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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986) 

MULTIPLIERS O N A NEAR LATTICE 
A. S. A. NOOR and William H. CORNISH 

Abstrаct 

A nearlattice is a lower semilattice in which any two elements have a 
supremum whenever they are bounded above. Here we generalize the con
cept of direct summand to nearlattices and show that the direct summands 
of a nearlattice S with 0 are precisely the central elements of J(S), the lattice 
of ideals. Then we discuss multipliers (meet translations) on nearlattices. 

Subject Classifications (1980) : 06A12, 06A99, 06B10 

1 Introduction 

Nearlattices, or lower semilattices with the property that any two elements 
possessing a common upper bound have a supremum, provide an interesting 
generalization of lattices. Cornish and Hickman [2] referred this property 
as the upper bound property, and a semilattice of this nature as a semilattice 
with the upper bound property. We refer the reader to [2, 3] for necessary 
background on nearlattices. 

Standard elements and ideals in lattices were first studied in depth by 
Gratzer and Schmidt [5]. Recently Cornish and Noor [3] has extended those 
concepts to nearlattices. An element V in a lattice 'L' is called standard if 
for any x, y € L, x A ( y V s ) _ = ( x A y ) v ( x A s ) . It is called neutral if 
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it is standard and for any x, y € L , s A ( x V y ) = ( s A x ) v ( s A y ) . An 
ideal of a lattice (nearlattice) is called standard if it is a standard element 
of the lattice of ideals. 

Central elements in a lattice were studied by Kolibiar in [7]. An element 
V in a lattice 'L' is called central if it is neutral, and complemented in each 
interval containing it. 

According to [8; 4.3, p-15], in a lattice *L' with 0, a V b denotes the 
fact that a A b = 0 and ( a V x ) A b = x A b for all x € L. For a subset 
H of L, Hv denotes the set of elements a € L such that a V b for all b £ 
H. Let L be a lattice with 0, and Hi, ..., Hn be its subsets, each of which 
contains 0. We say that L is the direct sum of Hi, ..., H„ and write 
L = Hi © . . . © # * , if 

(i) Every element a € L can be expressed (uniquely) in the form 
a = a% V .. . V an for some a, € H,, and 

(ii) Hi C Hj for i ^ j , i = 1, . . . , n; j = 1,. . . , n. 

The subsets Hi, ..., Hn are called direct summands of L. By [8; 4.8, 
p-16], every direct summand is an ideal of L. Janowitz in [6] has shown 
that the direct summands of a lattice L with zero are precisely the central 
elements of the lattice of ideals. 

For a lattice L, a map <f> : L —• L is called a multiplier if <£ ( a A b ) = 
<£ ( a ) A b f or each a, b € L. The set of all multipliers of L is denoted by 
M ( L ) and is known as the multiplier extension of L. 

Multipliers on semilattices and lattices have been previously studied by 
several authors. A good and accessible summary appears in [1], also c.f. 
[10]. 

In §2, we generalize the concept of direct summand to nearlattices. Then 
we show that the direct summands of a nearlattice S with 0 are precisely 
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the central elements of J(S) , which is an extension of JanowhVs result in 
[61-

In §3, we discuss multipliers on nearlattices. We extend some results of 
Nieminen [9], and include some corrections of certain errors of Nieminen's 
work in [9]. 

2 Direct Summands of a Nearlattice 

In a nearlattice S with 0, we define a V b to mean that a A b = 0 and 
((a A x) V (x A y)) A b = x A y A b for x, y € S. 

Suppose a V b holds in a lattice L with 0 in the sense of the introduction. 
Then for all x, y 6 L, 
(a V ((a A x) V (x A y))) A b = ((a A x) V (x A y)) A b and so 
((a A x) V (x A y)) A b = (a V ((a A x) V (x A y))) A b = 
(a V (x A y)) A b = x A y A b. This and a part of the following result 
show that the concept of V in a nearlattice and the one in "Lattice Theory" 
coincide in a lattice. 

