## Commentationes Mathematicae Universitatis Caroline

Miroslav Katětov<br>On the Rényi dimension

Commentationes Mathematicae Universitatis Carolinae, Vol. 27 (1986), No. 4, 741--753

Persistent URL: http://dml.cz/dmlcz/106494

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986)

## ON THE RENYI DIMENSION Miroslav KATÉTOV

Abstract: The concept of dimension (upper, lower and exact) is introduced for probability spaces equipped with a measurable semimetric, and its relation to A. Rényi s dimension of a vectorvalued random variable is established. Under certain assumptions, the exact dimension function behaves like a "specific weight", . and the dimension of the product of two spaces is equal to the sum of their dimensions.

Key words: Semimetrized measure space, Rényi weight, Rényi dimension.

Classification: 94Al7

In 1956, the dimension $d(\xi)$ of an $R^{n}$-valued random variable $\xi$ was introduced in a joint paper by J. Balatoni and A. Rényi. In 1959, A. Rényi introduced the upper and lower dimension, $\overline{\mathrm{d}}(\xi)$ and $\underline{d}(\xi)$. Following Rényi's ideas, we introduce, for any extended Shannon semientropy $\varphi$ (see [2]), three dimension functions, $\varphi$-ud, $\varphi$-ld and $\varphi$-Rd, which we will call, respectively, the upper, lower and exact Rényi $\varphi$-dimension. The dimensions $\varphi$-ud( $P$ ) and $\varphi-l d(P)$ are defined for any $W$-space $P$, i.e. for any $P=\langle Q, \rho, \mu\rangle$, where $\mu$ is a finite measure and $\rho$ is a measurable semimetric; $\varphi-\operatorname{Rd}(P)$ is defined iff $\varphi-u d(P)=\varphi-l d(P)$, and is equal to their common value.

The case of $\varphi$ equal to $E$, the largest extended Shannon entropy of the form $C_{\tau}$ (see [2]), is considered in some detail. It turns out that, for any $R^{n}$-valued random variable $\xi$ on a probability space $\langle Q, \mu\rangle, \bar{d}(\xi)$ and $d(\xi)$ are equal, respectively, to $E$-ud $\left\langle R^{n}, \rho, \mu \circ \xi^{-1}\right\rangle$ and $E-1 d^{\prime}\left\langle R^{n}, \rho, \mu \circ \xi^{-1}\right\rangle$; if, in addition, $\xi$ is bounded, then $E$ can be replaced by any $\varphi$ from a certain fairly large class of extended entropies.

In general, the behavior of the dimension functions E-ud, etc., is not very nice: If, however, $E-R d(S)$ exists for all $S \leq P$ and the set of all $E-\operatorname{Rd}(S), S \leq P$, is bounded, then $E-\operatorname{Rd}(S)$ behaves - 741 --
as a "specific weight": there is a function $f$ such that, for any $S \leqq P, E-R d(S)$ is equal to the mean value of $f$ on $S$. We also show that, under certain, not too restrictive, conditions, the exact Rényi $E$-dimension of $P_{1} \times P_{2}$ is equal to the sum of dimensions of $P_{1}$ and $P_{2}$. 1
1.1. We use the terminology and notation of [3]. In particular, (1) if $x=\left(x_{k}: k \in k\right), k \neq \emptyset, x_{k} \in R_{+}, \sum x_{k}<\infty$, then we put $H(x)=\Sigma L\left(x_{k}\right)-L\left(\Sigma x_{k}\right)$, where $L(0)=0, L(a)=-a \log$ a if $a>0$, (2) if $P=\langle Q, \rho, \mu\rangle$ is a $W$-space and $\varepsilon \in R$ is positive, then $\varepsilon * P$ denotes the $W$-space $\langle Q, \varepsilon * \rho, \mu\rangle$, where $(\varepsilon * \rho)(x, y)=0$ if $\rho(x, y) \leqq \varepsilon,(\varepsilon * \rho)(x, y)=1$ if $\rho(x, y)>\varepsilon$.
1.2. Recall that $P=\langle Q, \rho, \mu\rangle$ is called a semimetrized measure space or a $W$-space ("weighted space") if $\mu$ is a measure on $Q$ and $\rho$ is a $[\mu \times \mu]$-measurable semimetric. If $\rho$ is a metric and every Borel set is in dom $\bar{\mu}$, then $P$ is called a weakly Borel metric $W$-space. If $P=\langle Q, \rho, \mu\rangle$ is a $W$-space, we put $w P=\mu Q$. - If $W P=0$, then $P$ is called a null space. If $P$ is a $W$-space, then exp $P$ (respectively, exp*P) denotes the collection of all subspaces (all pure subspaces) of $P$, equipped by the order relation "to be a subspace".
1.3. Proposition. If $P$ is a $W$-space, then $\exp P$ is a complete lattice, exp* $P$ is a complete Boolean algebra and if $\mathcal{M c} \exp P$, then there is a countable $\mathcal{M}^{\prime} \subset \mathcal{M}$ such that $\sup \mathcal{M}^{\prime}=\sup \mathcal{M}$.

