n}\right)=\frac{1}{\psi\left(\left(1+b_{n}\right) u_{n}\right.}\right)$ where $n \in N$. Such choice of A_{n} is always possible since μ is atomless and $u_{n} \uparrow+\infty$ if $\mu(T)<+\infty$. Putting

$$
z(t)=\sum_{n=1}^{\infty} u_{n} x_{A_{n}}(t),
$$

we have $I_{\psi}(z)=\sum_{m=1}^{\infty} \frac{\psi\left(u_{n}\right)}{\psi\left(\left(1+b_{n}\right) u_{n}\right)}<\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$, by (2.2) in Lemma
2.7. It means that $z \in L_{\psi}$. Let $\bar{x}_{n}(t)=a_{n} x_{A_{n}}(t)$, where $a_{n}=$ $=q\left(\left(1+b_{n}\right) u_{n}\right)$. We have

$$
\begin{aligned}
& \int_{T} \bar{x}_{n}(t) z(t) d \mu=a_{n} u_{n} \mu\left(A_{n}\right)=\frac{q\left(\left(1+b_{n}\right) u_{n}\right)\left(1+b_{n}\right) u_{n}}{\left(1+b_{n}\right) \psi\left(\left(1+b_{n}\right) u_{n}\right.}= \\
& =\frac{\varphi\left(a_{n}\right)+\psi\left(\left(1+b_{n}\right) u_{n}\right)}{\left(1+b_{n}\right) \psi\left(\left(1+b_{n}\right) u_{n}\right)}=\frac{1}{1+b_{n}}\left(I_{\varphi}\left(\bar{x}_{n}\right)+1\right)
\end{aligned}
$$

by the equality in (0.2). On the other hand, $\mathcal{C}_{T} \bar{x}_{n}(t) z(t) d \mu \leq$ $\leq I_{\varphi}\left(\bar{x}_{n}\right)+\frac{\psi\left(u_{n}\right)}{\psi\left(\left(1+b_{n}\right) u_{n}\right)}<I_{\varphi}\left(\bar{x}_{n}\right)+\frac{1}{2^{n}}$, by the Young's inequality and (2.2). From the two inequalities above we get $I_{\varphi}\left(\bar{x}_{n}\right)+\frac{1}{2^{n}}>$ $>\frac{I_{\varphi}\left(\bar{x}_{n}\right)+1}{1+b_{n}}, I_{\varphi}\left(\bar{x}_{n}\right) \geq \frac{1}{b_{n}}$ (1- $\frac{1}{2^{n-1}} \geq \frac{1}{2}$ for n large (we can always suppose that $b_{n} \leqslant 3$. So, we find ${ }^{\prime} B_{n} \subset A_{n}$ such that

$$
\begin{equation*}
\frac{1}{2} \leq \varphi\left(a_{n}\right) \mu\left(B_{n}\right) \leq 1 . \tag{2.11}
\end{equation*}
$$

Let $B_{1, n}, B_{2, n}$ be sets such that $B_{n}=B_{1, n} \cup B_{2, n}$ and $\mu\left(B_{1, n}\right)=$
$=\mu\left(B_{2, n}\right)$. Let $1 \in(0,1)$ be arbitrary but fixed. Since $\varphi\left(a_{n}\right) \mu\left(B_{q, n}\right)^{j}+$
$+\varphi\left(1 a_{n}\right) \mu\left(B_{2, n}\right) \leqslant 1$ one can find a set C_{n} and a number c_{n} such that $\mu\left(C_{n}\right)<+\infty, C_{n} \cap B_{n}=\emptyset$ and

$$
\begin{equation*}
\varphi\left(a_{n}\right) \mu\left(B_{1, n}\right)+\varphi\left(1 a_{n}\right) \mu\left(B_{2, n}\right)+\varphi\left(c_{n}\right) \mu\left(c_{n}\right)=1 . \tag{2.12}
\end{equation*}
$$

Let us put

$$
\begin{aligned}
& x_{n}=a_{n} x_{B_{1, n}}-1 a_{n} x_{B_{2, n}}+c_{n} x_{C_{n}} \\
& y_{n}=l a_{n} x_{B_{1, n}}-a_{n} x_{B_{2, n}}+c_{n} x_{C_{n}}
\end{aligned}
$$