Proposition 2.1 

Suppose a V b holds in a nearlattice S for some a, b € S. Then 
a A b = 0 and (a V t) A b = t A b for any t € S, whenever a V t exists. 
But these are not sufficient for a and b to satisfy the relation a V b. 

Proof 

Since a V b i n S , a A b = 0 and, for any x, y 6 S, 
((aAx)v(xAy))Ab = xAy A b. Suppose a V t exists for some t € S. Putting 
a V t = x, we obtain 
(a V t) A b = ((a A x) V (x A t)) A b = x A t A b = t A b. 

For the second assertion, consider the nearlattice S in Figure 1. There 
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s A a = 0 and (s V x) A a — x A a for all x € S, whenever s V x exists. But 
((s A c) V (c A d)) A a > c A d A a implies that s V a does not hold. • 

For a subset H of a nearlattice S with 0, let Hv = { a € S : a V b for 
all b 6 H }. Suppose a, b 6 S are such that a V b and let ax < a. Then 
for any x, y € S, ((ax A x) V (x A y)) A b = 
((ax A x) V (x A y)) A ((a A x) V (x A y)) A b = 
((a% A x)V ( x A y ) ) A b A x A y = b A x A y , which implies that Hv is 
hereditary. It is well known in lattice theory that Hv is an ideal, c.f. [ 8; 
4.6, p-16 ]. Figure 2 shows that this is not necessarily true in a nearlattice. 
There, consider H = { b }. It is easy to check that aXi a% € Hv. But, 
(((ai V a2) A x) V (x*A y ) ) X b > x A y A b implies that ax V a2 & Hv. 

Remark 

In connection with the definition of V in a nearlattice, it should be noted 
that one might define the relation V in the following way : In a nearlattice 
S with 0, a V b means a A b = 0 and (a V x) A b = x A b, whenever 
a V x exists for any x € S. The main disadvantage with this definition is 
that, for any subset H of S, Hv is not necessarily hereditary. In Figure 3, 
notice that a € { b } v , but (r V x) A b > x A b implies that r £ { b } v . • 

Suppose Hi, ..., Hn are the subsets of S, each of which contains 0. We 
say that S is the direct sum of Hu • • •» Hn and write S = Hx © . . . © Hn if 

(i) every element a € S can be expressed in the form 
a = at V . . . V an where a, € H^ and 

(ii) Hi C Hj whenever i ^ j . 
The subsets Hi, ..., Hn are called direct summands of S. 

Lemma 2.2, 

If a nearlattice S with 0 is a direct sum of Hu • • •• -&»> then for every 
element a € S the expression a -= ax V . . . V a* where at € Ht is unique, 
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and Eu - • •, En are ideals of S. 

Proof 

Let a = a t V . . . V c^ = 61 V . . . V 6n where a,-, bi € E{. Here, 63, . . . , 
bn € 1*7 ty definition. Thus, &s V 01, . . . , bn V ax. Hence <H = a A ax = 
(di V . . . V bn) A <*i = 61 A <*i by proposition 2.1, which implies that a% < 
b\. By symmetry, 61 < a% and hence <i| = 61. Similarly, a, = 6* for all t. 

For the second part, we will only show that Hx is an ideal of S. Let a € 
Ex and b < a ( b € S ). Then b = 61 V . . . V bn with bi € #<. For i 7- 1, 
notice that 6< < b < a and bi € H{ c JST-J7. Thus, ^ = bi A a = 0, i.e., b = 
&i € Hi and so Hi is hereditary. Finally, let a, b 6 Hi are such that a V b 
exists. Suppose a V b = cx V . . . V cn where c, € H,. Now, if i # 1, a, b € 
#1 C Ef> which implies a V c< and b V C| for i ^ 1. Then «* = (a V b) A 
c, == b A c, = 0 by proposition 2.1, and a V b = c\ 6 E%. Therefore, E\ is 
an ideal of S. • 

Our next theorem gives a generalization of a result of Janowitz [6] to 
nearlattices which says that the direct summands of a neariattice S with 
0 are precisely the central elements of J(S). To prove this, we need the 
following lemmas. 