We omit the proof, since the proposition is a direct consequence of well-known analogous propositions concerning e.g. the lattice of $\bar{\mu}$-measurable $[0,1]$-valued functions modulo those which are equal to zero $\bar{\mu}$-almost everywhere, etc.
1.4. The (cartesian) product $P=P_{1} \times P_{2}$ of semimetric spaces $P_{i}=\left\langle Q_{i}, \rho_{i}\right\rangle$ (of W-spaces $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle$ ), $i=1,2$, is, by definition, the space $\left\langle Q_{1} \times Q_{2}, \rho\right\rangle$ (respectively, $\left\langle Q_{1} \times Q_{2}, \rho, \mu_{1} \times \mu_{2}\right\rangle$ ), where $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(\rho_{1}\left(x_{1}, y_{1}\right), \rho_{2}\left(x_{2}, y_{2}\right)\right)$. In particular, $R^{n}, n=1,2, \ldots$, and its subsets are always endowed with the metric $\rho\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\max \left|x_{i}-y_{i}\right|$.
1.5. Notation. If $\langle Q, \mu\rangle$ is a measure space, $T$ is a set and $\xi: Q \rightarrow T$ is a mapping, then $\mu \circ \xi^{-1}$ denotes the measure $\nu$ on $T$ defined as follows: dom $\nu$ consists of all $X \subset T$ such that $\xi^{-1} X \in$ $\epsilon \operatorname{dom} \mu$; if $\xi^{-1} X \in \operatorname{dom} \mu$, then $\nu X=\mu\left(\xi^{-1} X\right)$.
1.6. Definition. If $\langle Q, \mu\rangle$ is a probability space, $\langle T, \rho\rangle$ is a metric space and $\xi:\langle Q, \mu\rangle \rightarrow\langle T, \rho\rangle$ is a random variable
(i.e. $B\langle T, \varsigma\rangle C \operatorname{dom}\left(\mu \bullet \xi^{-1}\right)$ ), then $\xi$ will be called a metric random variable (more exactly, a $\langle T, \rho\rangle$-valued random variable on $\langle Q, \mu\rangle$ ).
1.7. Proposition. If $\xi:\langle Q, \mu\rangle \rightarrow\langle T, \rho\rangle$ is a metric random variable and $\xi(Q) c\langle T, \rho\rangle$ is separable, then $\left\langle T, \rho, \mu \circ \xi^{-1}\right\rangle$ is a weakly Borel metric $W$-space. - This follows easily from [3], 1.8 .
1.8. Remarks. A) In 1.7 , the assumption that $\xi(Q)$ is separable can be replaced by a far weaker one, and it is consistent (relative to current axiomatic set theories) to assume that it can be omitted. - B) Clearly, if $\langle Q, \rho, \mu\rangle$ is a weakly Borel metric $W$-space, then the identity mapping $\xi:\langle Q, \bar{\mu}\rangle \rightarrow\langle Q, \rho\rangle$ is a random variable.
1.9. In [1] (see also [6], which is, in fact, an abridged version of [1]), the concept of dimension of an $R^{n}$-valued random variable has been introduced. In [4] and [5], A. Rényi has introduced the upper (lower) dimension of $\xi$. The pertinent definitions (in a slightly more general form) will be stated below (l.11). First, we introduce some notation and conventions.
1.10. A) If $a \in \bar{R}, a>0$, we put $a / 0=\infty$; if $b \in R_{+}$, we put $\infty / b=\infty$; we put $0 / 0=0$. - B) If a random variable $\xi:\langle Q, \mu\rangle \rightarrow$ $\rightarrow\langle T, \Omega\rangle$ assumes only countable many values, we put $H_{0}(\xi)=$ $=H\left(\mu\left(\xi^{-1} t\right): t \in \xi(Q)\right)$. - C) Z will denote the set of all integers. - D) If $x \in R$, then $[x] \in Z,[x] \leqq x<[x]+1$. If $x=\left(x_{1}, \ldots, x_{m}\right) \in$ $\in R^{m}$, then $[x]=\left(\left[x_{1}\right], \ldots,\left[x_{m}\right]\right)$. If $\xi$ is an $R^{m}$-valued random variable on $\langle Q, \mu\rangle$, then $[\xi]$ is defined as follows: $[\xi](q)=$ $=[\xi(q)]$ for all $q \in Q$.
1.11. Let $\xi:\langle Q, \mu\rangle \rightarrow R^{n}, n=1,2, \ldots$, be a random variable. Then, by definition, $d(\xi), \bar{d}(\xi)$ and $d(\xi)$ are equal, respectively, to the limit (provided it exists), to the upper limit and to the lower limit of $H_{0}([m \xi]) / \log \mathrm{m}$ for $\mathrm{m} \rightarrow \infty$. - We will call $d(\xi), \bar{d}(\xi)$ an $d \underline{d}(\xi)$, respectively, the (exact) Rényi dimension (upper dimension, lower dimension) of $\xi$.
1.12. Theorem (A. Rényi). Let $t=1,2, \ldots$ and let $\xi:\langle Q, \mu\rangle \rightarrow$ $\rightarrow R^{t}$ be a random variable. Assume that $\mu \circ \xi^{-1}$ is absolutely continuous with respect to the Lebesgue measure on $R^{t}$ and that $H_{0}([\xi])<\infty$. Then $d(\xi)=t$. - See [4], Theorem 4.
1.13. The following simple facts concerning the functional $H$ are well known. - A) Let $\mathrm{x}_{\mathrm{kj}} \geqq 0$ for $k \in K, j \in J$ and let $\sum \mathrm{x}_{\mathrm{kj}}<\boldsymbol{\infty}$.

Then $H\left(x_{k j}:(k, j) \in K \times J\right)=H\left(\sum\left(x_{k j}: k \in K\right): j \in J\right)+\sum\left(H\left(x_{k j}: k \in K\right)\right.$ : $: j \in J)$. - B) Let $x_{k} \geq 0, y_{j} \geqq 0$ for $k \in K, j \in J$ and let $\sum x_{k}<\infty$, $\Sigma y_{j}<\infty$. Then $H\left(x_{k} y_{j}:(k, j) \in K \times J\right)=\Sigma x_{k}: H\left(y_{j}: j \in J\right)+\Sigma y_{j}$. . $H\left(x_{k}: k \in K\right)$.

2
2.1. Definition. Let $\left.\Phi: \Omega_{2}\right) \rightarrow \bar{R}_{+}$be an extended (in the broad sense) Shannon semientropy, as defined in [2], 2.26. Let $P$ be a $W$-space. We put $\varphi$-uw $(P)=\overparen{\lim }(\varphi(\sigma * P) /|\log \sigma|), \varphi-\operatorname{lw}(P)=$ $=\lim (\varphi(\sigma * P) /|\log \delta|)$. If $\varphi-\operatorname{uw}(P)=\varphi-\operatorname{lw}(P)$, then we put $\varphi-\operatorname{Rw}(P)=$ $=\varphi-u w(P)$ and we say that $\varphi-R W(P)$ exists or that $P$ is $\varphi$-dimensi-on-exact; if not, then $\dot{\psi}$-Rw(P) is not defined. We call $\varphi$-uw(P), $G-l w(P)$ and $\varphi-R w(P)$, respectively, the upper (lower, exact) $R=-$ nyi $\varphi$-weight of $P$. We put $\varphi$-ud $(P)=\varphi-u w(P) / w P, \varphi-1 d(P)=$ $=\varphi-1 w(P) / w P$ and $\varphi-\operatorname{Rd}(P)=\varphi-R w(P) / w P$ (provided $\varphi-R w(P)$ exists). We call $\varphi$-ud( $P$ ), $\varphi$-ld $(P)$ and $\varphi$ - Rd( $P$ ), respectively, the upper (lower, exact) Rényi $\varphi$-dimension of $P$. - If $\varphi=E$ (see [3], 1.13), we usually omit the prefix " $\varphi$ ".