Then $I_{\varphi}\left(x_{n}\right)=I_{\varphi}\left(y_{n}\right)=1$, by (2.12). Moreover

$$
\int_{T}\left(x_{n}(t)-y_{n}(t)\right) z(t) d \mu=\int_{B_{n}}\left(1-1 x_{n} a_{n} u_{n} d \mu=\right.
$$

$=(1-1) \frac{\left.q\left(\left(1+b_{n}\right) u_{n}\right)\left(1+b_{n}\right) u_{n}\right)}{1+b_{n}} \mu\left(\dot{B}_{n}\right) \geq \frac{1-1}{1+b_{n}} \varphi\left(a_{n}\right) \mu\left(B_{n}\right) \geq \frac{1-1}{4}$,
for all $n \in N$, by (2.11) and the fact that $b_{n} \in(0,1)$. Since $\frac{1+1}{2} \in(0,1)$,

$$
\varphi\left(\frac{1+1}{2} a_{n}\right) \geq r_{n} \frac{1+1}{2} \varphi\left(a_{n}\right)
$$

for some sequence $\left(r_{n}\right) \subset(0,1)$ satisfying $r_{n} \rightarrow 1$, by (2.4) in Lemma 2.7. Hence

$$
\begin{aligned}
& I_{\varphi}\left(\frac{x_{n}+y_{n}}{2}\right) \geq r_{n} \frac{1+1}{2} \varphi\left(a_{n}\right) \mu\left(B_{1, n}\right)+r_{n} \frac{1+1}{2} \varphi\left(a_{n}\right) \mu\left(B_{2, n}\right)+ \\
& \varphi\left(c_{n}\right) \mu\left(c_{n}\right) \geq r_{n} \mu\left(B_{1, n}\right) \frac{\varphi\left(a_{n}\right)+\varphi\left(1 a_{n}\right)}{2}+ \\
&+r_{n} \mu\left(B_{2, n}\right) \frac{\varphi\left(a_{n}\right)+\varphi\left(1 a_{n}\right)}{2}+\varphi\left(c_{n}\right) \mu\left(c_{n}\right)=r_{n}+\varphi\left(c_{n}\right) \mu\left(c_{n}\right)\left(1-r_{n}\right) \rightarrow 1
\end{aligned}
$$

as $n \rightarrow+\infty$. Hence and in virtue of Lemma 2.3 we have shown that L_{φ} is not WUR.

Now let $\psi(v)=+\infty$ for $v>v_{0}$ and $\psi(v)<+\infty$ for $v<v_{0}$, where v_{0} is some positive number. (the assumption that φ is not identically equal to zero implies that $v_{0}>0$). Then $L_{\psi}(A) \subset L_{\infty}(A)$ for $A \in \Sigma$. Hence $L_{1}(A) \subset L_{\varphi}(A)$. But $L_{\varphi}(A) \subset L_{1}(A)$ for each $A \in \Sigma$ of finite measure. Thus $L_{1}(A)$ is isomorphic to $L_{\varphi}(A) \subset L_{\varphi}$, where A is some set of finite measure. Hence and by Lemma 2.2 the space L_{φ} contains an isomorphic copy of l_{1}. So, in virtue of Lemma 2.1 , L_{φ} cannot be WUR, which ends the proof of the theorem.

Remark. Let us note that a much simpler (but indirect) proof of the necessity can be given using the fact that a Banach space X whose dual X^{*} contains an isomorphic copy of c_{0}, contains an isomorphic copy of $1_{1}([1])$. The fact that if L_{φ} is WUR then the Young function φ satisfies the Δ_{2}-condition follows from Theorem 0.1, since each WUR-space is rotund. If ψ does not satisfy the Δ_{2}-condition, then $L_{\psi}(A)$ is equivalent to $\left(L_{\varphi}(A)\right) *$ (see [16]) and hence contains an isomorphic copy of c_{0}. Consequently $L_{\varphi}(A)$ contains an isomorphic copy of l_{1}, where $A \in \Sigma$ is any set of finite and positive measure. Since L_{φ} contains an isomorphic copy of 1_{1}, it camot be WUR by Theorem 2.1 - a contradiction.