Lemma 2.3 [ Janowitz [6] ]. 

Let 'L' be a bounded lattice with V € (L\ If d is the complement of V 
in *L\ then the following conditions are equivalent. 

(i) z is central and *-

(ii) both z and z1 are standard. • 

Lemma 2.4 

Suppose S 1* a neariattice with 0 and S = E\ © . . . © En. Then 
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(i) for any x, y € S, where x = a 1 V . . . V o n and y =*fo V . . . V bn with 
a,, bi € Hif x A y = (at A h) V . . . V (an A 6n). 

(ii) each Hi is a standard ideal of S. 

Proof 

(ii) L e t T = { h V r : h V r exist with h e Hi and r € R } for an ideal 
R of S. Clearly T is closed under existent finite suprema. Suppose x 
€ S and x < h V r for some h € Hi and r € R. Since 
S = H% © . . . e Hn9 x = at V . . . V c^ and r = ht V . . . V hm 

where a,-, hi € H». Then 
x = x A (h V r) = (ax V . . . V an) A ((h V hx) V . . . V hn) = 
(ax A (h V hi)) V . . . V (an A hn) by the application of (i). (Here, 
h V hi exists by the upper bound property of S as h, hi < h V r ). 
Thus x € T; it follows that T is an ideal, and clearly T = Ht V R. 
Hence, by [ 3; Th. 2.5 ], Hi is standard in J(S), the lattice of ideals 
of S, and (ii) is obtained. • 

Theorem 2.5 

In a nearlattice S with 0, an ideal I is a central element of J(S) if and 
only if it is a direct summand of S. 

Proof 
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Let I be central in J(S) and let K be its complement. Then I D K = 
{ 0 } and I V K = S. Thus, by [ 3; Th. 2.5 ], for each a 6 S there exists 
b € I and c € K such that a = b V c. Moreover, since I is central, for any 
i € I, k € K and x, y € S, 
((i A x] V (x A y]) n (k] C (I V (x A y]) n (k) = 
(I H (k]) V ( x A y A k ] = ( x A y A k ] a s I f l K = { 0 } . 
Thus [(i A x) V (x A y)] A k = x A y A k. But i A k = 0 and so i V k. 
Similarly, k V i and hence S = I © K. 

Conversely, let S = H\ © . . . (B Hn. Then it is not hard to see that 
Hi fl ( H2 V . . . V Hn ) = { 0 } as each JET,- is standard in J(S) by lemma 
2.4. Moreover, each a € S has a representation of the form a = a% V . . . V 
an for suitable o< € H<; it follows that Hi V . . . V Hn = S. Thus, Hx is the 
complement of H% V . . . V Hn in J(S). But by lemma 2.4, both Hi and H2 

V . . . V Hn are standard in J(S). Thus Hi is central in J(S) by lemma 2.3.4 

Similarly, H< is central in J(S) for each i. • 

Corollary 2.6 

The direct summands of a nearlattice S with 0 form a boolean sub lattice 
o/J(S). • 

3 Multiplier extension of a nearlattice 

Let S be a nearlattice and <p a mapping of S into itself. Then 0 is called a 
multiplier on S, if <fr (x A y) = ^(x) A y for each x, y 6 S. Each multiplier 
^ on S has the following properties, ^(x) < x, ^(^(x)) = #(x), and x < y 
implies ^(x) < ^(y). For a multiplier <f> on S, M^ = { x € S : #(x) = x } is 
clearly an ideal of S, and by [ 10; Th. 3 ], M+ determines <f> uniquely. 

Each a € S induces a multiplier /xa defined by A-a(x) = a A x for each 
x € S. A multiplier of this form is called an inner multiplier. Note that the 
identity function on S, which will be denoted by t, is always a multiplier. 
M(S) ( respectively fi(S) ) denotes the set of all multipliers ( respectively 
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inner multipliers ) on S. It is trivial that M(S) has a sero w ( say ) if and 
only if S has 0. 