Remark. It is possible (and sometimes useful) to consider, e.g., the "level 2" upper Rényi $\mathscr{\varphi}$-weight of a $W$-space $P$, denoted by $(2, \varphi)$-uw $(P)$ and defined as $\overline{\lim }\left(\varphi\left(\delta^{*} * P\right) /\left|\log \delta^{\prime}\right|^{2}\right) ;(2, \varphi)$ -$-\operatorname{lw}(P),(2, \varphi)-\operatorname{Rw}(P),(2, \varphi)-u d(P),(\xi, \varphi)-u w(P)$, etc., can be defined in a similar way. We will not go, however, into these matters here.
2.2. Conventions. A) Recall that if $P=\langle Q, \varrho, \mu\rangle$ is a $W$-space, then $\left(P_{k}: k \in K\right)$, where $K \neq \emptyset$ is countable and $P_{k} \leqq P$, is called an $\omega$-partition of $P$ whenever $\Sigma P_{k}=P$; a finite $\omega$-partition of $P$ is called simply a partition of $P$; an $\varepsilon$-partition of $P$, where $0<\varepsilon<\infty$, is, by definition (see[3], l.19), a countable indexed collection ( $X_{k}: k \in K$ ) such that $X_{k} \in \operatorname{dom} \bar{\mu}, \operatorname{diam} X_{k} \leqq \varepsilon, X_{i} \cap X_{j}=\emptyset$ for $i \neq j, \sum \bar{\mu} X_{i}=\mu Q$. - B) An $\varepsilon$-partition $\left(X_{k}: k \in K\right)$ of $P$ will be called an $(\varepsilon, m)$-partition, where $m \in N$, if, for any $Y \subset Q$ satisfying diam $Y \leqslant \varepsilon$, there is a set $M \subset K$ such that card $M \leqq m$ and $\bar{\mu}\left(X_{k} \cap Y\right)=0$ for all $k \in K \backslash M$. - C) A covering of a semimetric space $\langle T, \varsigma\rangle$ is, by definition, an arbitrary (indexed) collection ( $X_{k}: k \in K$ ) such that $\cup X_{k}=T$; a covering ( $X_{k}: k \in K$ ) will be called (1) disjoint if $X_{i} \cap X_{j}=\emptyset$ for $i, j \in K, i \neq j$, (2) an $\varepsilon$-covering if diam $X_{k} \leqq \varepsilon$ for all $k \in K$, (3) an ( $\varepsilon, m$ )-covering, where $m \in N$, if diam $X_{k} \leqq \varepsilon$ for all $k \in K$ and each set $Y \subset T$, of diameter $\leqslant \varepsilon$ inter-
sects $m$ sets $X_{k}$ at most.
2.3. Proposition. Let $P$ Be a metric $W$-space. Then, for all positive reals $\varepsilon$, (1) $E(\varepsilon * P)=E^{*}(\varepsilon * P)=\eta(\varepsilon * P)=\eta^{*}(\varepsilon * P)$, (2) $\bar{\eta}(\varepsilon * P)=E(\varepsilon * P)$ unless both $\bar{\eta}(\varepsilon * P)$ and $E(\varepsilon * P)$ are infinite for all sufficiently small $\varepsilon$. - See [3], 2.18. - For the definition of $E, \eta$, etc., see $[3], 1.9,1.13$ and 1.20.
2.4. Fact. For any $W$-space $P=\langle Q, \varrho, \mu<\rangle$ and any ( $\varepsilon, m$ )-partition $\left(X_{k}: k \in K\right)$ of $P, \bar{\eta}(\varepsilon * P) \leq H\left(\bar{\mu} X_{k}: k \in K\right) \leq \bar{\eta}(\varepsilon * P)+w P \cdot \log m$.

Proof. The first inequality is evident. Assume that $\bar{\eta}(\varepsilon * P)<$ $<\infty$ and choose a number $b>\bar{\eta}(\varepsilon * P)$. Put $\nu=\bar{\mu}$. Clearly, there is an $\varepsilon$-partition $\left(Y_{j}: j \in J\right.$ ) of $P$ such that diam $Y_{j} \leq \varepsilon$ for all $j \in J$ and $H\left(\nu Y_{j}: j \in J\right)<b$. For $k \in K, j \in J$, put $V_{k j}=X_{k} \cap Y$. By 1.13 $A$, we have $H\left(\nu X_{k}: k \in K\right) \leqq H\left(\nu V_{k j}:(k, j) \in K \times J\right)=H\left(\nu Y_{j}: j \in J\right)+$ $+\sum\left(H\left(\nu V_{k j}: k \in K\right): j \in J\right)$. Since $\left(X_{k}: k \in K\right)$ is an ( $\varepsilon, m$ )-partition and diam $Y_{j} \leqq \varepsilon$ for each $j$, we get $H\left(\nu V_{k j}: k \in K\right) \leqq \nu X_{k}$ log $m$ for. all $j \in J$. Hence we obtain $H\left(\nu X_{k}: K \in K\right) \leqq H\left(\nu Y_{j}: j \in J\right)+\mu Q . \log m<b+$ $+\mu Q . l o g m$, which proves the assertion.
2.5. Fact. Let $a>0$. Let $f$ and $g$ be non-increasing positive functions on ( $0, a$ ). Let $\left(\delta_{n}: n \in N\right)$ be a decreasing sequence, $\delta_{n} \rightarrow 0$. Let $g\left(\delta_{n}\right) / g\left(\sigma_{n+1}\right) \rightarrow 1$. Then the upper (lower) limit of $f\left(\delta_{n}\right) / g\left(\delta_{n}\right)$ for $n \rightarrow \infty$ is equal to that of $f(\varepsilon) / g(\varepsilon)$ for $\varepsilon \rightarrow 0$.
2.6. Proposition. Let $P=\langle Q, ৎ, \mu\rangle$ be a metric $W$-space. For $n \in N$ let $\left(X_{n k}: k \in K_{n}\right)$ be an $\left(\varepsilon_{n}, p_{n}\right)$-partition of $P$. Assume that $\log p_{n} /\left|\log \varepsilon_{n}\right| \longrightarrow 0$ and $\left|\log \varepsilon_{n}\right| /\left|\log \varepsilon_{n+1}\right| \rightarrow 1$ for $n \rightarrow \infty$. Then the upper (lower) limit of $H\left(\bar{\mu} X_{n k}: k \in K\right) /\left|\log \varepsilon_{n}\right|$ is equal to $u w(P)$ (to $1 w(P)$, respectively).

Proof. By 2.4 , we have $\bar{\eta}\left(\varepsilon_{n} * P\right) \leqq H\left(\bar{\mu} X_{n k}: k \in K_{n}\right) \leqq$ $\leqq \bar{\gamma}_{2}\left(\varepsilon_{n} * P\right)+w P . \log p_{n}$ for each $n \in N$. Hence, due to $\left(\log p_{n}\right) /$ $/\left|\log \varepsilon_{n}\right| \longrightarrow 0$, the upper (lower) limit of $H\left(\bar{\mu} x_{n k}: k \in K\right) /\left|\log \varepsilon_{n}\right|$ coincides with that of $\bar{\eta}\left(\varepsilon_{n} * P\right) /\left|\log \varepsilon_{n}\right|$. By 2.3 and 2.5 , this implies the proposition.
2.7. Proposition. Let $\langle Q, \rho\rangle$ be a bounded subspace of $R^{n}$, $n=1,2, \ldots$, and let $P=\langle Q, \varsigma, \mu\rangle$ be a $W$-space. Let $\tau$ be a normal gauge functional (see $\left[3 j, 1.10\right.$ ), $\tau \geqq r$, and let $\varphi=C_{\tau}^{*}$ or $\varphi=$ $=C_{\tau}$. Then $\varphi-\operatorname{ud}(P)=E-\operatorname{ud}(P), \varphi-1 d(P)=E-1 d(P)$.

