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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986) 

ON THE SOLUTION OF TRANSONIC FLOWS 
WITH WEAK SHOCKS 

Miloslav FEISTAUER and Jindřich NEČAS 

Abstract 

We prove that the solution of a compressible (generally 
transonic) flow of an ideal fluid can be obtained as a limit of 
viscous solutions, if the viscosity and heat conductivity tend 
to zero. To obtain an isentropic irrotational flow it is necessary 
to control the entropy and temperature on the boundary in a con­
venient way. 

AMS classification: 35M05, 35Q10, 35F30, 76A02, 76H05, 76N15 

Key words: viscous flow, transonic flow, Navier-Stokes equations, 
entropy, weak solution, conservation law equations, method of cha­
racteristics 

1. Introduction 

Irrotational isentropic transonic flow is described by the 

boundary value problem for a velocity potential u: 

(1.1) a) - JL- (p<|7u|-*)!£-) « o in Q, 

b) p(IVuP) |~~ = g on dQ, 

where 

1 
(1.2) p(lVu|*) - Po(l - l-^IVu!-*)*"

1. 

The constants p0 and a0 are the density and speed of sound respec­

tively at zero velocity, K > 1 is the adiabatic constant. 
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from, physical reasons it is necessary to control the entropy 

in an appropriate way since the entropy information is not contain­

ed in equation (1.1,a). Bristeau, Glowinski, Pironneau, Perriaux, 

Perrier, Poirier propose in their papers (see e. g. [l]) the entro­

py condition in the form 

(1.3) Au <; K. 

Problem (1.1) - (1.3) was studied theoretically in [3,4] where 

it was proved that the condition (1.3) together with the assumption 

of the bounded velocity 

(1.4) ivu|2 <; S o < ii| 

have compactification properties. 

In this paper we try to give theoretical foundations of the 

viscosity method used in the transcnic flows. (For some numerical 

approaches see e. g. [8].) We start from the fact that the entropy 

flux is automatically governed by the conservation law equations 

for small parameters of the viscosity y and heat conductivity k and 

prove the existence of a weak nonviscous solution as a limit of 

viscous flow fields, if y, k -> 0+. 

Similar results were derived by Di Perna [2] for a nonstatio-

nary hyperbolic system. In [6] C Morawetz applied artificial vis­

cosity and hodograph approach. 

Here we give a brieft survey of our fundamental results which 

will appear in detail in the forthcoming paper [5]. 

2. Formulation 

Let Qc!T(N » 2 or 3) be a simply connected domain with 

a Lipschitz-continuous boundary 3 8f We shall use the following 
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notation: p - density, p - pressure, T - temperature, T0 - tempe­

rature at zero velocity, v = (v1,,..,vN) - velocity, S - entropy, 

c and c specific heats at constant pressure and volume, respec­

tively, y - viscosity, k-th/ermal conductivity, R = c - c , K = 

= CD/
C
V- Rf c i c , \i, k are positive constants. Hence, K > 1. 

n = ( n . i , . . . , n N ) denotes a unit outer normal to an. 

Stationary flow of a compressible, perfect, viscous, conduc­

tive gas in the domain Q is governed by the following system: 

(2.1) p = RpT (state equation) 

(2.2) a) ---|- (P V
±) = 0 in n (continuity equation) 

b) Pvini ~ 9 o n 9ft' 

c) Iangds = °' 
(2.3) a) pv. Jli + H - = - |p^-(^i) + 2 y ^ e ±.(v), 

3 v. '3v 
e i j ( v ) =%(3lTT + 51^> in 0, i - 1 N 

(Navier-Stokes equations), 

b) v = v° on 3 Q, 

(2.4) a) T -£- (pSv±) = k A T + 

2 9 vi + 2yei;.(v) e±:.(v) - |y (—i)
 2 in Q 

(energy equation), 

b) || = h on an, 

c) S = c In T 

V K-l* 

P 

(We use the summa'tion convention over repeated indices.) 
g, h, v° are given functions, v, k, K, c , c , R given constants, 

p, p, T, S, v are unknown functions. 
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.Let us use the usual notation W 1' P(Q), W1#p(8) and Lp(8), 

Lp(9 8) (1 ... p i +«) for the Sobolev and Lebesgue spaces, respecti­

vely. Further, we put W1,P(8,RN) = W1,p(8) x ... x W1,p(8) (N-ti-

mes), LP(8,RN) - LP(8) x ... x LP(8) etc. 

