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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986) 

O N THE CARDINALITY OF LINDELOF SUBSPACES 
OF FUNCTION SPACES 

A. V. ARHANGEL'SKH, V. V. USPENSKII 

Abstract: , Let X be a compact space. If Y is a Lindelof 
subspace of t (X),~the space of all continuous real-valued func
tions on X in the topology of pointwise convergence, then |Y|^ 
^exp(c(X)), where c(X) is the Souslin number of X. If X is dy- % 
adic, then any Lindelof subspace of C (X) has a countable network. 

Key words: Lindelof.space, Souslin number, tightness, func
tion space. 

Classification: 54A25, 54C35. 

Let X be a compact space having the Souslin property. Then 

compact subspaces of C (X) are metrizable. This fact can be de

duced from the equality w(X)=c(X) which holds for Eberlein-com-

pact spaces. We show that Lindelof subspaces of C (X) also cannot 

be too large: if YfiC (X) is Lindelof, then ,|Y|-62a>, This is a 

special case of the following theorem: 

Theorem 1. If X is compact and YffC (X), then |Y| £ 

4 exp(>e(Y).c(X)). 

We consider only Tyhonoff spaces. See CI 3 - 131 for the 

definition and notation of cardinal functions: C (X) is the spa

ce of all* continuous real-valued functions on X in the topology 

of pointwise convergence;' A{%) is the Lindelof,number of X, 
w(X) is the weight of X, and e(X) is the extent of X i.e.'e(X)* 

=sup -£|A|: A is a closed discrete subspace of X}. 

We start with a list of facts that we need for the proof. 

Theorem B. If X is compact and Y £ C (X), then -€(Y)«e(Y). 

This is a recent very beautiful and very powerful result of 

D. Baturov of Moscow. 
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Theorem S (B .E . Shapirovskii). If X is compact, then w(X).£ 
£ t ( X ) c W . 

This is a combination of two other results of Shapirovskii: 

(1) w(X) £ *r ̂ ( X ) c ( X ) if X is regular; (2) trr^(X)^t(X) if X 

is compact, see C21,L3j . 

Theorem A (AW. Arhangel 'skii L 2J). Let X be a T, -space and 

m be a ca rd ina l . Suppose that: (1) y£(X)=»m, (2) t(X)£m; (3) 

Y(X)£2 m; (4) if A£X and |A|£m, then |A|^2 m, Then | X | £ 2 m . 

A space Y is monolithic if nw(A)-£ | A | whenever ASY . If X 

is compact, C (X) is monolithic and countably tight, C23,C43, so 

for any.YeC (X) the inequality |Y|=* \Y\°)£ 2 ^ ' holds. 

We turn to the proof of Theorem 1. Let m=^8(Y) • c(X).. It suf

fices to prove that |Y|£-'2m, for then also |Y|-6^1^-6 2m. 

1. First let us consider the case when there exists a point 

y* in Y such that |Y\0y*|:£ m for every neighborhood Oy** of y*. 

Without any loss of generality we can assume that y* is the con

stant zero. 

For any x e X and & > 0 the set 4f€Y:|f(x)|> &J has cardi

nality -£ m; hence | 4f£Y:f(x)4-0^|^m. Let X'£R be the image 
Y ' 

of X under the diagonal product <6Y:X—*- R . Then X lies in the 

2E -product of lines and therefore t(X')_£m, [23. Theorem S im

plies d(X')£ w(X')£m c ( X ^ m c ( X ) ^ 2 m . Since Y embeds in C (X'), 

we have |Y|* |C (X')| £d(X')^2 m. 

II. Now consider the general case. By Theorem A it suffices to 

show that if(Y)-^2m. Suppose y(y,Y)>2 m for some yeY. Then 

,£(Y\-ty})2: y(y XY)> 2m. Theorem B implies there is a closed 

discrete subset ASY\-iyJ of cardinality > 2m. Let A* = AU4yl. 

Then ^(A')^-m, since A' is closed in Y, and A' ha& only one non

isolated point. Hence A' satisfies the condition in I. But 

.|A'|>2m. This contradicts the first part of the proof, and we 

are Trcme. 