This follows at once from [3], 3.7. - For the definition of $C_{\tau}$, etc., see $[3], 1.10-1.13$.
2.8. Theorem. Let $\xi: \begin{aligned} & \langle Q, \mu\rangle \\ & -745-\end{aligned} \longrightarrow R^{t}, t=1,2, \ldots$, be a random
variable. Put $P=\left\langle R^{t}, \rho, \mu \circ \xi{ }^{-1}\right\rangle$. Then $\bar{d}(\xi)=\operatorname{ud}(P), \underline{d}(\xi)=l d(P)$ and hence either both $d(\xi)$ and $R d(P)$ exist (and are equal) or neither $d(\xi)$ nor $R d(P)$ exists. If, in addition, $\xi$ is bounded, then the assertion holds with ud, ld and Rd replaced, respectively, by $\varphi$-ud, $\varphi$-ld and $\varphi$-Rd, where $\varphi=C_{\tau}$ or $\mathcal{G}=C_{\tau}^{*}$, $\tau$ being a normal gauge functional, $\tau \gtrless r$.

Proof. For $n=1,2, \ldots, z=\left(z_{1}, \ldots, z_{t}\right) \in z^{t}$, put $x_{n z}=\left\{x=\left(x_{1}, \ldots\right.\right.$ $\left.\ldots, x_{t}\right) \in R_{t}: z_{i} \leqslant n x_{i}<z_{i}+1$ for $\left.i=1, \ldots, t\right\}$. Then ( $x_{n z}: z \subset z^{t}$ ) is a $\left(1 / n, 2^{t}\right)$-partition of $P$. Hence, by 2.6 , the upper (lower) limit of $H\left(\bar{\mu} X_{n z}: z \in Z^{t}\right) / \log n$ is equal to $u w(P)=u d(P)$ (respectively, to $l w(P)=l d(P))$. On the other hand, by the definition of $\bar{d}(\xi), d(\xi)$ and $d(\xi)$, see 1.11 , the upper (lower) limit of $H\left(\bar{u} X_{n z}: z \in Z^{\mathcal{E}}\right)$ is equal to $\bar{d}(\xi)$ (respectively, to $\underline{d}(\xi)$ ). - The second assertion follows from 2.7.
2.9. Theorem. Let $P=\left\langle R^{t}, \rho, \mu\right\rangle$ be a $W$-space and let $\mu$ be absolutely continuous with respect to the Lebesgue measure $\lambda$; let $w P>0$. For any $z=\left(z_{1}, \ldots, z_{t}\right) \in Z^{t}$ put $A_{z}=\left\{x=\left(x_{1}, \ldots, x_{t}\right) \subset R^{t}\right.$ : $: z_{i} \leqq x_{i}<z_{i}+1$ for $i=1,2, \ldots, t ?$. If $H\left(\bar{\mu} A_{z}: z \triangleq z^{t}\right)=\infty$, then $\operatorname{Rd}(P)=$ $=t$; if $H\left(\frac{1}{\mu} A_{z}: Z \in Z^{t}\right)=\infty$, then $\operatorname{Rd}(P)=\infty$.

Proof. For $x \in R^{t}$ put $\hat{f}(x)=x$. We can assume that $w P=1$. Clearly, $\hat{\xi}:\left\langle R^{t}, \bar{\mu}\right\rangle \longrightarrow\left\langle R^{t}, \rho\right\rangle$ is a metric random variable. By 2.8 , $\operatorname{ud}(P)=\bar{d}(\xi), \quad \operatorname{ld}(P)=\underline{d}(\xi)$. By $1.12, \bar{d}(\xi)=\underline{d}(\xi)=t$ if $H\left(\bar{u} A_{z}: z \in z^{t}\right)<$ $<\infty$, and it is easy to see that $\bar{d}(\xi)=\underline{d}(\bar{\xi})=\infty$ if $H\left(\bar{m} A_{z}: z \in Z^{t}\right)=$ $=\infty$.

## 3

3.1. Fact. If $(S, T)$ is a partition of a $W$-space $P$, then $l w(S)+l w(T) \leqslant l w(P) \leqq l w(S)+u w(T) \leqq u w(P) \leqq u w(S)+u w(T)$.

This follows at once from 2.3 and $[3], 2.5$.
3.2. Proposition. Let $(S, T)$ be a partition of a $W$-space $P$. If both,$S$ and $T$ are dimension-exact, then $P$ is dimension-exact and $R w(P)=R w(S)+R w(T)$. If $R w(P)<\infty$ and toth $P$ and $S$ are dimensi-on-exact, then $P-S$ is dimension-exact, too, and $R w(P-S)=R w(P)-$ -Rw(S).

Proof. The first assertion follows easily from 3.1. To prove the assertion concerning $P-S$, observe that, with $T=P-S$, we have $1 w(S)+u w(T) \leqq u w(P), l w(P) \leqq l w(T)+u w(S)$, hence $R w(S)+u w(T) \leqq$ $\leqslant R w(P) \leqq l w(T)+R w(S)$.
3.3. Definition. A $W$-space $P$ will be called (1) dimension-
bounded if sup $\{u d(S): S \leqq P\}<\infty$, (2) hereditarily dimensionexact (abbreviation: h.d.e.) if every $S \leqslant P$ is dimension-exact.
3.4. Proposition. Let $P$ be a dimension-bounded $W$-space. If ( $P_{k}: k \in K$ ) is an $\omega$-partition of $P$, then $u w(P) \leqslant \sum\left(u w\left(P_{k}\right): k \in K\right)$.

Proof. Since $P$ is dimension-bounded, there is a $b \in R_{+}$such that $u w(S) \leqq b$.wS for each $S \leqq P$. We can assume that $K=N$. For any $n \in N$, put $T_{n}=\Sigma\left(P_{k}: k \leqq n\right)$. By 3.1 , we have uw $(P) \leqq \sum\left(u w\left(P_{k}\right)\right.$ : $: k \leqq n)+u w\left(P-T_{n}\right)$, hence $u w(P) \leqslant \sum\left(u w\left(P_{k}\right): k \in N\right)+b \cdot w\left(P-T_{n}\right)$, which implies the proposition.
3.5. Example. Let $\left(a_{n}: n \in N\right)$ be a decreasing sequence of reals, $a_{n} \rightarrow 0$. Let $b_{n}, n \in N$, be positive reals, $\Sigma b_{n}<\infty$. Consider the $W$-space $P=\langle N, \rho, \mu\rangle$, where $\rho(i, j)=a_{i}+a_{j}$ for $i \neq j$, $\operatorname{dom} \mu=\exp N, \mu\{i\}=b_{i}$. It is easy to prove that uw(P) (respectively, $1 w(P)$ ) is equal to the upper limit of $\Sigma\left(\mathrm{Lb}_{i}: i \leqq n\right) /$ $/\left|\log a_{n}\right|$ (to the lower limit of $\left.\Sigma\left(L b_{i}: i \leqq n\right) /\left|\log a_{n+1}\right|\right)$. Put $X_{m}=$ $=\{i \in N: i \geqq m\}$. Clearly, uw $\left(X_{n} \cdot P\right)=u w(P), \operatorname{lw}\left(X_{n} \cdot P\right)=\operatorname{lw}(P)$. - Assume that $u w(P)>0$. Then $\operatorname{ud}\left(X_{n}, P\right) \rightarrow \infty$ and therefore $P$ is not dimensi-on-bounded. Since, evidently, $u w(\{n\} . P)=0$ for each $n \in N$, the conclusion of 3.4 does not hold. - It is easy to find a set $X \in N$ such that, with $y_{n}=\Sigma\left(L b_{i}: i \leqslant n, i \in X\right), \overline{\lim }\left(y_{n} /\left|\log a_{n}\right|\right)=u w(P), \underline{\lim \left(y_{n} /\right.}$ $\left./\left|\log a_{n+1}\right|\right)=0$. Hence $P$ is not h.d.e.
3.6. Proposition. Let $P$ be a dimension-bounded $W$-space. If ( $P_{k}: k \in K$ ) is an $\omega$-partition of $P$ and all $P_{k}$ are dimension-exact, then $P$ is dimension-exact and $R w(P)=\Sigma\left(R_{w}\left(P_{k}\right): k \in K\right)$.