We .shall assume that for each y > 0, k > 0 the above problem 

has a weak solution satisfying the conditions \ 

(2.5) p<£W1,*(8), 0 < po -S p(x) £ pi < +», 

(2.6) vc.W1,-«(8,RN), |v| £ K, 

(2.7) g<sL°°(38), h eL
1(38), |g|, «hllLl(afi) ^ K, 

(2.8) TeW 1f a(S), O < To -S T(x), 

(2.9) | f pdx| <S K 

'8 

with constants por Pi/ K, T0 independent of y, k, 

and the equations 

(2.10) |pvi |±- dx - f g(J»ds v><£.W1,-*(8); 

f 3 v i f 9 V 2 f 3 v i 3 *i r 
( 2 a i ) lpV3 5xJ * i d x = ] Q

P 3 ^ ta + y |05xj 5^te-2^eij<v>*lj<*>to 

V $ - (<J>i , . . . r<j> N )eW 1 /2( Q , R
N ) f 

v ° € - W 1 ' a ( 8 , R N ) , v = v° on 3 8; 

( 2 .12 ) - fTpSv. | ± - dx + f TSg$ds - f | 2 - pv.S<J>dx -

- - k f VT.V<J»dx + k f hifrds + f E (v)$dx V <|>c W1,-»(8) n L°°(8) , 
' 8 J 38 ' 8 

where 

(2.13) E(v) « 2 y e i j ( v ) e l j ( v ) - | y ( _ i ) \ 

I t i s easy to find out that 

(2 .14 ) E(v) ;> O. 
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Let us remark that from (2.4,a), (2.8) and (2.14) we derive 

the entropy condition, i. e. the second law of thermodynamics, 

which is postulated in the form 

(2.15) T div(pS v) - k T div(2£—~^) :> 0. 

3. Fundamental estimates 

We shall derive the estimates of the solutions to problems 

(2.10) - (2.12) for y, k > 0, k = 0y, where 6 > 0 is a constant 

independent of y and k. Our considerations will be carried out 

under (2.5) - (2.9) and the following fundamental assumption,; 

(3.1) |i f Sgds| < K Vy > 0. 

v hn 
It holds e. g., if 

(3.2) f |S - S0lds <. yK, Vy > 0, 
'Эß 

K-l — 

where So = c l n ( V p 0 ) and p0po * RT0. The constants K, K are 

independent of y, k. 

By c we shall denote a positive generic constant independent 

of y, k, which can have different values at different places. 

3.3. Theorem. We have 

1 ^ - * IJ5* -- -
'a 

Proof follows from (2.12), where we put <f> = i and from (2.7), 

(2.8), (3.1). H 

3.4. Theorem. We have 

a) f T*dx £ c, b) f E(v)dx <. c, c) f |VT|dx <. c. 
jn jQ >n 
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Sketch of the proof. Substituting <j> = 1 in (2.12), and using 

the Cauchy inequality we get 

(3.5) [ E(v)dx £ c + c(f T 2dx)*. 
jQ 'to 

Simi lar ly as in [7] we prove t h a t 

(3.6) | p l L a { 0 ) * el%mll&-l„,,aw + l j p d x | } . 