The following result is due to [ 9, Lemma 1 ]. 

Lemma 3.1 

An ideal I of a near lattice S generates a multiplier $ on S, that is M+ = 
I, if and only if for each a € S there is an element b € I such that 
I n (a] = (b], and moreover, b = ^(a). • 

If <t> and A are multipliers on a nearlattice S, then ^ A A and <£ V A are 
denned by fa A A) (x) = *(x) A A(x) and fa V A) (x) = ^(x) V A(x). Notice 
that ^(x) V A(x) always exists by the upper bound property of S, as <£(x), 
A(x) < x, though <t> V A is not necessarily a multiplier. Also, 
#A(x)) = 4> (A (x A x)) = 4> (A(x) A x) = # x ) A A(x). 
As shown by [ 11; Th. 3 ], M(S) is a meet semilattke. 

The following result is also due to [9]. 

Proposition 3.2 

Let $ and A be two multipliers on a nearlattice S. Then <f> V \ is a 
multiplier on S if and only if 
(M4 V Mx) n (x] = (M+ n (x]) V (Mx n (x]) for eaehx€ S. • 

In case of lattices, the following corollary follows immediately from 
above proposition, and was already proved by Nieminen In [9]. But in 
our situation, a little more care is required, as the supremum of two ideals 
in a nearlattice is not as well behaved as that in a lattice. 

Corollary 3.3 

Let $ be a multiplier on a nearlattice S. The mapping <f>V \is a multiplier 
on S for eaeh A € M(S) if and only if M^ is a standard ideal of S. 
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Proof 

If M+ is standard then (M+ V MA) n (x] = (M, 0 (x]) V (MA n (xj) for 
each A € M(S). Then $ V A is a multiplier by proposition 3.2. 

Conversely, let ^ V A be a multiplier for each A € M(S). By proposition 
3.2, ((a] V M4) n (x] = ((a] n (xj) V (M, n (x]) for each M«, a 6 S. NOW, 
let I be any ideal of S and suppose T -= { i V j : i V j exists and i G I, j € 
M+ }. Obviously, T is closed under existent finite suprema. Suppose r € S 
with r < i V j for some i G I and j € M+. Then from the above observation, 
(r] = (r] n ((i] V 01) C (r] n ((i] V M,) = 
((r] n (i]) V ((r] n MA C ((r] n I) V ((r] n M,) . 

Now, ((r] n I) V ((r] n M#) = { x G S : x < p V q with p G (r] O I and 
q € (r] n M+ }. Because, clearly the right hand side is hereditary, and it is 
closed under existent finite suprema by the upper bound property of S, as 
each element of (r] n I and (r] n M^ is < r. Thus, r < a V b for some 
a € (r] n I and b G (r] n M^. This implies r = a V b and hence r € T. 
That is, T is an ideal containing I and M.>, and T = IV M+. Hence by [ 3; 
Th. 2.5 ], M+ is standard. • 

We are now in a position to generalize an interesting result of [ 9 ]. 

Theorem S.4 

A nearlattice S with 0 has a decomposition into a direct summand if and 
only if there are at least two multipliers $ and A on S such that $ V A = t, 
and 4> A A = w, and both $ and A have a supremum with each multiplier on 
S. 

Proof 

Let S = J © K. By theorem 2.5, both J and K are standard elements of 
J(S), J A K = (0] and J V K = S. Choose any x € S. Since S = J © K, x 
= a% V a% ( unique), a% G J and a% € K. Thus, J n (x] = ( a j , at € J, and 
so by Lemma 3.1, J generates a multiplier ^ on S. As J is standard in J(S), 

- 823 -



by 3.3, <t> V r is a multiplier for each multiplier r € M(S). Similar facts also 
hold for the multiplier A on S associated with K. Then ^ V A corresponds 
to the multiplier associated with the ideal J V K = S, that is, t, while 
<t> A A is the multiplier associated with J n K = (0], i.e., u>. 