Proof. We can assume that $K=N$. Put $T_{n}=\sum\left(P_{k_{1}}: k \leqq n\right)$. By 3.2, all $T_{n}$ are dimension-exact and $R w\left(T_{n}\right)=\sum\left(R w\left(P_{k}\right): k \leqq n\right)$. Since $T_{n} \leqq P$, we have $R w\left(T_{n}\right) \leqq u w(P)$ for all $n \in N$, hence $\sum\left(R w\left(P_{k}\right): k \in N\right) \leqq$ $\leqq \operatorname{uw}(P)$. By 3.4, uw $(P) \leqq \sum\left(R w\left(P_{k}\right): k \in N\right)$, which proves the proposition.
3.7. Proposition. Let $\left(P_{k}: k \in K\right)$ be an $\omega$-partition of a di-mension-bounded $W$-space $P$. If all $P_{k}$ are hereditarily dimensionexact, then so is $P$. - This is an easy consequence of 3.6.
3.8. Proposition. Let $P$ be a dimension-bounded $W$-space. Let $\mathcal{M} \subset \exp P$. If all $S \in \mathcal{M}$ are hereditarily dimension-exact, then so is $\sup \mathbb{M}$.

Proof. By 1.3 , we can assume that $\mathcal{M}$ is countable. If $\mathcal{M}=$ $=\left\{S_{0}, S_{1}\right\}$, then, clearly, $\left\{S_{0}-S_{0} \wedge S_{1}, S_{0} \wedge S_{1}, S_{1}-S_{0} \wedge S_{1}\right\}$ is $s$ partition of $S_{0} \vee S_{1}$, consisting of ${ }^{\prime} h . d . e . ~ s u b s p a c e s ~ a n d ~ t h e r e f o r e, ~$ by $3.7, S_{0} \vee S_{1}$ is h.d.e. If $\mathcal{M}=\left\{S_{0}, S_{1}, \ldots\right\}$, put, for $n=0,1,2, \ldots$,
$T_{n}=V\left(S_{i}: i \leqslant n\right), U_{0}=T_{0}, U_{n+1}=T_{n+1}-T_{n}$. Then $U_{n}$ are h.d.e., $\left(U_{k}\right.$ : $: k \in N$ ) is an $\omega$-partition of sup $\mathcal{M}$. Hence, again by 3.7 , $\sup \mathcal{M}$ is h.d.e.
3.9. Proposition. Let $P$ be a dimension-bounded $W$-space. Then there exists exactly one maximal hereditarily dimension-exact subspace $S \leqq P$. The subspace $S$ is pure and no non-null $T \leqq P-S$ is hereditarily dimension-exact.

Proof. Let $\mathcal{K}$ be the collection of all h.d.e. subspaces $U \leqslant P$. Put $S=\sup , \mathcal{M}$. By 3.8, $S$ is h.d.e. Clearly, if $T \leqslant P-S$ is h.d.e., then, by $3.7, S+T$ is h.d.e., hence $S+T \leqslant S, w T=0$. To prove that $S$ is pure, let $S=f . P$, let $0<\varepsilon<1 / 2$ and let $X=\{q \in Q: \varepsilon<f(q)<1-$ $-\varepsilon\}$. Then $\varepsilon .(X S)$ is h.d.e., hence $S+\varepsilon .(X S)$ is h.d.e. and therefore $w(X . S)=0$. This implies $\bar{\mu} X=0$.
3.10. We present an example of a dimension-bounded $W$-space $P$ such that no non-null $S \leqslant P$ is dimension-exact. The example is closely related to $A$. Rényi's example (see [4]) of a real-valued random variable $\xi$ such that $\bar{\sigma}(\xi) \neq \underline{d}(\xi)$.

Let $\left(a_{n}: n \in N\right.$ ) be a decreasing sequence of positive reals, $a_{n} \rightarrow 0$. Let $\langle Q, \nu\rangle$ be the product of $\omega$ copies of $\left\langle\{0,1\}, \nu_{0}\right\rangle$, where $\nu_{0}\{0\}=\nu_{0}\{1\}=1 / 2$. Put $\mu=\bar{\nu}$. For $\left(x_{i}\right),\left(y_{i}\right) \in Q$ put $\rho\left(\left(x_{i}\right),\left(y_{i}\right)\right)=\sup \left(a_{i}\left|x_{i}-y_{i}\right|: i \in N\right)$. Clearly, $P=\langle Q, \rho, \mu\rangle$ is a $W-$ space.

We are going to give an outline of the proof of (1) ud(X.P)= $=\overline{\lim }\left(n /\left|\log a_{n}\right|\right), \operatorname{ld}(X P)=\lim \left(n /\left|\log a_{n}\right|\right)$ for each $X \in \operatorname{dom} \mu$ of positive measure. The following simple fact will be used: (2) if $m \in N, m \geqq 1, a>0, b>0, m a \geqq b, 0 \leqq x_{i} \leqq a, \sum x_{i}=b$, then $H\left(x_{1}, \ldots\right.$ $\left.\ldots, x_{n}\right) \geqq b \log (b / a)$. The proof of this fact is easy and can be omitted. - Let $n \in \dot{N} ; a_{n}>\delta \leq a_{n+1}$. It is easy to see that $E\left(\delta^{*}(X, P)\right)=H\left(\mu\left(X \cap B\left(u_{0}, \ldots, u_{n}\right)\right):\left(u_{0}, \ldots, u_{n}\right) \in\{0,1\}^{n+1}\right)$, where $B\left(u_{0}, \ldots, u_{n}\right)$ consists of all $\left(x_{i}\right) \in Q$ such that $x_{i}=u_{i}$ for $i=0, \ldots$ $\ldots, n$. This implies that (3) $E(\sigma *(X, P)) \leq(n+1) \cdot \mu X$. On the other hand, by (2), we have (4) $E(\delta *(X P)) \geq \mu x \cdot \log \left(\mu X \cdot 2^{n+1}\right)=(n+1)$. - $\mu X-L(\mu X)$. - For any positive $\delta<a_{0}$, let $f(\sigma)$ be the largest $n$ such that $a_{n}^{\prime}>\sigma^{\prime}$. Then, by (3) and (4), we have $\mid E\left(\delta^{*} *(X, P)\right)$ -- $\mu \mathrm{X} \cdot\left(\mathrm{f}\left(\sigma^{\prime}\right)+1\right)\left|/\left|\log \sigma^{\prime}\right| \rightarrow 0\right.$ for $\delta^{\prime \prime} \rightarrow 0$, and therefore ud(X.P)= $=\lim \left(f\left(\sigma^{\sigma}\right) /\left|\log \sigma^{\prime}\right|\right), \operatorname{ld}(X \cdot P)=\lim \left(f\left(\sigma^{v}\right) /\left|\log \sigma^{\sigma}\right|\right)$. It is easy to see that the upper (lower) limit of $f\left(\sigma^{\prime}\right) /\left|l o g \delta^{\prime}\right|$ for $\delta^{\sigma} \rightarrow 0$ is equal to that of $n /\left|\log a_{n}\right|$ for $n \rightarrow \infty$. This proves the assertion (1).