Since x 3v »• 
(3.7) [»,•] - 2Jfiei.(v)ei.(*)dx - §J - 1 _ i dx 

is a bilinear form on W1f-*<n,RN) x W1 .--»(«,RN) and [v,v] ;> 0, 

the Cauchy Inequality holds. From (2.12) and (3.6) we derive the 

estimate 

IPlLa(n) *
 c ( 1 + y^(J E(v>dx>*>-

This, the equation p =- RpT and (3.5) imply 

(3.8) «T,W> * °(1 + P * | T | L W ' 

which already gives assertion a). Assertions b),c) immediately fol­

low by applying (2.8), (3.5), Theorem 3.3 and the Cauchy inequality. 

n 

3.9. Theorem. Let ||v0Ww., f 2 (QfRK) + Mv0ttL"(nfI^) *
 K* 

Then 

(3.10) a) f i V Yj a dx £ c, b) f IVvl^dx £ c . a) f ІЦÍl dx S c, b) í 

N Proof. We have v - v° © W1 >-*(£},R ); thus, in virtue of the re-
oo M 

gularization process, v - v° can be approximated by 4 & C (Q,R ) 
N with a compact support in to (i. e., <f>e-D(a;R )) such that 

HflT*/ft «
N\ -* 2K* F o r these, <|>, repeating the use of Green's theorem L, \ u, K ; 

(similarly^ as in the proof of Korn's inequality in [7]), we get 

the inequality 
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e. .CФ)e..<ф) 
,,.xi) af

a
"-Д

ł > ,;-. ł t ,a. , ( ß(-^Ľ + ШţJй±ìðx 

. ^mïi^s ^m&^ , Ф „ L . ( ß ř R N ) . 

Further, the inequality 

1 
~ E(<|>) St 2 e ± j (^) ei;.((j)) - (div <j>)a, 

combined with (3.11) and Theorem 3.1 implies the estimate 

If ESI^UX> | Jiiv-vlLlidx . c ( [ l ^ v - v ' ) l - d x ) ^ 
yj Q - JQ J- i Q -

By Theorem 3.1 and the assumption of Theorem 3.9, 

if E< v~' 
"Jn т 

v°) 

-£~--dx ś c. 'ft 
If we put a = ( | v ( v-^ 0 ) | 2dx)^, we see that a* - ca - c £ 0 

- jS 
with constants c, c > 0 independent of a, y, k. This implies the 

existence of a constant ai > 0 independent of y, k such that 

a « [o,at]. Now we already easily derive (3.10,a). 

Assertion (3.10,b) will be obtained from (3.10,a), Theorem 

3.4 and the repeated application of the Cauchy inequality: 

f IWI^dx * (f i3-|±2dx)* ([ | vv|^T dx)* * 

k (f miZaxy* (f iwi^dx)* (f T*dx)'*. n 
in x > a •'si 

4. Limit for y -*• 0+ 

On the basis of the above results we can consider a sequence 

tun) , Mn > 0, yn •* 0 for n ->• « and a sequence of solutions 

(pft, Tn, pn, Sn, v n) of problems (2.10) - (2.12) with y := yn, 

k := 0Vin satisfying the conditions 
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(4.1) p
n
 - P (weakly) inL*(B), 

T
n
 -* T in L

p
(ft) Vpe [if 2), Tn - T almost everywhere in 0, 

v
n
 -* v (weakly) in W ' *(8,R

N
)

r
 v

n
 -> v (strongly) in 

LP
( 1
.,R

N
) VP«[I,-|?J>, 

v
n
 -» v almost everywhere in Q. 

4.2. Theorem. p
n
 * p in L

2
(fl). 

Proof. From the properties of the form [•#•] defined in 

(3.7) it follows that 

^[••"WI^O-HM)
 + l

*
l
L*(0

f
llM)l

| 

f 2 f
 Э V Ï Э ф

i 

(4.3) i г . n j ^ í v n ì в ^ í ф n í đ x - ft.n]a--Л î-J- đxl S 

<frn - | n , ip€W^ra(n,RN) n Lw(n,RN). 

On the basis of the estimates from Section 3 we find out that the 

sequence {hn}, where 

(4.4) h£ - -p»v» Jli in - Rpn ||a in, 

is bounded in La(n) and hence, we can assume that h n — h in L-»(Q). 

Let p > N, 1/q « 1 - 1/p. From the compact imbedding 

wJ'p(fijRN) CCL*(Q?RN) and continuous imbedding wJ'p(Q|RN) 

Cr W^ra(ft,RN) o L*(fi,RN) we prove that 

(4.5) h n - h in w"1'q(ft,RN). 