Conversely, let <t> and A be two multipliers with the properties given 
in the theorem. As <f> V r exists for each multiplier r € M(S), the ideal 
J associated with ^ is a standard element of J(S). This also holds for the 
ideal K associated with A. As <£ A A = w and ^ V A = t, J A K = (0] and 
J V K = S, respectively. Thus, both J and K are central by Lemma 2.3. 
Hence, according to Theorem 2.5, S = J © K. • 

Next theorem is due to Nieminen [ 9; Th. 3 ]. It should be mentioned 
that there is an error in Nieminen's proof of (iii) =-> (i). There he wanted 
to prove that if (x] is a distributive subiattice of S for each x € S (i.e., S 
is distributive ) then J(S) is distributive, which is well known from [ 2, Th. 
1.1 ]. It is important to note that his determination of the supremum of 
two ideals in an arbitrary nearlattice is not correct. For two ideals I and J 
of a nearlattice S, he has described I V J as { x G S : x < i V j ; i 6 I, j G 
J }. Figure 4 shows that this is not true for a non-distributive nearlattice. 
There, let I = (a] and J = (bj. Observe that c € l V J b u t c g { x € S : x 
< i V j ; X € I, j € J }. In this connection we like to mention that [ 4, Ex. 
22, p-54 ] gives a formula for the supremum of two ideals in an arbitrary 
nearlattice. 

Theorem 3.5 

In a nearlattice S, the following conditions are equivalent. 

(i) M(S) is a lattice ( in fact, distributive lattice). 

(ii) Each multiplier on S is a join-partial cndomorphism of S. 

(iii) (x] is a distributive subiattice of S for each x € S. In other words, S 
is distributive. • 
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We conclude this paper with the following theorem which was also men
tioned by Nieminen in ] 9, Th. 4 ] without proof. But it is quite significant 
to note that there he has given an outline of a proof which is completely 
wrong. He has suggested to use the idea that for a nearlattice S, J(S) is 
modular if and only if (x] is modular for each x € S. Nearlattice S of figure 
2 gives a counter example to that. Notice that there (r) is modular for each 
r € S. But in J(S), clearly { (0], (ai], (ai,y], (aj,b], S } is a pentagonal 
sublattice. 

Still, we are able to provide an independent proof of this theorem. 

Theorem 3.6 

Let S be a nearlattice. Each multiplier $ on S has the property that 
4 (#(y) V z) = ^(y) V ^(z) when $(y) V z exists in S, if and only if (x] is 
a modular sublattice ofS for each x € S. 

Proof 

Suppose (x] is modular for each x € S. Let ^ be a multiplier on S such 
that <f>(y) V z exists for some y, z € S. Choose any a € M+ n ((<£(y) V z]). 
Then a = ^(a) and a < ^(y) V z = t ( say .). Since a, ^(y) < t", the upper 
bound property of S ensures that a V <£(y) = s ( say ) exists in S and s < 
t. Also, a, ^(y) < s implies that a = ^(a) < ^(s) and ^(y) = ^ (^(y)) < 
</»(s), i.e., s < < (̂s), and so s 6 M+. Since (t] is a modular sublattice of S, 
s = sAt = sA(#(y)Vz) = ^(y)v(s Az) € (Af,in(^(y)])v(.M^ n (z]). Thus, a 
€ (M+ n (^(y)]) V (M+ n (zj). Since the reverse inclusion is obvious, M+ 
n (^ (y) V z] = (M+ n (4(y)]) V (M+ n (z]). Hence by Lemma 3.1, 
ttttr) v-) = tfj) v ^(z). 

To prove the converse, let each multiplier ^ on S has the property ^(^(y) 
V z) = ^(y) V ^(z) whenever ^(y) V z exists. Suppose a, b, c € (x] with c 
< a. As the multiplier pa has the given property, a A (b V c) = Mo (b V c) 
= M«(bV M«(C)) = Ma( b ) V M«( c ) = (a A b) V (a A c) = (a A b) V c, 
which implies that (x] is modular. • 
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Figure 3. Figure 4, 
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