Clearly, it is possible to choose a sequence ( $a_{n}: n \in N$ ) such that the upper (lower) limit of $n /\left|\log a_{n}\right|$ is equal to 1 (to 0 ). Then, by (1), we have $u d(S)=1,1 d(S)=0$ for each pure non-null $S \leqq P$. If $S \leqq P$ is not pure, $W S>0$, then there exists a non-null pure $T \leqq S$, hence $u d(S)>0$ (in fact, it is easy to see that ud(S) = $=1)$. Clearly, $\operatorname{ld}(S)=0$. Hence, no non-null $S \leqq P$ is dimension-exact.
3.11. Theorem. Let $P$ be a dimension-bounded $W$-space and let $S$ be its maximal hereditarily dimension-exact subspace. Then $X \mapsto \operatorname{Rw}(X . S)$, defined for $X \in \operatorname{dom} \bar{\mu}$, is a measure on $Q$, absolutely continuous with respect to $\bar{\mu}$.

Proof. If $x_{n} \in \operatorname{dom} \bar{\mu}, n \in N$, are mutually disjoint, $x=U X_{n}$, then ( $X_{n} \cdot S: n \in N$ ) is an $\omega$-partition of X.S and therefore, by 3.6, $\operatorname{Rw}(X . S)=\sum \operatorname{Rw}\left(X_{n} . S\right)$. Hence $X \mapsto \operatorname{Rw}(X . S)$ is a measure on $Q$, which is abvolutely continuous, since there is a number $b$ such that, for any $X \in \operatorname{dom} \bar{\mu}, u w(X, P) \leqq b \cdot w(X \cdot P)=b \cdot \bar{\mu} X$.
3.12. Definition. Let $P=\langle Q, \rho, \mu\rangle$ be a $W$-space. A $\bar{\mu}$-measurable function $f: Q \rightarrow R_{+}$will be called an Rw-density function (or simply an Rw-density) for $P$ if, for any $S=g . P \leqq P$, Rw(S) $=$ $=\int \mathrm{fgd} \mu\left(\right.$ hence $\left.\operatorname{Rd}(S)=\int \mathrm{fgd} \mu / \mathrm{wS}\right)$.

3:13. Theorem. If a $W$-space $P=\langle Q, \rho, \mu\rangle$ is dimension-bounded and hereditarily dimension-exact, then (1) there exists an Rw-density function for $P$, (2) if both $f_{1}$ and $f_{2}$ are Rw-density functions for $P$, then $f_{1}$ and $F_{2}$ coincide $\mu$-almost everywhere.

Proof. I. Let $\nu$ denote the measure $X \mapsto R w(X . P)$, see 3.11. Since, by 3.11, $\nu$ is absolutely continuous with respect to $\bar{\mu}$, there exists a function $f: Q \rightarrow R_{+}$such that $\int_{X} f d \mu=\nu(X)$ for any $X \in \operatorname{dom} \bar{\mu}$. It is easy to prove that $\int$ fgd $\mu=\operatorname{Rw}(g . P)$ whenever $\mathrm{g} . \mathrm{P} \leqq \mathrm{P}$. - II. If both $\mathrm{f}_{1}$ and $\mathrm{f}_{2}$ are Rw-density functions, then $\int_{X} f_{1} d \mu=\int_{X} f_{2} d \mu$ for all $X \in \operatorname{dom} \bar{\mu}$, hence $f_{1}$ and $f_{2}$ coincide $\mu$-almost everywhere.

4
4.1, Fact. For any non-null $W$-spaces $P_{1}$ and $P_{2}, d\left(P_{1} \times P_{2}\right)=$ $=\max \left(d\left(P_{1}\right), d\left(P_{2}\right)\right)$.

Proof. Put $P_{i}=\left\langle Q_{i}, \varphi_{i}, \mu_{i}\right\rangle, P_{1} \times P_{2}=\langle Q, \rho, \mu\rangle$. For any $u \in R_{+}$, put $\left.B(u)=\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in Q \times Q: \rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)>u\right\}, B_{i}(u)=$ $=\left\{\left(x_{i}, y_{i}\right) \in Q_{i} \times Q_{i}: \rho_{i}\left(x_{i}, y_{i}\right)>u\right\}, i=1,2$. If $x \in Q_{1} \times Q_{1}$, put
$M(X)=\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in Q \times Q:\left(x_{1}, y_{1}\right) \in X\right\}$; if $Y \subset Q_{2} \times Q_{2}$, put $M(Y)=\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in Q \times Q:\left(x_{2}, y_{2}\right) \in Y\right\}$. It is easy to see that (1) if $u_{1}, u_{2} \in R_{+}, u=\max \left(u_{1}, u_{2}\right)$, then $B(u) \subset M\left(B_{1}\left(u_{1}\right)\right) u$ $\cup M\left(B_{2}\left(u_{2}\right)\right)$, (2) if $u \in R_{+}$, then $B(u) \supset M\left(B_{1}(u)\right) \cup M\left(B_{2}(u)\right)$. Put $A=\{u:[\mu \times \mu](B(u))=0\}, A_{i}=\left\{u: \bar{\mu}_{i}\left(B_{i}(u)\right)=0\right\}, i=1,2$. By (1), we have (3) if $u_{1} \in A_{1}, u_{2} \in A_{2}$, then $\max \left(u_{1}, u_{2}\right) \in A$; by (2), we get (4) if $u \in A$, then $u \in A_{1} \cap A_{2}$. Clearly, (3) and (4) imply the assertion.
4.2. Fact. If $P_{i}, i=1,2$, are non-null $W$-spaces, then $E\left(\sigma^{\sim} *\left(P_{1} \times P_{2}\right)\right) \leqq E\left(\sigma * P_{1}\right) \cdot W P_{2}+E\left(\tilde{\sigma} * P_{2}\right) \cdot w P_{1}$, for all positive reals $\sigma^{\sim}$.