Now, let us use equation (2.11), where we substitute <J> := <J>n 

and apply the theorem on "negative norms": 

(4.6) j p l M ( n ) £ ccJ^lfH^!,,,,,, • |(oPdx|}. 
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Then, taking into account (4.3), (4.5) and pn •* P in L1(n), we 

find that 

l im llPn-Pmfl = 0 . 
m,n->» L^(Q) 

F i n a l l y , by i n t e r p o l a t i o n we have " Pn""pm"La(a) "* ° a n d n e n c e ' 

pn - p i n L*(ft) . H 

Theorem 4.2 implies that we can consider the following ad­

ditional assumption 

(4.1)* pn •» P almost everywhere in n. 

Now we shall prove that by the limit process p •* 0+, 

k « 3p «* 0+ we get a solution of the conservation law equations 

for a nonviscous fluid. 

4.7. Theorem. Let v, T, p be the limits from (4.1), 

S = cv In ~ — y and let Sft -» cy In ~~&£ - S in Li Ofi) . 

Then vc.W1'Vs(n,RN), TeW 1' 1(n), p«LB(il), |v| <: K, p0 s p <, p1# 

T ;> T0 and 

( 

Эv. r Эф 

4.8) f pv.11- dx - f g$ds VMW
1
'

a
(li), 

>n i 3 x
i hu 

f
 9 V

1 f
 3 <

h . N 
(4.9) pv. 3-i <J> dx - R

 P
T r~i dx y+ eW

0
'

a
(n,R

W
) , 

J
n
 3 3Xj i j

0
 3x

± 

(4.10) f pv.s||~ dx - f Sg^ds V« s.W
1 iz(n) n L°°(n). 

J
« *

 9 X
i
 J

9ft 

Proof. The limit process in the continuity equation is an 

easy consequence of Lebesgue's theorem. Let us pifbve (4.9). If we 

put in (2.11) p := Rp
n
T

n
, then by the Holder inequality, proper­

ties of v
n
, p

n f
 T

n
 and Lebesgue's theorem we show that 

(4ai)
 f

n

p n v
J ^ f *i

 dx
 * („

pv
j IsJ *i

 dx
 ^ * D < n , R

N
) . 
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Concerning the viscous terms, we have 

,2 f 3 v i 3 * i f 
(4.12) l y - J o S x - Sx- d x " -V»j • l j < v » > a 1 J U ) d x | 

5 c " n « * « ^ f a ( ! . , R N ) . 

f 3 V i 'f *•< M pv-i 5T5f • i d x = R PTHlT<3lx V<t>eD(Q,RN)( j n 3 9 x . i j f l 3 X i 

Hence, by (4.11) - (4.12) 

3v. ,( 3<{,4 

Now, due to TeL2(fi), p^L°°(Q) and the density of D(fl,RN) in 

w;5'2(a,RN) we get (4.9). 

Finally, we prove (4.10). It is evident that In T n - In T 

and In p n •* In p in L
2(ft) and thus, S n -*• S in L

2(Q). If we use 

the assumption that Sn •* S in L1(9Q) and put <J> := ̂  in (2.12), 
T n 

we can pass to the limit for n -*• «. 

5. Potential lsentroplc flow 

9, a 
Let a^< ~ J . We define the set 

(5.1) N = [Vu; u e w 1 , w ( Q ) , J Vu| 2 ' <.. "s,,, [ udx = 0} 
so j Q 

and denote by P the projector of the space L2(fi,R ) onto N . 
S Q 

5.2. Definition. Let {v11} be a sequence of velocities from 

(4.1). We say that v n converges to a potential flow, if 

(5.2)* |{vn - Pvn..La(a,RN) - 0, if n - «. 

Let us assume that pn, v
n satisfy the continuity equation 

in n u n», where Q' is a (sufficiently large) domain lying in the 

upwind direction to Q and all fluid particles travel from fl* into 

n through a common part BC3fifn3fir B 5*0. I. e., B is the outlet 

of a» and the inlet of Q. Let 0 » Oufl'o B, Vun « Pv
n, 
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(5.3) |vn|* «S s0 Vn„ 

We consider a nondegeneracy of the velocity fields. I. e., either 

(5.4,a) vn . x± ;> a > 0 Vn 

or 

(5.4,b) v
n |BH ^ a > 0 Vn. 