If X is*dyadic, a better estimate can be obtained. 

Theorem 2. If a compact space X is dyadic and YSC (X), 

then nw(Y)* i(Y). 
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In particular, any Lindelof subspace of C (X) has a countab

le network . Note that nw(Y)=nw(Y) since C (X) is monolithib and 

^(Y)=e(Y) by Theorem B, so we also have nw(Y)=e(Y). 

Proof. Let X'=AY(X)£R . Then Y is homeomorphic to a sub-

space of CD(X') which separates the points of X', so nw(Y) .£ 
^ nw(C ( X ' ) ) = n w ( X ' ) = w ( X ' ) . It remains to show that w(X')-£*£(Y). 

Since X' is dyadic, w(X')=sup-f m:«Jm embeds in X'}, [53, and also 

w(X ')=sup i m: m+1 embeds in X '\, where m+1 is the linearly order

ed space of ordinals £ m. The following lemma completes the prooi: 

Lemma. Suppose m is a cardinal and Ys C (m+1). If Y separa
tes the points of m+1, then ..£(Y)=m. 

Proof. We may assume m is regular. For every oc < m pick a 

function t^s Y and two rationals s^ , t^ such that either 

f„(ac)< s < t < f (m) or f.(oc)> s^> t. >f-(m) . If o c ^ O , there 

is an ordinal /B(o6)< oc such that for any X & ( ft (<* )t'°c1 eit

her i^t}0*-*^^ or ^oc^T ̂  > %e >;toc • ^ne pressing-down lemma 

L63 implies there is an̂ , unbounded subset E£m, an ordinal ft < m 

and rationals s, t such that |3(«~c,)=/3 , s^ =s and t^ =t for eve

ry oc € E. The subset ^.t : oc s E } of Y has no complete accumula
tion point in C (m+1). Hence .^(Y)>m. The reverse inequality is 

obvious. 

Recall that sup4t(Xn):n € o> I £ £(C (X)) for any Tychonoff 

space X (M. Asanov, see t.4]). Our lemma suggests the following 

quest ion . Suppose X is compact,Y£ C (X) and Y separates the 

points of X . I s it true that t(X) -=" -^(Y) ? Note that t(X) £ ^ ( Y ) = 

= sup ̂ (X n):n 6 o)3,since X embeds in. C (Y) and t(C (Y))= X*(Y) 

14l. For non-compact spaces our question can easily be answered 

in the nega t i ve . 

R e f e r e n c e s 

[1] ENGELKINGLR.: General topology, Warszawa 1977. 

183 APXAHraJlLCKM A.B.: OpoeHHe M KJiaccH^HxamiA Toncaomtiee-
KHX npocTpaHCTB H Kap^MHajibHHe MHBapHaHTU. ycnexM 
MaTeM.HayK 33,6(19^8), 29-84. 

-3J HOOEL R.: Cardinal Functions , in: Handbook of set theoretic 
^ topology, North-Holland,Amsterdam-New York-Oxford 

JL984. 

- 675 -



14] АРХАНГЕЛЬСКИЙ А.В.: Пространства функций в топологии пото
чечной сходимости. Часть 1 , в кн.: Общая топология. 
Пространства функций и равмерность. Москва, Изд-во 
Моск. ун-та, 1985. 

[5] ЕФИМОВ В.А.; Отображения и вложения диадических пространств, 
Матем.сб. 103,1(1977), 52-68. 

16) К^NЕN К.: СотЫпа1;ог1СЗ, 1П: НапсЛэоок о* Ма1;пета1:1са1 1_од1с, 
Nогт.п-Но11апа,, Атзт.ега'ат^ем Уогк-0х1огб 1977. 

Department of general t o p o l o g y , Facul ty of mechanics and mathema
t i c s , Moscow State U n i v e r s i t y , Moscow 234, USSR. 

(Oblátům 25.8. 1986) 

- 676 -


		webmaster@dml.cz
	2012-04-28T13:15:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