Proof. We can assume that $E\left(\sigma^{\sim} * P_{i}\right)<\infty$. Let $b>E\left(\sigma^{\sigma} * P_{1}\right)$. $\cdot W P_{2}+E\left(\delta^{\sim} * P_{2}\right) \cdot W P_{1}$. Choose $b_{1}$ and $b_{2}$ such that $E\left(o r * P_{i}\right)<b_{i}$, $b_{1} \cdot w P_{2}+b_{2} \cdot w P_{1}\left\langle b\right.$. Put $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle$. By 2.3 , there are pure $\omega$-partitions $\left(X_{i k} \cdot P_{i}: k \in K_{i}\right)$ of $P_{i}, i=1,2$, such that $d\left(X_{i k}\right) \leqq \delta$ and $H\left(\bar{\mu}_{i} X_{i k}: k \in K_{i}\right)<b_{i}$. Put $K=K_{1} \times K_{2}$ and, for any $(k, j) \in K$, put $V_{k j}=X_{1 k} \cap X_{2 j}$. 'llearly, $\left(V_{k j} . P:(k, j) \in K\right)$ is a pure w-partition of $P=P_{1} \times P_{2}$. By 4.1, $d\left(V_{k j} \cdot P\right) \leqq \sigma^{\prime}$ for all $(k, j) \in K$. Since $\bar{M} V_{k j}=$ $=\bar{\mu}_{1} X_{1 k} \cdot \bar{u}_{2} X_{2 j}$, we get, by $1.13 B, \quad H\left(\bar{\mu} V_{k j}:(k, j) \in K\right)=H\left(\bar{\mu}_{1} X_{1 k}\right.$ : $\left.: k \in K_{1}\right) \cdot w P_{2}+H\left(\bar{\mu}_{2} X_{2 j}: j \in K_{2}\right) \cdot w P_{1}<b_{1} \cdot w P_{2}+b_{2} \cdot w P_{1}<b$. Hence, by 2.3, $E(\tilde{c} * P)<b$, which proves the assertion.
4.3. Fact. Let $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle, i=1,2$, be $W$-spaces. Let $P=P_{1} \times P_{2}=\langle Q, \varsigma, \mu\rangle$. Let $A \in \operatorname{dom} \bar{\mu}$. For $x \in Q_{1}$ let $f(x)$ be equal to the $\bar{\mu}_{2}$-measure of $\left\{y \in Q_{2}:(x, y) \in A\right\}$ if this set is $\bar{\mu}_{2}$-measurable, and to zero if not. Then $f$ is $\bar{\mu}_{1}$-measurable, $w(A \cdot P)=$ $=w\left(f \cdot P_{1}\right)$ and $d\left(f \cdot P_{1}\right) \leqq d(A \cdot P)$.

Proof. The first two assertions follow at once from wellknown theorems. Put. $B=\left\{x \in \mathbb{Q}_{1}: f(x)>0\right\}, A^{\prime}=A \cap\left(B \times Q_{2}\right)$. Clearly, $\bar{\mu}\left(A \backslash A^{\prime}\right)=0$, hence $A^{\prime} \cdot P=A . P$. Put $a=d(A . P)$. Let $U$ consist of all $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in A^{\prime} \times A^{\prime}$ such that $\rho_{1}\left(x_{1}, y_{1}\right)>a$. Clearly, $[\mu \times \mu](U)=0$. Let $T$ consist of all $\left(x_{1}, y_{1}\right) \in B \times B$ such that $\rho\left(x_{1}, y_{1}\right)>a$. For any $\left(x_{1}, y_{1}\right) \in T$, the set of all $\left(x_{2}, y_{2}\right) \in Q_{2} \times Q_{2}$ such that $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in U$ is equal to $\left\{\left(x_{2}, y_{2}\right) \in Q_{2} \times Q_{2}\right.$ : $\left.:\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in A^{\prime} \times A^{\prime}\right\}=\left\{z \in Q_{2}:\left(x_{1}, z\right) \in A^{\prime}\right\} \times\left\{z \in Q_{2}:\left(y_{1}, z\right) \in\right.$ $\left.E A^{\prime}\right\}$, and therefore its $\left[\mu_{2} \times \mu_{2}\right]$-measure is positive. Together with $[\mu \times \mu](U)=0$, this implies, by well-known theorems, $\left[\mu_{1} \times \mu_{1}\right](T)=0$, which proves $d\left(B \cdot P_{1}\right) \leqq a$, hence $d\left(f_{1} \cdot P\right) \leqq a$.
4.4. Fact. Let $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle, i=1,2$, be $W$-spaces. Let - 750 -
$P=P_{1} \times P_{2}, P=\langle Q, \varrho, \mu\rangle$. Then, for any $\left.\delta\right\rangle 0, E(\delta * P) \geqq w P_{2}$. - $E\left(\sigma * P_{1}\right)$.

Proof. By 2.3 , it suffices to show that $\eta^{*}(\delta * P) \geqq w_{2}$. - $\eta_{1}\left(\sigma * P_{1}\right)$. We can assume that $w P_{2}>0$ and $\eta^{*}(\sigma * P)<\infty$. Choose a number $b>\eta^{*}\left(\sigma^{\sigma} * P\right)$ and choose a pure $\omega$-partition ( $A_{k} \cdot P: k \in K$ ) of $P$ such that $H\left(\bar{\mu} A_{k}: k \in K\right)<b, d\left(A_{k} \cdot P\right) \leqslant \delta$. By 4.3, there are $\tilde{\mu}_{1}$-measurable functions $f_{k}, k \in K$, such that $d\left(f_{k} \cdot P_{1}\right) \leqslant d\left(A_{k} . P\right) \leqslant \delta$ and $w\left(f_{k} \cdot P_{1}\right)=w\left(A_{k} \cdot P\right)$. Clearly, $\left(\left(f_{k} / w P_{1}\right) \cdot P_{1}: k \in K\right)$ is a partition of $P_{1}$. Since $d\left(f_{k} \cdot P_{1}\right) \leqslant \delta^{\sigma}$ for all $k$, we get $\eta\left(o^{\circ} * P_{1}\right) \leqslant$ $\leq H\left(w\left(f_{k} \cdot P_{1}\right) / w P_{2}: k \in K\right)=H\left(w\left(A_{k} \cdot P\right) / w P_{2}: k \in K\right)<b / w P_{2}$. This proves $\eta^{*}\left(\sigma^{*} * P\right) \geqq W P_{2} \cdot \eta\left(\sigma * * P_{1}\right)$.
4.5. Proposition. Let $P_{1}$ and $P_{2}$ be non-null $W$-spaces. Let $P=P_{1} \times P_{2}$. Then $\max \left(u d\left(P_{1}\right) ; u d\left(P_{2}\right)\right) \leqslant u d(P) \leqslant \operatorname{ud}\left(P_{1}\right)+u d\left(P_{2}\right)$, $\max \left(l d\left(P_{1}\right), l d\left(P_{2}\right) \leqq l d(P) \leqq \operatorname{ud}\left(P_{1}\right)+l d\left(P_{2}\right)\right.$. If $P_{1}$ and $P_{2}$, are dimehsion exact, then max $\left(\operatorname{Rd}\left(P_{1}\right), \operatorname{Rd}\left(P_{2}\right)\right) \leqq l d(P) \leqq u d(P) \leqq R d\left(P_{1}\right)+\operatorname{Rd}\left(P_{2}\right)$.