- ._ j| 
(a is a constant independent of n.) Further, let vncC2((X,R ), 

PneC1(<?), Tn€-C
a(Q) and let the velocity field "conserves the 

entropy information in the limit": 

(5.5) Wn|Vvll,,C(d%R-*a)"* °' l f n "* *• 

If xefl, then there exists exactly one trajectory (i. e. 

characteristic) xn(t) « xn(x;t) passing through x: 

(5.6) g|n m v n(x n), xn(0) - x. 

Let each such trajectory enter the domain Q at a point xn(x)eB 

at a time tn(x) < 0. 

On the basis of (5.4,a) or (5.4,b) it is easy to prove the 

existence of t0 e(-«,0) such that €
n(x) ;> t0 for all xefi and all n. 

Hence, if xeQ, t £ t0, then x
n(x;t) 4- 8. Fot te(t0,o] we denote 

ft? s {y = xn(x;t); xefl}. Now we demand that n1 is so large that 

fl^oo* Vt e ( t o , 0 ] . 

If we put 

<5-7> F» ' * f&+ SS? in I 
Fn " 0 in ft' - B, 

then (2.4,a) can be written as 

(5.8) §f& =- Fn. 
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(d/dt is the total time derivative, i. e. d/dt = 9/91 +Ny z/dx±.) 
i 

Integrating (5.8) we get 

f° 
(5.9) Sn(x) - Sn(xn(x)) -= Fn(Xn(x;t) )dt. 

The main result of this section is the following 

5.10. Theorem. Let 

T 
Sn -J c v In —j-»5j- (uniformly) on B. 

Po 
Then 

Sn - c v In —l^-j- in L
a(0). 

Po 

Sketch of the proof by the method of characteristics: 

We already know that the sequence {Sn} is convergent in L
2(0). 

kT — 1 

Let us prove that its limit is S 0 = c ln^T^po ) . Let us consider 

an arbitrary 6eD(0) and extend it onto R N by zero. Then 

= [ đtí F 
>t9 >a 

f [Sn(x) - Sn(xn(x))]pn(x)0(x)dx -
•'O 

Fn(xn(xft))pn(x)e(x)dx. 

Let us study e. g. the term 

(5.11) Qn = k n { ^ ^ -

" kn J P n ! y f T n ( y )
P n ( y n ( y ? t ) ) e ( y n ( y ? t n 

OnO* 

where yn(y?t) « yn(t) and 

(5.12) d ydt t } = " v n(y n( t>^ Yn(0) = y. 

From the mass conservation law it follows: 

(5.13) Pn(x)| D y n

|!
y ? t )| « pn(y)# Y « x nU;t) , xeO. 
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Hence, 

(5.14) Qn - kn í Щj$Ţ ( y n ( y ; t ) ) d y . 
Unilt 

Since Q has a compact support in ft, we can apply Green's 

theorem to (5.14). Then using condition (5.5), the assumption of 

Theorem 5.10 and estimates from Section 3, we derive the relation 

(5.15) lim J Pn(x)[Sn(x) - S0]©(x)dx = 0. 

Finally, from pn - P in L
2(Q) and the density of the set 

{p0; ec.D(R)} in L2(fl) we prove the assertion of our theorem. u 

Similarly we get 

5.16. Theorem. If 

T n - T0(l - §~|lv
nl*) I 0 on B, 

then 

T n - T0(l - §~|lv
n|2) - 0 in Li(0). 

5.17. Corollary* Under the assumptions of Theorems 5.10 and 

5.16 we have 
1 

P « Pod " j ^ ivp)***1. 

Moreover, if (5.2)* holds, then v = Vu, ueW2'^(8) and u is a weak 

solution of the transonic potential flow problem 

[ p ( | V u P ) Vu . V<j>dx = g<|>ds V<J>eW*»f2(Q). n 
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