Let us isolate the following properties: (*) φ satisfies the Δ_{2}-condition and is strictly convex, $(* *) . \varphi$ and its conjugate function satisfy the Δ_{2}-condition and φ is strictly convex.
2.9. Theorem. The following properties concerning the Orlicz spaces L_{φ} are equivalent: ($* *$), WUR, CWUR, E-property.

Proof. It suffices to apply Theorem 2.8, Theorem 1.3 and Theorem 0.2 .

For the sake of completeness we formulate in the sequel a theorem which is an immediate consequence of Theorem 0.1 and some well known implications (cf. [13] and the remarks in the introduction).
2.10. Theorem. The following properties concerning the Orlicz - 662 -
spaces L_{φ} are equivalent: $(*), R, M L U R, H R, L U R$, URED, CWLUR , WLUR.

As a corollary we get
2.11. Theorem. If the Orlicz space L_{φ} is reflexive then all properties from the above theorems and the property URWC coincide.

Remark. Let us note that from the proofs given above it follows that we can also deal with the measure space (T, Σ, μ) which is not purely atomic, by making evident modifications in these proofs if necessary. So, Theorem 2.9, Theorem 2.10 and Theorem 2.11 become unchanged for such measures.

Let us also mention that after preparing this paper we have been learned on the paper [5] of N. Herrndorf concerning LUR Orlicz spaces for vector-valued functions with results similar to Theorem 0.1. Recall that this theorem together with Theorem 1.2 and Theorem 1.3 play the crucial role in this paper in the proofs of Theorems 2.9-2.11.

References

[1] BESSAGA,C., PEKCZYŃSKI,A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17(1958), 151-164.
[2] CUDIA,D.F.: The geometry of Banach spaces. Smoothness. Trans.Am.Math.Soc. 110(2) (1964), 284-314.
[3] DAY,M.M. ${ }^{2}$: Normed linear spaces. Berlin-Heidelberg -New York: Springer-Verlag 1973.
[4] FAN,K., GLICKBERG,I.: Some geometric properties of the spheres in a normed linear space. Duke Math.J.25(1958), 553-568.
[5] HERRNDORF,N.: Local uniform convexity of Orlicz spaces of Bochner integrable functions. Preprints in Statistics, University of Cologne, 66(1981).
[6] JAMES, R.C.: Reflexivity and the supremum of linear functionals. Annals of Math.66(1957), 159-169.
[7] KAMIŃSKA, A.: On uniform convexity of Orlicz spaces. Proc. Konink. Nederl.Akad.Wet. Amsterdam, A,81(1)(1982), 27-36.
[8] KAMIŃSKA, A.: The criteria for local uniform rotundity of Orlicz spaces. Studia Math.79(1984), 201-215.
[9] KAMIŃSKA, A.: On same convexity properties of Musielak-Orlicz spaces. Supplemento a.i. Rendiconti del Circolo Matematico di Palermo,Serie II, No 5(1984), 63-72.
[10] KRASNOSEL'SKII, M.A., RUTICKII, Ya.B.: Convex functions and Orlicz spaces. Groningen: P.Noordhoof Ltd. (1961).

```
[11] KURC, W.: Strongly exposed points in Orlicz spaces of vec- tor-valued functions, I. Comment.Math. (in press).
[12] LUXEMBURG, W.A.: Banach function spaces. Thesis, Delft 1955.
[13] SMITH, M.A.: Some examples concerning rotundity in Banach spaces. Math. Ann.233(1978), 155-161.
[14] SMITH, M.A.: Rotundity and extremity in \(1^{p}(X)\) and \(L^{p}(\mu, x)\). Proc. of the M.M. Day Math. Conf., June 9-12, 1983.
[15] SMITH, M.A., TURRET, B.: Rotundity in Lebesgue-Bochner function spaces. Trans.Am.Math. Soc. 257(1)(1980), 105-118.
[16] TURRET,B.: Rotundity of Orlicz spaces. Proc.Konink. Nederl. Akad. Wet.Amsterdam, A, 79(5)(1976), 462-469.
Institute of Mathematics, A.Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
(Oblatum 22.4. 1986)
```