This is an immediate consequence of 4.2 and 4.4.
4.6. Definition. Let $P$ be a $W$-space or a metric space. If there exists a function $f: R_{+}^{*} \longrightarrow N$ such that $(\log f(\varepsilon)) /|\log \varepsilon| \longrightarrow$ $\longrightarrow 0$ for $\varepsilon \longrightarrow 0$ and, for all sufficiently small $\varepsilon>0$, there is an ( $\varepsilon, f(\varepsilon)$ )-partition of $P$ (respectively, an ( $\varepsilon, f(\varepsilon)$ )-covering of $P$ consisting of Borel sets), then we will say that $P$ satisfies SGC ("slow growth condition").

Remark. There are countable topologically discrete metric spaces which do not satisfy SGC. On the other hand, there exist infinite-dimensional compact metric spaces satisfying SGC.
4.7. Fact. If a W-space or a metric space satisfies SGC, then so does each of its subspaces. The metric space $R^{n}, n=1,2$, ..., satisfies SGC.
4.8. Proposition. Let $P=\langle Q, \rho, \mu\rangle$ be a weakly Borel metric $W$-space and l'et $\langle Q, \rho\rangle$ be separable. If $\langle Q, \rho\rangle$ satisfies SGC, then so does $P$.

Proof. Let $f: R_{+}^{*} \rightarrow N$ be a function possessing (with respect to 〈Q, $\rho$. ) the properties described in 4.6. For each $\varepsilon \in R_{+}^{*}$, let ( $X_{k}: k \in K_{\varepsilon}$ ) be an ( $\varepsilon, f(\varepsilon)$ )-covering of $\langle Q, \rho\rangle$ consisting of Borel sets. Clearly, all $K_{\varepsilon}$ are countable, hence we can assume $K_{\varepsilon}=N$. For $n \in N$, put $Y_{\varepsilon, n}=X_{\varepsilon} \backslash U\left(X_{k}: k<n\right)$. It is easy to see that ( $Y_{k}: k \in N$ ) is an ( $\varepsilon, f(\varepsilon)$ )-partition of $P$.
4.9. Proposition. Let $P_{1}$ and $P_{2}$ be $W$-spaces (respectively, metric spaces). If both $P_{1}$ and $P_{2}$ satisfy $S G C$, then so does $P=P_{1} \times P_{2}$.

Proof. Let $P_{i}$ be $W$-spaces (the other case is analogous). Let $f_{i}: R_{+}^{*} \rightarrow N$ possess, with respect to $P_{i}$, the properties described in 4.6. It is easy to see that $f=f_{1} f_{2}$ possesses these properties with respect to $P$, since if ( $X_{i k}: k \in K_{i}$ ) is an ( $\varepsilon, f_{i}(\varepsilon)$ )partition of $P_{i}, i=1,2$, then $\left(X_{1 k} \times X_{2 j}:(k, j) \in K_{1} \times K_{2}\right)$ is an ( $\varepsilon, f(\varepsilon)$ )-partition of $P$.
4.10. Theorem. Let $P_{1}$ and $P_{2}$ be $W$-spaces satisfying SGC. If both $P_{1}$ and $P_{2}$ are dimension-exact, then so is $P=P_{1} \times P_{2}$, and $\operatorname{Rd}\left(P_{1} \times P_{2}\right)=\operatorname{Rd}\left(P_{1}\right)+\operatorname{Rd}\left(P_{2}\right)$.

Proof. Let $P_{i}=\left\langle Q_{i}, \rho_{i}, \mu_{i}\right\rangle, P=\langle Q, \varrho, \mu\rangle$. For $i=1,2$, let $f_{i}$ possess, with respect to $P_{i}$, the properties described in 4.6. For $n \in N$, put $\varepsilon_{n}=2^{-n}, p_{n}^{(i)}=f_{i}\left(\varepsilon_{n}\right), p_{n}=p_{n}^{(1)} p_{n}^{(2)}$ For $i=1,2$, $n \in N$, let $\left(X_{n k}^{(i)}: k \in K_{n}^{(i)}\right)$ be an $\left(\varepsilon_{n}, p_{n}^{(i)}\right)$-partition of $P_{i}$. By 2.6 , $\lim H\left(\bar{\mu}_{i} X_{n k}^{(i)}: k \in K_{n}^{(i)}\right)=R w\left(P_{i}\right)$. Put $K_{n}=K_{n}^{(1)} \times K_{n}^{(2)}$; for $(k, j) \in K_{n}$, put $Y_{n k j}=X_{n k}^{(1)} \times X_{n j}^{(2)}$. Clearly, $\left(Y_{n k j}:(k, j) \in K_{n}\right)$ is an $\left(\varepsilon_{n}, p_{n}\right)$-partition of $P$. Since $\bar{\mu}_{Y_{n k j}}=\bar{\mu}_{1} X_{n k}^{(1)} \cdot \bar{\mu}_{2} X_{n j}^{(2)}$, we get, by $1.13 B$, $\lim H\left(\bar{\mu} \cdot Y_{n k j}:(k, j) \in K_{n}\right)=w P_{2} \cdot \operatorname{Rw}\left(P_{1}\right)+w P_{1} \cdot \operatorname{Rw}\left(P_{2}\right)$, hence, by 2.6 , $\operatorname{Rw}(P)=w P_{2} \cdot \operatorname{Rw}\left(P_{1}\right)+w P_{1} \cdot \operatorname{Rw}\left(P_{2}\right)$, which proves the theorem.

## References

[1] J. BALATONI, A. RÉNYI: On the notion of entropy (Hungarian), Publ.Math.Inst.Hungarian Acad.Sci. 1(1956), 9-40. - English translation: Selected papers of Alfred Rényi, vol.I,pp.558-584,Akadémiał Kiado, Budapest, 1976.
[2] M. KATĚTOV: Extended Shannon entropies I, Czechosl.Math.J. 33(108)(1983), 564-601.
[3] M. KATËTOV: On extended Shannon entropies and the epsilon entropy, Comment.Math.Univ.Carolinae 27(1986), 519-534.
[4] A. RÉNYI: On the dimension and entropy of probability distributions, Acta Math.Acad.Sci.Hung. 10(1959), 193-215.
[5] A. RÉNYI: Dimension, entropy and information, Trans.2nd Prague Conf. Information Theory, pp.545-556.Prague , 1960 .
[6] A. RÉNYI, J. BALATONI: Uber den Begriff der Entropie, Arbeiten zur Informationstheorie, pp.117-134.

Deutscher Verlag der Wissenschaften, Berlin, 1957.

Matematický ústav, Karlova univerzita, Sokolovská 83 , 18600 Praha 8, Czechoslovakia
(Oblatum 25.7. 1986)

1

- 753-

